

INTRODUCTION TO COMPUTATIONAL TOPOLOGY

Hsien-Chir Chang

Lecture 17, November 11, 2021

Planar e-Emulators

ع-EMuLifor

- Graph H is an ε-emulator of G with respect to terminals T if
$-e^{-\varepsilon} \operatorname{dist}_{6}(x, y) \leq \operatorname{dist}_{H}(x, y) \leq e^{\varepsilon} \operatorname{dist}_{6}(x, y)$ for all pairs of terminals x, y

PLANAR ع-EMUULATORS (Chang Kautrgamerman oozz)

Every planar piece with k bdry vertices has a planar ε-emulator of size $0\left(\mathrm{k} \log ^{0(1)} \mathrm{k} / \varepsilon^{0(1)}\right)$, which can be computed in $0\left(n \log ^{*} n / \varepsilon^{0(1)}\right)$ time

View from Behind the Scene

- During grad school I was thinking about how to tighten tangles.

View from Behind the Scene

- You can also tighten tangles using electrical moves

View from Behind the Scene

-Reconstruction problem:

- Given voltage-current measurements, reconstruct resistor network
[CdV-Gitler-Vertigan 1996] [Curtis-Ingerman-Mooers-Morrow 1998]
- Given distance measurements, reconstruct weighted planar graph [Chang-Ophelders 2020]

View from Behind the Scene

- Electrical transformations preserve distances
- $\Omega\left(n^{2}\right)$ lower bound [Krauthgamer-Zondiner 2012] [Cossarini 2019] [Chang-Ophelders 2020]
- Electrical moves ~ Homotopy moves

Toolbox for Plinnar Distance Probifims

- Multiple-source shortest paths [Klein 2005] [Cabello-Chambers-Erickson 2013]
- Cycle separator decomposition/r-division [Frederickson 1989] [Kein-Mozes-Sommer 2012]
-Monge heap/dense distance graph [SMAwk 1987] [Fakcharoenphol-Rao 2001]
- FR-Dijkstra [Fakcharoenphol-Rao 2001〕

During STOC 2021 (June 23)

-ZIIHAN: [Chang-Ophelders 2020] is nice, but what if terminals not on bdry? - $0\left(\mathrm{x}^{4}\right)$ and $\Omega\left(\mathrm{n}^{2}\right)$ [still open]

- But hey, [Cheung-Goranci-Henzinger 2016] shows $\tilde{0}\left(\mathbf{k}^{2} / \varepsilon^{2}\right)$ if allowing distortion ε

Juif, 2021

- One-hole planar piece has ε-emulator by modifying [Chang-Ophelders 2020]
-Cut O(1)-hole pieces into one-hole pieces; portals on the cut-open path

CuT\&Gute

- Cut open the shortest path between two holes

PoRThis

- ε-cover of V on P
- Portals on P such taking detours through portals has distortion ε : $\operatorname{dist}(\mathrm{v}, \mathrm{p})+\operatorname{dist}(\mathrm{p}, \mathrm{x}) \leq(1+\varepsilon) \operatorname{dist}(\mathrm{v}, \mathrm{x})$
- ε-cover of size $0(1 / \varepsilon)$ exist [Thorup 2004]
- $0(\mathrm{k} / \varepsilon)$ portals to remove one hole
- Each takes $0(\mathrm{n} \log \mathrm{n})$ time

Juif, 2021

- One-hole planar piece has ε-emulator by modifying [Chang-Ophelders 2020]
-Cut 0(1)-hole pieces into one-hole pieces; portals on the cut-open path
-July 28: Giving TRG talk "Planar emulators for planar graphs"
- tl;dr Planar graphs are soft and squishy; come and see why.

Juix 29, 2021

-Hmm that doesn't work.

August, 2021

- Hug 1: Wait we can cut open along shortest path and portal it. Why not portal all the way through?

CuT\&Gus:

- Cut open the shortest path among "balanced" terminal pairs

Hugust, 2021

- Hug 1: Wait we can cut open along shortest path and portal it. Why not portal all the way through?
- Hug 2-11: Working hard
- Applications
- MSSP, min-cut, diameter... you name it
- Hug 12: Spread is a problem; but we have spread reduction

Intermission

Spreid

- Spread Φ
- Ratio between max and min distance between terminal pairs

Too Many Portalis

-Instead of $O(1)$-holes, now we have $O(\log \mathrm{n})$ levels

- $0(\mathrm{k} / \varepsilon)$ portals from ε-cover is too much!
- Can take at most $0\left(\mathrm{k} / \mathrm{log}^{2} \mathrm{k}\right)$ portals
- Portals at exponentially-increasing intervals from both ends of P
- distortion $\log \Phi /\left(\mathrm{k} / \log ^{2} \mathrm{k}\right)$
-But usually we have spread reduction!

Sepptwber, 2021

- Sep 2: Trying to convince Robi and Zihan that this is fine
- Nope, that won't work.

Uncontroliable Spread

- Distortion $\log \Phi /\left(\mathrm{k} / \log ^{2} \mathrm{k}\right)$
- When $\Phi \leq \exp \left(\mathrm{k}^{0.9}\right), \sim \mathrm{k}^{-0.1}$ distortion
-The spread is changing during D\&C as we add portals as terminals

September, 2021

-Sep 2: Trying to convince Robi and Zihan that this is fine

- Nope, that won't work.
-Zihan: Tricolor sets based on short/medium/long ranges, here's why...
- Trying hard to make [Chang-Ophelders 2020] useful
- Sep 23
- Zihan: Hey I fixed it, but the spread is not so good

When Spread is Large

- Hierarchical clustering of terminals

- Form level-i cluster if within distance $\sim \mathrm{k}^{2 \mathrm{i}}$

- Draw cluster tree

- Cluster is expanding if parent cluster is at least $\exp \left(\mathrm{k}^{-0.7)}\right.$)factor bigger
- It most $\mathrm{k}^{0.7}$ levels if all clusters are expanding
- Spread at least $\exp \left(\mathrm{k}^{0.9}\right)$, thus some cluster is non-expanding

When Spread is Large

-If the non-expanding cluster C is balanced (between $\mathrm{k} / 5$ and $4 \mathrm{k} / 5$):

- Cut along the "flower" formed by terminals in C
- Portal from parent cluster C' using ε_{k}-covers for $\varepsilon_{k}=k^{-0.1}$
- Distance between C and K-C' are far away

When Spread is Lhrge

-If all non-expanding clusters are not balanced:

- One of such clusters C is huge (of size at least $4 \mathrm{k} / 5$)
- Find all non-expanding clusters of maximal level
- All such clusters are within $\sim \mathrm{k}^{0.7}$ levels from C
- Cut along the "flowers" formed by all terminals in all max level clusters

Lemini. C_{1} and C_{2} two disjoint clusters. Then terminal pairs from C_{1} and C_{2} are non-crossing.

PLANAR ع-EMUULATORS (Chang Kautrgamerman oozz)

Every planar piece with k bdry vertices has a planar ε-emulator of size $0\left(\mathrm{k} \log ^{0(1)} \mathrm{k} / \varepsilon^{0(1)}\right)$, which can be computed in $0\left(n \log ^{*} n / \varepsilon^{0(1)}\right)$ time

October, 2021

- Grinding through the details

- Oh no, too many deg-3 vertices during D\&C
- Wait, the distances are shrinking!?

- Well the sub-instances are not a disk any more
- OH MY GOSH WE DONTT HAVE TIME
- The applications doesn't work \#\$!\&?
- abort abort ABORT
- Hey we can bootstrap the running time

Bootstrap Lexwni. Planar ε-emulator can be computed in $0_{\varepsilon}(\mathrm{n} \log \log n)$ time

Boorstrrap Lemwn. Planar ε-emulator can be computed in $0_{\varepsilon}(n \log \log \log \mathrm{n})$ time

ОСТОВЕR, 2021

- Grinding through the details

- Oh no, too many deg-3 vertices during D\&C
- Wait, the distances are shrinking!?

- Well the sub-instances are not a disk any more
- OH MY GOSH WE DONTT HAVE TIME
- The applications doesn't work \#\$!\&?
- abort abort ABORT
- Hey we can bootstrap the running time
- The neg-weighted shortest path application still doesn't work, oh well

Novembrr, 2021

-Nov 4: STOC submission
-Nov 11: Present the result in class

- Hey, there are typos here and there
- Wait how does this work again?
- This slide is self-referencing now

Real Research is Messy

Next Time.

 Some more applications to fixed-point theorems.