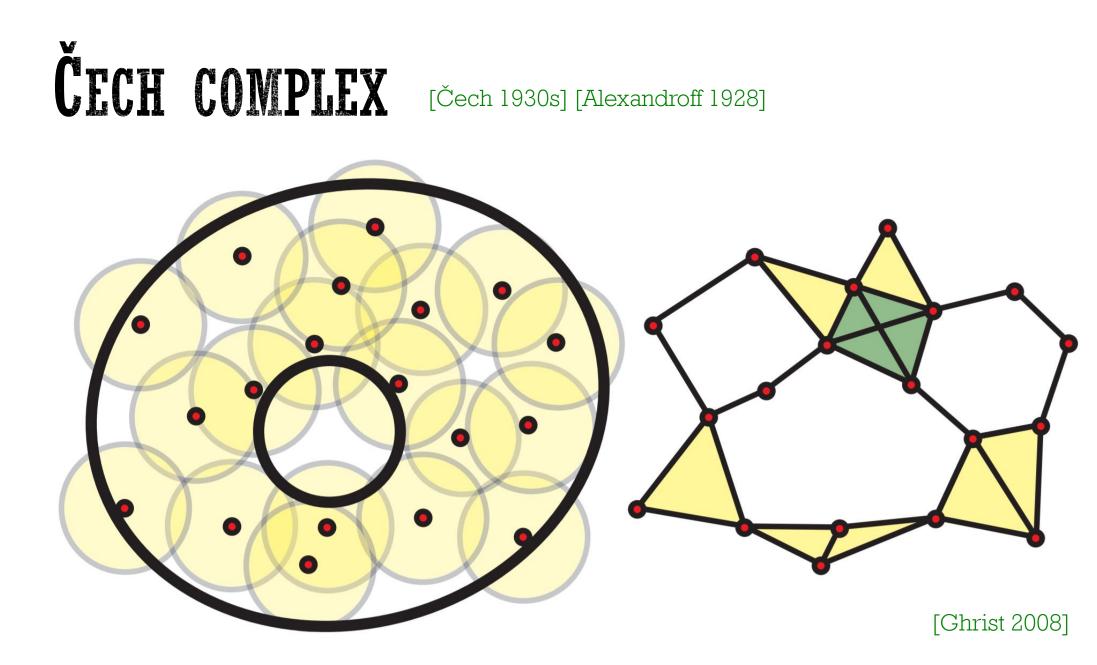


INTRODUCTION TO

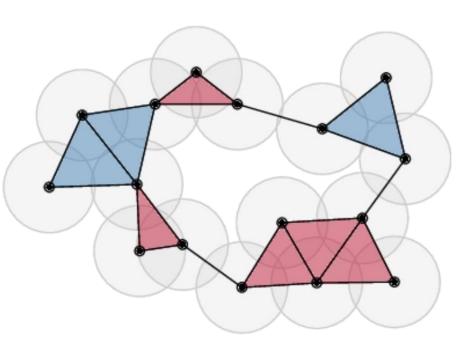
COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 13, OCTOBER 26, 2021

SHAPE OF POINT CLOUDS



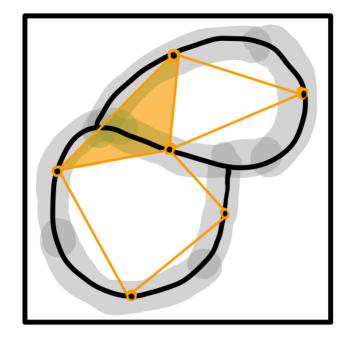
VIETORIS-RIPS COMPLEX [Vietoris 1927]

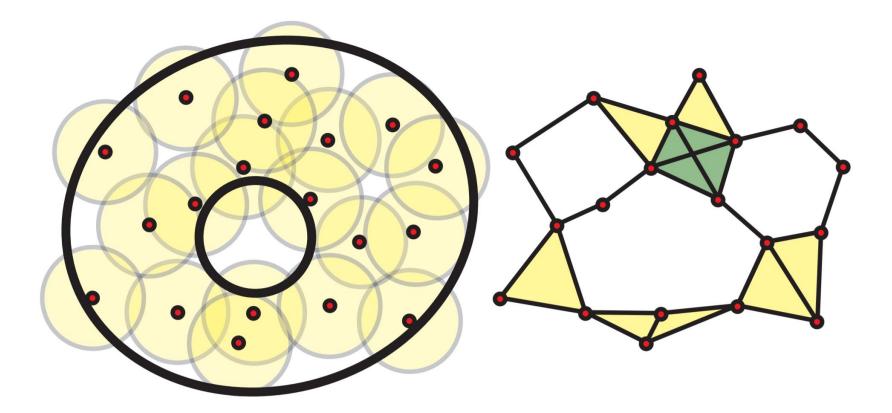


VR LEMMA. $\check{C}_{\varepsilon}(X) \subseteq VR_{\varepsilon}(X) \subseteq \check{C}_{2\varepsilon}(X)$

NFRVE

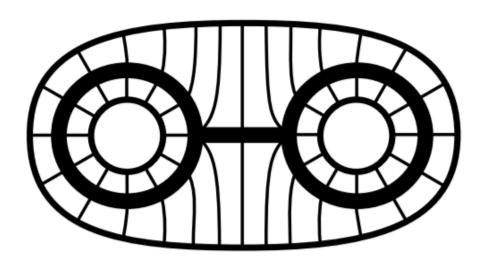
 Nrv(U) = {common intersections of subsets in U} = {simplices}, naturally forming a complex

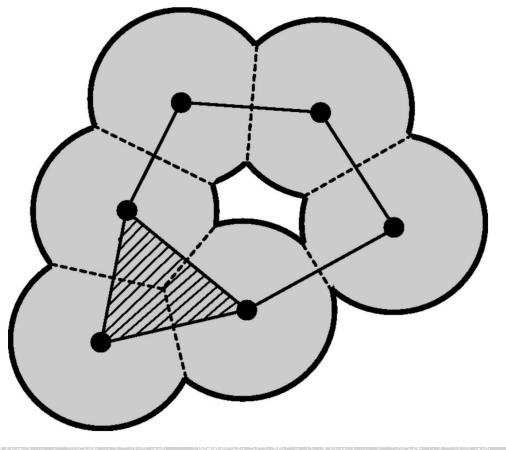




NERVE THEOREM [Borsuk 1948] [Alexandroff 1928] Nrv(U) and UU are homotopic equivalent if all common intersections of subsets in U are contractible

PROOF OF NERVE THEOREM.

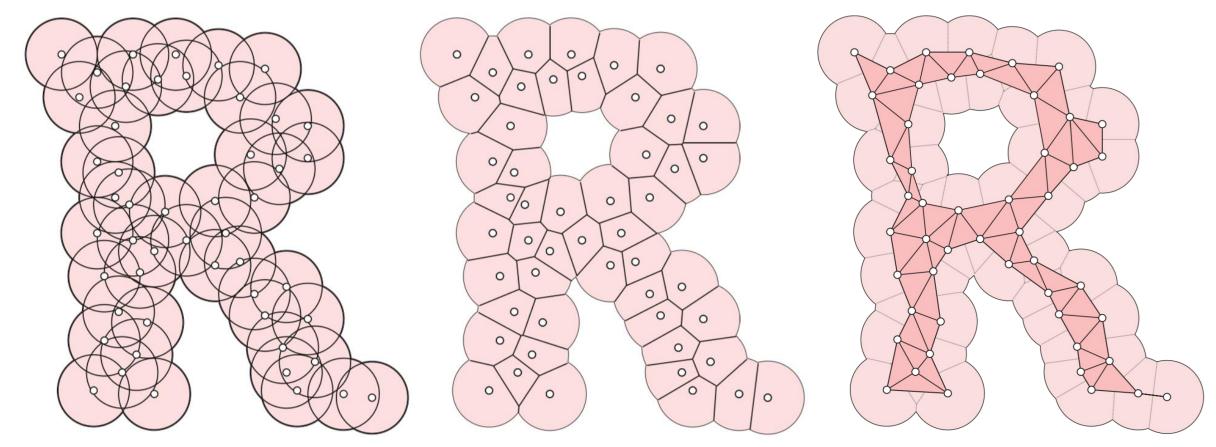


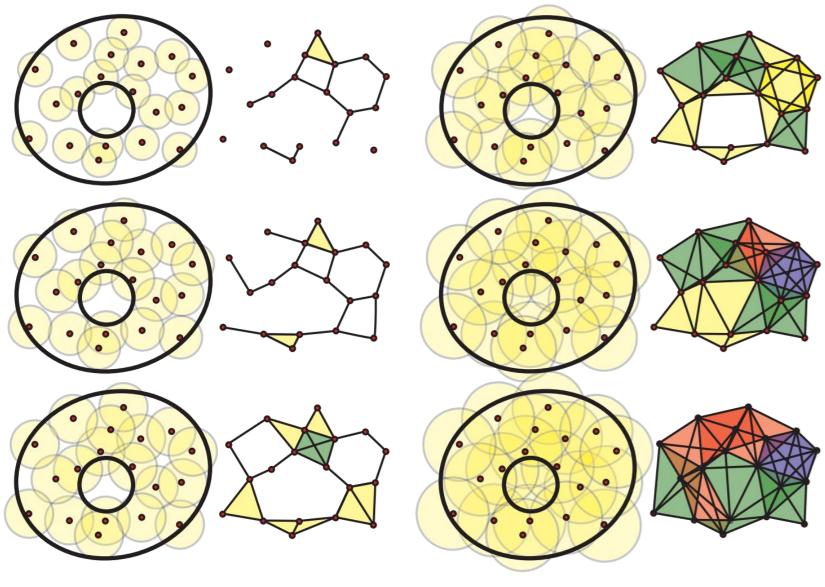


VIETORIS-SMALE MAPPING THEOREM [Vietoris 1927] [Smale 1957] If f: X \rightarrow Y is surjective and proper, and all preimage f⁻¹(y) is contractible, then X and Y are homotopically equivalent.

ALPHA COMPLEX

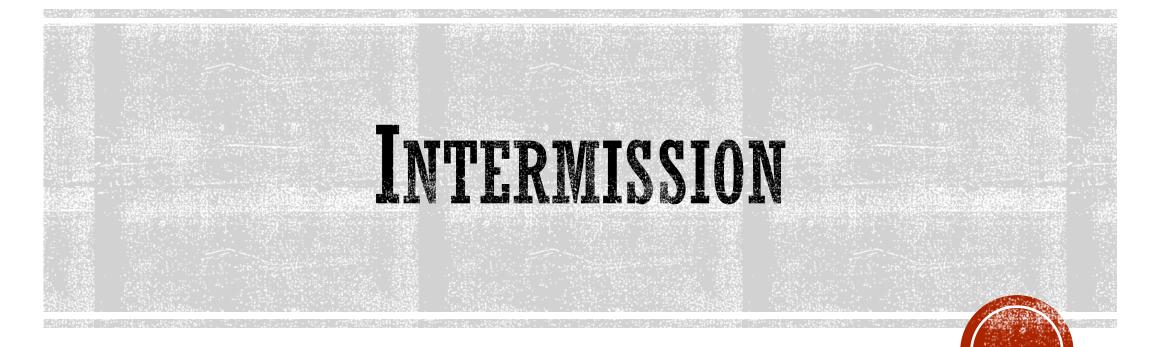
[Edelsbrunner-Kirkpatrick-Seidel 1983] [Edelsbrunner 1995]





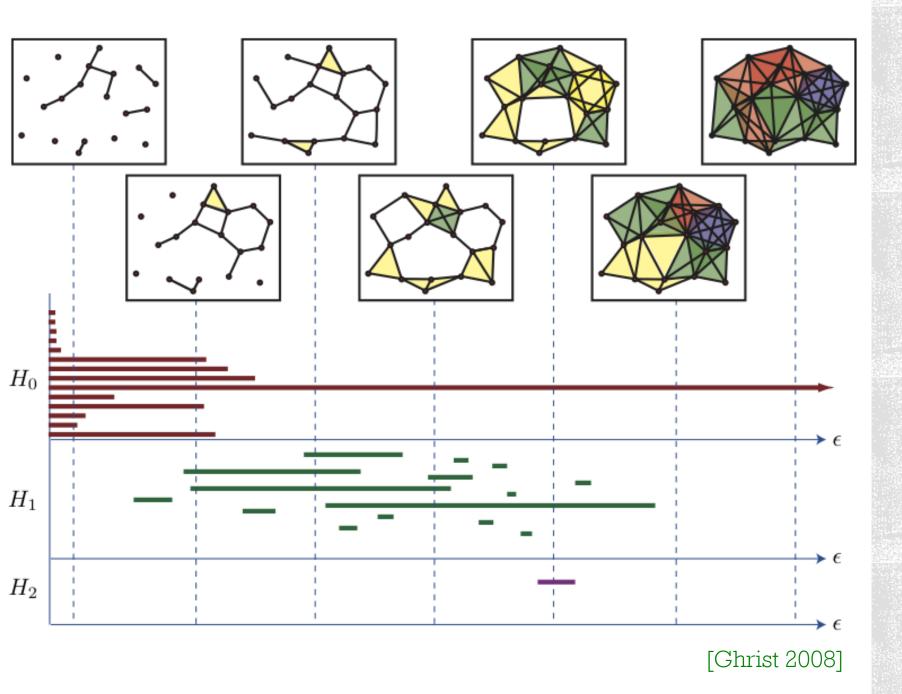
COOL IDEADon't guess ε; take all!

[Ghrist 2008]



FOOD FOR THOUGHT. Why are common intersections of balls contractible?

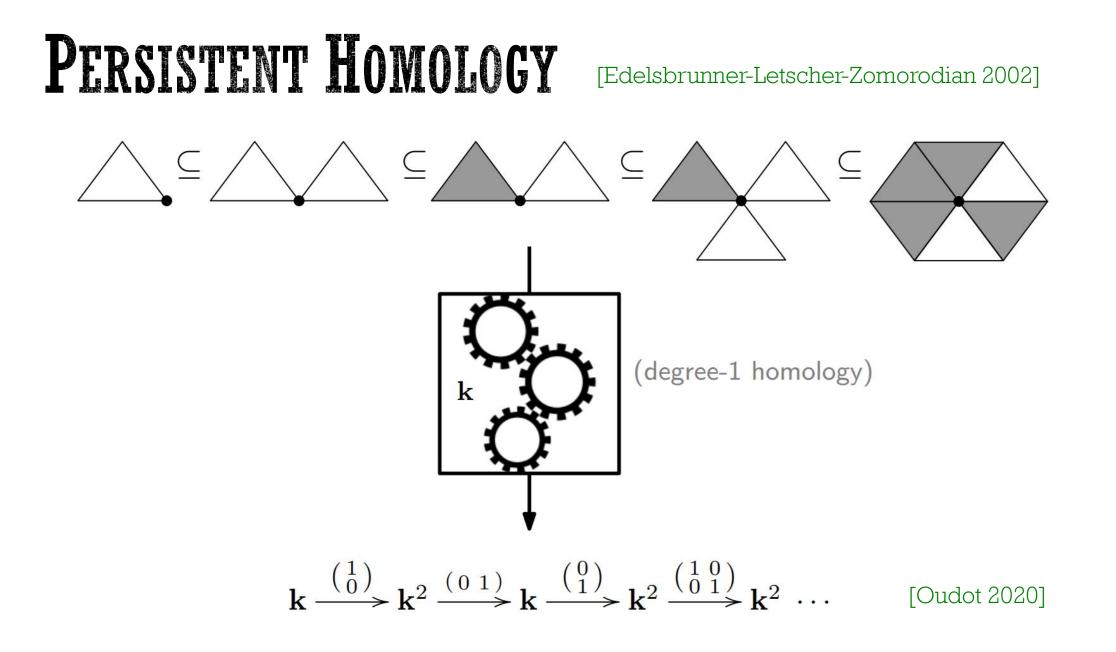
OPERSISTENT HOMOLOGY



BARCODES

- Summary of homology data at all scales of $\boldsymbol{\epsilon}$

- Existence
- Computation
- Stability



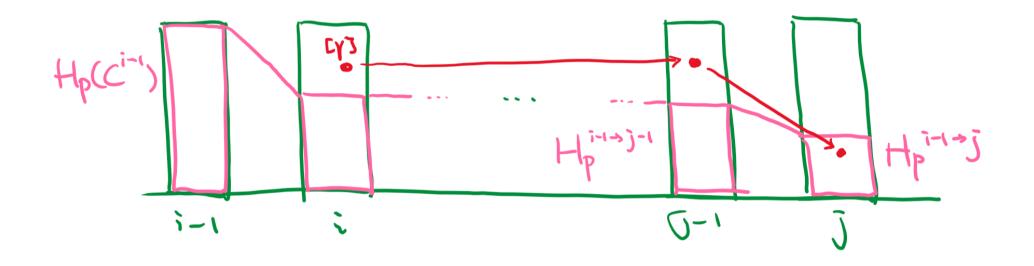
PERSISTENT HOMOLOGY

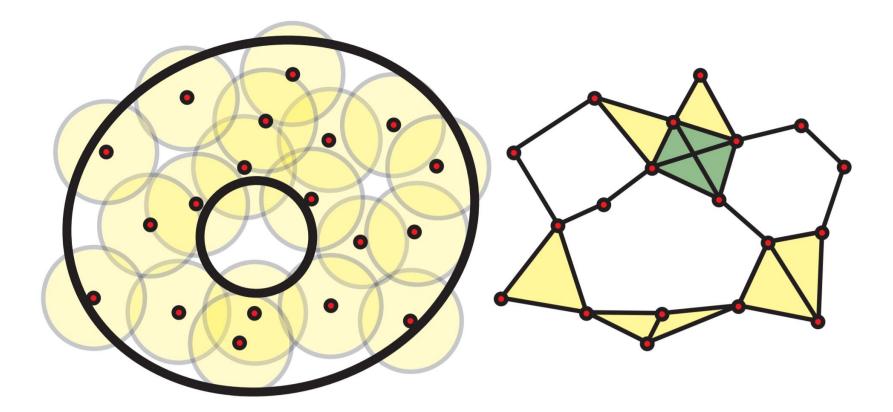
 $\mathbf{k} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} \mathbf{k}^2 \xrightarrow{\begin{pmatrix} 0 & 1 \end{pmatrix}} \mathbf{k} \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} \mathbf{k}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} \mathbf{k}^2 \cdots$

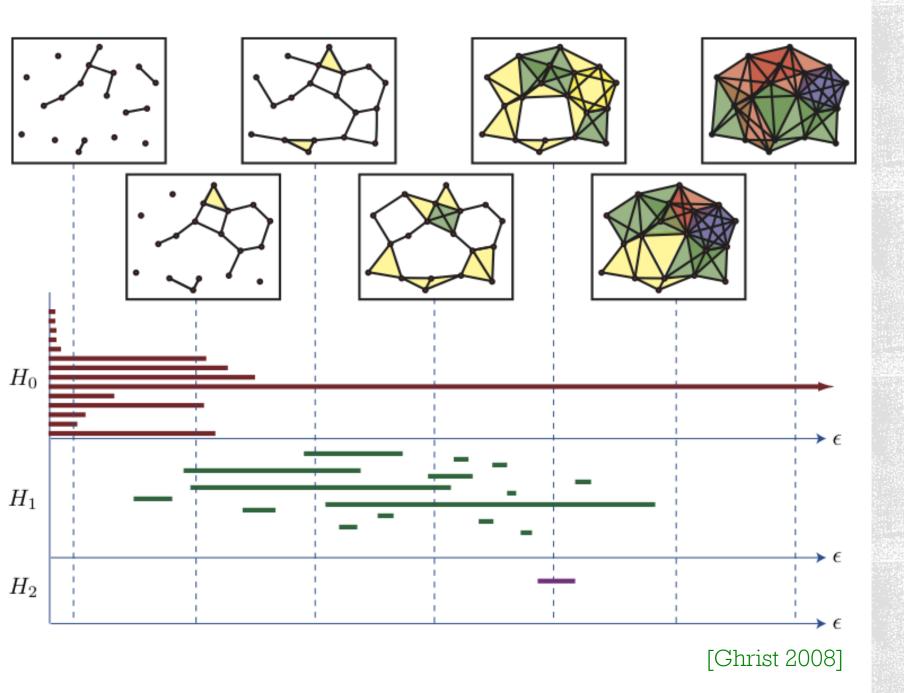
 $\mathbf{H}_{n}^{i \to j}(\mathbf{C}) = \operatorname{im}(\mathbf{H}_{p}(\mathbf{C}^{i}) \to \mathbf{H}_{p}(\mathbf{C}^{j}))$

Birth and Death

- $[\gamma]$ is born at i if $[\gamma]$ is in $H_p(C^i)$ but not in $H_p(C^{i-1})$
- $[\gamma]$ dies at j if $[\gamma]$ merges with older cycles: • $i^*[\gamma]$ not in $H_p^{i-1 \rightarrow j-1}$ but in $H_p^{i-1 \rightarrow j}$







PERSISTENCE • Pers[γ] = $\epsilon_j - \epsilon_i$

COMPUTATION

PAIR (A γ ← JA // (p-1)-cycle σ ← youngest (p-1)-shoplex m γ. while (T.D) paired & Y = 0: I Y' < cycle killed by D' - Y + Y' L J < youngest (p-1)-simplex mY if $r \neq \phi$: Δ is negative, pair (σ, Δ) else, posit

NEXT TIME. Stability of persistence; sketching topology

ČECH HOMOLOGY

- $\check{C}_n(U) = \langle \text{common intersections of } n+1 \text{ subsets in } U \rangle = C_n(Nrv(U))$ • $\partial_n U_J = \Sigma_i (-1)^i U_{J-i}$
- **THEOREM.** Čech homology = normal homology if every U_I are homologically trivial

