
Algorithmica (1987) 2 :195-208 Algorithmica 
�9 1987 Springer-Verlag New York Inc. 

Geometric Applications of a Matrix-Searching Algorithm 

Alok Aggarwal, ~ Maria M. Klawe, 2 Shlomo Moran, 1'3 Peter S h o r ,  4 

and Robert Wilher 2 

Abstract. Let A be a matrix with real entries and let j ( i )  be the index of  the leftmost column 
containing the max imum value in row i ofA.  A is said to be monotone if il > i2 implies tha t j ( i l )  >-j(i2). 
A is totally monotone if all of  its submatrices are monotone.  We show that finding the maximum 
entry in each row of  an arbitrary n x m monotone matrix requires O(m log n) time, whereas if the 
matrix is totally monotone the time is O(m) when m-> n and is O(m(l+log(n /m)) )  when m < n. 
The problem of  finding the max imum value within each row of a totally monotone matrix arises in 
several geometric algorithms such as the all-farthest-neighbors problem for the vertices of  a convex 
polygon. Previously only the property of monotonicity, not total monotonicity, had been used within 
these algorithms. We use the |  bound on finding the maxima of wide totally monotone matrices 
to speed up these algorithms by a factor of  log n. 

Key Words. All-farthest neighbors,  Monotone matrix, Convex polygon, Wire routing, Inscribed 
polygons, Circumscribed polygons. 

1. Introduction. The all-farthest-neighbors problem for a set of n points in the 
plane, P, is to find for each point Pie P, another point pj ~ P with j ~ i such that 

d(p;, pj)= max d(p;, Pk), 

where d(pi, pj) denotes the Euclidean distance between Pi and pj. The all-nearest- 
neighbors problem consists of finding the nearest point for every point in the set. 
Shamos and Hoey [12] have shown that | log n) is the optimal time bound 
for the all-nearest-neighbors problem, and Toussaint and Bhattacharya [17] as 
well as Preparata [10] have shown that @(n log n) is also an optimal time bound 
for the all-farthest-neighbors problem. 

The f~(n log n) bounds given in [12], [17], and [10] are obtained under the 
assumption that the algorithm is provided with an arbitrary set of points in the 
plane. In particular, these bounds do not apply when the input set forms the 
vertices of a convex polygon (given in clockwise order). In fact, using some 
geometric properties of a convex polygon and the fact that any point can be the 
nearest neighbor of at most six other points in the plane, Lee and Preparata [7] 
obtained a O(n) algorithm for the all-nearest-neighbors problem on a convex 
polygon. However, since a single point could be the farthest point for all n - 1  
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other points even if the points from the vertices of a convex polygon, the algorithm 
proposed by Lee and Preparata cannot be modified to solve the all-farthest 
neighbor problem in linear time. 

A simple polygon is unimodal if for every vertex Pk the function defined by 
the Euclidean distance between Pk and the remaining vertices (traversed in 
clockwise order) contains only one local maximum. For any m -> 1 this definition 
of unimodal polygons can be extended to m-modal  polygons, in a natural manner. 
Recently, Avis et al. [3] have provided counterintuitive examples of  convex 
polygons in which n/2 vertices have n/4 local maxima in each of their distance 
functions. This false intuition regarding the multimodality of distance functions 
has often resulted either in incorrect algorithms or in increased time complexities 
for some of them. (See [15] for details.) Aggarwal and Melville [1] have shown 
that whether a convex polygon is m-modal  can be determined in O(n + m) time, 
and Toussaint [15] has provided a very simple and intuitive algorithm for solving 
the all-farthest-neighbors problem for a convex unimodal polygon in O(n)  time. 
Here we show that the all-farthest-neighbors problem can be solved for a convex 
polygon in O(n)  time regardless of  its modality. We use the same method to 
speed up several other geometric algorithms by a factor of log n. 

This paper  is divided into six sections. Section 2 discusses a combinatorial 
problem for matrices under a weak constraint and a stronger one. We show that 
each instance of the all-farthest-neighbors problem for convex polygons is an 
instance of the matrix problem under the strong constraint. Section 3 demonstrates 
that there is an P~(m log n) lower bound for solving the problem on n • m matrices 
subject only to the weak constraint. Consequently, if one only makes use of the 
weak constraint in solving the all-farthest-neighbors problem (in the manner  used 
by researchers in the past), then one cannot hope to achieve a linear time solution. 
Section 4 shows that the matrix problem with strong constraint can be solved in 
O(m)  time when m-> n. This yields a linear time solution for the all-farthest 
neighbor problem on convex polygons. In Section 5 we show that for matrices 
subject to the strong constraint with m < n the time required to solve the problem 
is O(m(1 +log(n /m)) ) .  In Section 6 we describe how the linear time algorithm 
of Section 4 can be applied to several geometric optimization and computer-aided- 
design problems. 

2. The Matrix Problem. Let A be an n • m matrix with real entries. Let A j 
denote the j th  column of A and Ai denote the ith row of A. A[il ,  �9 �9 �9 ik; j~,. �9 �9 jk ] 
denotes the submatrix of A that is the intersection of rows i ~ , . . . ,  ik and columns 
J ~ , . . . ,  jk. Let j ( i )  be the smallest column index j such that A(i, j )  equals the 
maximum value in Ai. The matrix A is said to be monotone if for 1 -< i~ < i2 <- n, 
we always have j( iO <-j(i2). A is totally monotone if every submatrix of A is 
monotone. It is easy to verify that this holds if every 2 • 2 submatrix of  A is 
monotone. We will call the problem of finding the maximum entry in each row 
of a matrix the maximum problem for that matrix and, in this paper, we will 
investigate the time complexities of the maximum problem for monotone and 
totally monotone matrices. 
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The maximum problem for totally monotone matrices arises in several geometric 
algorithms and we now show that an instance of the all-farthest-neighbors problem 
for a convex polygon with n vertices can be regarded as an instance of the 
maximum problem for an n x ( 2 n - 1 )  totally monotone matrix. Let P l , . . . ,  P, 
denote the vertices of  a convex polygon in clockwise order. For an integer u let 
o u denote ( ( u -  1 )mod  n ) +  1. Define an n x ( 2 n -  1) matrix A as follows: 

I f  i<j<_ i + n - 1  then A(i , j )=d(p , ,  poj). 
If  j -< i then A(i, j )  = j  - i, and if j -> i + n then A(i, j )  = - 1. 

Now suppose the 2 x 2 submatrix A[i, j; k, l], with i < j  and k < l, has only positive 
entries. Then we must have i < j  < k < l < i + n. In this case the vertices p,, pj, po k, 
and po~ are in clockwise order around the polygon. From the triangle inequality 
one can show that d(p~,pok)+d(pj, pot)>-d(pi, pot)+d(pj, pok). Thus 
A[i,j; k, I] is monotone. The nonpositive entries ensure that all other 2 x 2  
submatrices of  A are also monotone.  Thus A is totally monotone,  and by solving 
the maximum problem on A we can solve the all-farthest-neighbors problem for 
the polygon. (See Section 6.) 

3. An l~(m log n) Lower Bound for the Maximum Problem an Arbitrary Monotone 
Matrices. The maximum problem on a monotone n x m matrix A can be solved 
by the following straightforward divide-and-conquer algorithm. Let i = In /2 ]  
and in O(m) time find j = j ( i ) .  Recursively solve the maximum problem on the 
submatrices A [ 1 , . . . , i - 1 ; 1 , . . . , j ]  (when i > 1  and j > l )  and A [ i + I ,  
. . . ,  n; j , . . . ,  m] (when i <  n and j < m). The time required by this algorithm is 
given by the recurrence 

f(n, m) <- m + max ( f (  In /2 ]  - 1, j )  + f (  [n /2J ,  m - j  + 1)), 
l ~ j ~ m  

with f (0 ,  m)=f(n ,  1)=constant. Solving the recurrence, we have f(n, m ) =  
O(m log n). (All logarithms in this paper  are base 2.) The best previously known 
algorithms for the all-farthest-neighbors problem on convex polygons and for 
the problems described in Section 6 all contain a step that is essentially this 
divide-and-conquer procedure. This algorithm works for arbitrary monotone 
matrices; the much stronger property of  total monotonicity is not used. In this 
section we show that any algorithm that solves the maximum problem on arbitrary 
monotone matrices must have a worst-case time of ~ ( m  log n). So any improve- 
ment on the simple divide-and-conquer algorithm for the matrices corresponding 
to the applications must make use of  some property beyond monotonicity (such 
as total monotonicity). 

We derive a lower bound on the number  of  entries of  the matrix that must be 
queried by any algorithm for the maximum problem on monotone matrices. We 
prove that when n is a power of  2 at least � 8 8  n) queries must be 
made, from which it follows that for arbitrary n at least ~ ( m -  1) log n queries 
are required. The p roof  uses an adversary argument. The value of each entry of  
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the  matr ix  is regarded  as be ing  inde te rmina te  until  it is first quer ied ,  at  which 
po in t  the adversa ry  will assign a value  that  is consis tent  with the mono ton ic i ty  
condi t ion .  

THEOREM 3.1. Let A be an n x m matrix, where n is a power o f  2. Let  h >- 1 and 
let e = 1 or m. Set f = m + 1 - e. Suppose that at most m a x ( m  - 2, 0) entries o f  A 
have already been queried and are therefore fixed. Also, suppose that no entries 
have been queried in A f that any entries that have been queried in A e have been 
set to h, and that all other queried entries have been set to values less than 1. Then 
an adversary can answer any queries for  the remaining entries in a way consistent 
with the monotonicity condition, so that in order to determine the positions o f  the 
maxima in each row a total o f  at least � 8 8  1)(1 + log n) entries must  be queried 
(including those that were initially queried), and so that the max imum value in each 
row is at least h. 

PROOF. We will a s sume th roughou t  that  m->2 ,  for  the case m = 1 is trivial.  
When  we say that  the adversa ry  sets an entry  to a low value, we mean  some 
prev ious ly  unused  posi t ive  value  less than  1. Note  that  i f  m - 2  or  fewer quer ies  
have been  made  then there  are at least  two co lumns  with no queries,  say A j' and  
A j2. The adversa ry  can answer  future queries  in these co lumns  e i ther  by  sett ing 
all entr ies in A j, to h + 1 and  all entries in A j2 to low values  or  by sett ing all 
entries in A J' to low values  and  all entries in A j: to h + 1. Ei ther  the  m a x i m a  will 
all be in A jl or  they will  all be  in A j2, and  in e i ther  case the m a x i m u m  value in 
each row will be greater  than  h. Thus when m - 2  or  fewer queries  have been  
m a d e  the pos i t ions  o f  the  m a x i m a  have not  yet  been  de te rmined .  

We use induc t ion  on n. 
Basis step. Suppose  n < 4 .  By the observa t ion  above,  at least  m - 1  queries  

must  be made ,  and  when n < 4 ,  � 8 8  1)(1 + l o g  n ) <  m -  1. So the c la im is true 

in this case. 
Induction step. Let n be a power  of  2 grea ter  than  or equal  to 4 and  assume 

that  the  t heo rem is true for  all powers  of  2 less than  n. We show that  the  theorem 
is true for  n. The sequence  o f  queries is d iv ided  into two stages. The first stage 
lasts unti l  a total  of  m - 1 entr ies have been  quer ied  ( inc luding  those  entries that  
had  been  quer ied  at the start).  Since at least  m - 1  queries must  be made ,  we 
a lways  reach  the end  o f  the  first stage. Any  query  m a d e  af ter  the  (m - 1)st query 
is in the second  stage. The  rules for  answer ing  a query to entry A(i,  j )  dur ing  
the first s tage are as fol lows:  

1. (a) I f  i <-- n /2  a n d j  = 1 then if  e = 1 set A(i,  j )  to h, o therwise  set A(i,  j )  to h + 1. 
(b) I f  i > n /2  and  j = m then if  e = m set A(i,  j )  to h, o therwise  set A(i,  j )  to 

h + l .  
2. I f  i<- n / 2  and  j #  1 or  i f  i >  n /2  and j #  m, set A ( i , j )  to a low value.  

When  the first stage ends ,  exact ly  m - 1  entr ies of  A have been quer ied  and  
the values  fixed are cons is ten t  with all m a x i m a  in rows 1 th rough  n /2  being in 
co lumn 1 and  all m a x i m a  in rows n / 2 +  1 th rough  n being in co lumn m. Quer ied  
entr ies  in co lumns  2 th rough  m -  1 all have values  less than  1. 
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After the first stage is completed  a column c and two submatrices L and R are 
selected as follows. For  0-<j-< m, let SJ be the number  o f  queried entries in 
columns 1 through j o f  A (So = 0). Let c be the smallest integer in [1, m] such 
that sc = c - 1 .  Such an integer exists because s,, = m - 1 .  Since the s /s  are 
nondecreasing,  it is easy to show by induct ion that for all j in [0, c -  1], sj ->j. 
In particular, sc 1 -> c - 1. Since so-1 -< so, we conclude that s~_~ = sc = c - 1. There- 
fore A ~ has no queried entries, the first c -  1 columns of  A contain c - 1 queried 
entries, and the last m - c  columns contain m - c  queried entries. 

Let L be one of  the two submatrices A [ 1 , . . . ,  n/4; 1 , . . . ,  c] or A[n/4+l,  
� 9  n/2; 1 , . . . ,  c], whichever  has the fewest queried entries�9 L has c columns and 
at most  [(c - 1)/2] -< max(c  - 2, 0) queried entries. Let k~ be the index of  the row 
o f  A containing the first row o f  L (i.e., kl is equal to either 1 or  n/4+ 1), and 
let k2 be the index of  the row of  A containing the last row of  L (i.e., k2 is equal 
to either n/4 or n/2). Similarly, let submatrix R be either A[n/2+l,  
�9 . . , 3 n / 4 ;  c , . . . ,  m] or A[3n/4+l , . . . ,  n; c , . . . ,  m], whichever has the fewest 
queried entries�9 Let k 3 be the index of  the row of  A containing the first row of  
R, and let k4 be the index of  the row of  A containing the last row of  R. R has 
m - c + 1 columns and contains at most  [(m - c) /2]  -< max(rn - c - 1, 0) queried 
entries. 

Note  that  L satisfies the condit ions o f  the theorem, with parameters  h '  and e', 
where e ' =  1 and h ' =  h if e =  1 and h ' =  h +  1 if e =  rn. Similarly, R satifies the 
condit ions o f  the theorem, with parameters  h" and e", where e "=  m - c +  1 and 
h"=h if e=m a n d h " = h + l i f e = l .  

The rules for  answering a query o f  entry A(i, j) during the second stage are 
as follows: 

1. I f i < k ~  a n d j = l ,  o r i f i > k a a n d j = m ,  then set A(i, j )  to h + l .  
2. I fk2<i<k3 a n d j = c  then set A(i,j) to h + 2 .  
3. (a) I f  A(i, j) is in submatrix L then fix the value for that entry by applying 

the adversary strategy recursively to 
(b) I f  A(i, j) is in submatrix R then fix 

the adversary s t ra tegy recursively to 
4. For  all other  queries set A(i, j) to a low 

L, using the parameters e' and h'. 
the value for that entry by applying 
R, using the parameters  e" and h". 
value. 

Rule 1 ensues that the maxima  in rows 1 through k 1 - 1 are in A 1 and that the 
maxima in rows k4+ 1 th rough  n are in A" .  Rule 2 ensures that the maxima in 
rows k2+ 1 through k 3 - 1  are in A C. The values o f  entries in A[k l , . . . ,  kz; c +  1, 
�9 . . ,  m] are all less than h', and the values o f  entries in A [ k 3 , . . . ,  k4; 1 , . . . ,  c -  1] 

are all less than h". By assumption the recursively applied strategy results in a 
maximum value o f  at least h '  in eah row of  L and of  at least h" in each row of  
R. Therefore the maxima for rows kl through k2 of  A are all in submatrix L, and 
the maxima for r o w s  k 3 th rough k4 are all in submatrix R. By assumpt ion the 
maxima within L and R are arranged in a way consistent with the monotonic i ty  
condit ion so the posit ions o f  the maxima of  A also satisfy the monotonic i ty  
condition.  Also, the max imum value in each row is at least h. 

Submatrices L and R each have n/4 rows. By assumption,  at least 4t(c- 1) • 
(1 + l o g ( n / 4 ) )  queries are needed to locate the maxima within L and at least 
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l ( m - c ) ( l + l o g ( n / 4 ) )  queries are needed to locate the maxima within R. In 
addition, at the end of the first stage there are at least ( m - 1 ) / 2  queries in A 
outside of L and R. So the total number of queries needed to find the maxima 
in A is at least 

m - l . + l ( c _ l ) ( l + l o g 4 )  1 _ c ) ( l + l o g 4 )  1 2 +~(m =~(m - 1)(1 + log  n). [] 

When A has no initial queries the conditions of the theorem are obviously met 
for any h-> 1 and e equal to either 1 or m, so we have the desired l)(m log n) 
lower bound. 

4. A Linear Time Algorithm for the Maximum Problem on Wide Totally Monotone 
Matrices. Here we show that by making use of the strict constraints imposed 
by total monotonicity we can solve the maximum problem in O(m) time on n • m 
matrices when m -> n. As above we define j ( i )  as the smallest column index such 
that A( i , j ( i ) )  equals the maximum element in Ai. The key component of the 
algorithm is the subroutine REDUCE.  It takes as input an n • m totally monotone 
matrix A, with m >- n. The value returned by R E D U C E  is an n • n submatrix of 
A, C, with the property that, for 1 -< i-< n, submatrix C contains column A j(i). 
R E D U C E  does a constant amount of work per comparison and does at most 
2 m - n -  1 comparisons, so it runs in time O(m).  

We say that an element A(i, j )  is dead if, using the results of any comparisons 
made so far and the total monotonicity of A, it can be shown that j # j ( i ) .  A 
column is dead if all of its elements are dead. 

LEMMA 4.1. Let 
A(r, j l)  >- A(r, J2) 
hand, if  A(r, j~) < 

A be a totally monotone n x m matrix and let 1 <--Jl <j2 <- m. If  
then the entries in {A(i, j2): 1 <- i<_ r} are dead. On the other 
A(r, J2) then the entries in {A(i, jl): r <- i <- n} are dead. 

PROOF. The first claim follows from the fact that A[i, r; j l ,  j2] is monotone for 
all 1 <- i < r. Similarly, the second claim follows from the fact that A[r, i; j l ,  J2] 
is monotone for all r < i-< n. [] 

Let the index of C be the largest k such that for all 1 ~<j-< k and 1 ~< i < j ,  
element C(i, j )  is dead. Note that every matr ixhas index at least 1. 

The algorithm R E D U C E  is a follows: 

R E D U C E ( A )  
C<--A; k<--1 
while C has more than n columns do 

c a s e  

C(k, k) > - C(k,  k + l )  and k <  n: k<--k+ l. 
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C ( k , k ) > - C ( k , k + l )  and  k = n :  

C ( k , k ) < C ( k , k + l ) :  

endcase 
return(C) 

Delete  co lumn C k+~. 
Delete  co lumn ck'~ if  

k > l  thenk~-k-1 .  

The invar ian t  ma in t a ined  is that  k is the index o f  C. Also,  only  dead  columns 
are dele ted .  It is easy to see that  these cond i t ions  hold.  The invar ian t  holds  
in i t ia l ly  because  the index  o f  C at the start  is 1. I f  C(k ,  k)>- C(k ,  k +  1) then by 
L e m m a  4.1 all e lements  o f  C k+l in rows 1 th rough  k are dead .  Thus i f  k <  n the 
index  o f  C increases  by  1, and  if  k = n co lumn C k+l is dead  and  the index o f  

C remains  the  same. I f  C ( k ,  k ) <  C ( k ,  k +  1) then by Lemma 4.1 all e lements  o f  
C k in rows k th rough  n are  dead ,  and  s ince the  e lements  o f  C k in rows I th rough  
k - 1  were a l r eady  dead ,  C k is dead .  In  that  case the index o f  C decreases  by 1 
if  k was grea ter  than  1 and  stays equal  to 1 otherwise.  

THEOREM 4.2. In O( m ) comparisons, algorithm R E D U C E  reduces the m ax im um  
problem f o r  an n x m totally monotone matrix  to the m a x i m u m  problem f o r  an n x n 

totally monotone matrix. 

PROOF. R E D U C E  t e rmina tes  when C has n columns ,  so the  ou tpu t  is an n x n 

submat r ix  o f  A. Submat r ix  C conta ins  all co lumns  A j(i) for  1 -< i-< n because  only 
d e a d  co lumns  are  de le ted .  F o r  the  t i m e a n a l y s i s ,  let a, b, and  c denote ,  respect ively,  
the  n u m b e r  o f  t imes the  first, second,  and  th i rd  b ranches  o f  the case s ta tement  
are executed .  A co lumn is de le ted  only  in the last two cases, and  since a total  o f  
m - n co lumns  are de le ted  we have b + c = m - n. The index  increases  in the first 
case, decreases  or  stays the same in the last case, and  is u n c h a n g e d  in the second  
case. Since the index starts  at 1 and ends no larger  than  n we have a - c - <  the 
net  increase  in the i n d e x -  < n - 1 .  C o m b i n i n g  these two facts,  we have t ime 
t = a + b + c < - a + 2 b + c < - 2 m - n - 1 .  [] 

We now descr ibe  M A X C O M P U T E ,  which solves the m a x i m u m  p rob l e m on 
an n x m tota l ly  m o n o t o n e  matr ix ,  where  m -> n. 

M A X C O M P U T E  (A)  
B ~- R E D U C E ( A )  

if  n = 1 then  ou tpu t  the m a x i m u m  and re turn  
C ~ B [ 2 , 4 , . . . , 2 [ n / 2 J ;  1 ,2  . . . . .  n] 
M A X C O M P U T E  ( C )  

From the known  pos i t ions  o f  the m a x i m a  in the even rows o f  B, find the 
m a x i m a  in its odd  rows 
end 

THEOREM 4.3. When n -< m M A X C O M P U T E  solves the m a x i m u m  problem on 
a totally monotone n x m matrix  in time O ( m ) .  
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PROOF. Let f (n ,  m) be the t ime taken by  M A X C O M P U T E  for  solving the 
m a x i m u m  p r o b l e m  of  an n x m matrix.  F rom Theorem 4.2 we know that  the call  

to R E D U C E  takes  t ime O(m)  and  that  by  f inding the m a x i m a  in the rows o f  
the n x n mat r ix  B we have found  the m a x i m a  in the rows of  A. The ass ignment  

o f  the  even rows of  B to C is real ly  jus t  the  m a n i p u l a t i o n  o f  a list of  rows,  and  
can be done  in O(n)  t ime.  C is an n / 2 x n  to ta l ly  m o n o t o n e  mat r ix  so the 
recurs ive  call  to M A X C O M P U T E  takes  t ime f ( n / 2 ,  n). Once  the pos i t ions  o f  
the  m a x i m a  in the even rows o f  B have been  found  all m a x i m a  in the o d d  rows 
are res t r ic ted to be ing  in one of  at most  n + [(n - 1)/2J entr ies o f  B, so t h e l a s t  
s tep can  be  done  in O(n)  t ime.  Thus,  for  sui table  constants  ca and  c2, the t ime 

satisfies the fo l lowing re la t ion:  

f ( n ,  m) <- C l n  + c 2 m  + f ( n / 2 ,  n), 

which has the so lu t ion  f (n,m)<-2(Cx+C2)n+c2m. Since m>-n, this is 
O(m).  [] 

5. Tight Bounds for the Maximum Problem on Narrow Totally Monotone 
Matrices. As far as we know,  m -> n in all p rac t ica l  appl ica t ions .  However ,  for  
the sake o f  comple teness  we now give t ight  b o u n d s  for  the case where  m < n. 

THEOREM 5.1. When 2 < - m < n, O(m(1 + l o g ( n / m ) ) )  time is both necessary and 
sufficient to solve the maximum problem on a totally monotone n x m matrix. 

PROOF. The upper bound. Let A be  an n x m to ta l ly  m o n o t o n e  matr ix  with n > m. 
Fo r  O<-i<-m, let  ri = [ in /m] .  We first a p p l y  M A X C O M P U T E  to the m x m  
submat r ix  A[ra, r 2 , . . . ,  rm; 1, 2 , . . . ,  m] to ge tpa ,  P2, �9 �9 �9 p,n where Pi = j ( r i ) .  This 

takes O(m)  t ime.  
Let Po = 1. The  last  s tep is to a p p l y  the  naive  d i v i d e - a n d - c o n q u e r  a lgor i thm to 

the submat r ices  Bi = A[ri_l + 1, ri-a + 2 , . . . ,  ri - 1; P i - l ,  P~-a + 1 , . . . ,  Pi], for 1 <- 
i < - m and r H  <- r~ - 2 .  This  gives us the pos i t ions  of  the m a x i m a  in all r ema in ing  
rows. Fo r  1-< i <- m submat r ix  Bi has at  most  [n /mJ rows, so the t ime requ i red  
to find the m a x i m a  in B~ is b o u n d e d  by  c(p~ - P H  + 1) log(n~ m) for some cons tan t  
c. Summing  over  all 1 <- i <- m, we have a total  t ime for  the last s tep o f  at most  
e(2m - 1) log(n /m) .  So the t ime for  the ent ire  a lgo r i thm is O(m(1  +tog(n /m) ) ) .  

The lower bound. First ,  cons ider  the case where  m = 2. Then there  is an integer  
q such that  for  all 1 <- i <- q we have j ( i )  = 1 and  for  all q < i -< n we have j ( i )  = 2. 
Thus to locate  the m a x i m a  it is necessary  and  sufficient to de te rmine  q, and  this 
can be done  by b ina ry  search in O( log  n) t ime. It is also clear  that  an adversa ry  
has a b ina ry  search counte rs t ra tegy  that  will force any a lgor i thm to make  at least  
2 [1 + l o g  nJ q u e r i e s - - t h e  adversa ry  s imply  gives an a rb i t ra ry  answer  to the first 
query in any given row and  for the second  query  in a row it answers  so as to at 
most  halve  the interval  that  can conta in  q. 

Now for the  genera l  case where  2 <- m < n. For  0-< i -< [ m / 2 ] ,  let r i = i In~ m ]. 
For  1 - < i ~  [ m / 2 ] ,  let B~=A[r i_I+I  . . . .  , rg; i, i + 1 ] .  Fo r  each l<--i<- [m/2J  sub- 
matr ix  B~ has 2 co lumns  and  r~-r~_l >-n/m rows. Note  that  for any i~ ~ i2 the 
pos i t ions  o f  the m a x i m a  in Bi, do not  p lace  any const ra ints  on the pos i t ions  of  
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the maxima in B~ 2. The adversary responds to queries made by some algorithm 
as follows. If  a query is made outside of any of the B~'s the adversary answers 
with some arbitrary nonpositive value consistent with the total monotonicity 
constraint. (For example, if a queried entry in column j is to the left of the B~'s 
or below row rim~2 j the entry can he set to j -  m and if it is to the right of the 
Bi's and in or above row rtm/2 j it can be set to -1 . )  Within each submatrix Bi 
the adversary independently carries out the binary search counterstrategy, always 
responding with positive values. Thus the algorithm will have to make at least 
2 [m/2j  [1 + log(n/m)J = ~(m(1 + log(n/m))) queries within the Bi's. [] 

6. Applications of the Matrix-Searching Algorithm. Total monotonicity occurs 
in many computational problems that are geometric in nature. In Section 2 we 
showed that the all-farthest-neighbors problem can be reduced to the maximum 
problem for a totally monotone n x (2n - 1) matrix when the point set contains 
the vertices of  a convex n-gon, say, in clockwise order. Clearly, ~ ( n  2) time would 
be required if we first construct this matrix and then solve the maximum problem. 
However, in the next paragraph, we will show that because this matrix contains 
only Euclidean distances and negative numbers as its entries, we can use some 
simple data structures and compute only O(n) entries of this matrix to solve the 
maximum problem for this matrix. Consequently, this yields an optimal ®(n) 
time algorithm for the all-farthest-neighbors problem when the point set forms 
the vertices of a convex n-gon. In Section 6.1 we describe how our algorithm 
can be used to improve the time complexity of previous algorithms that have 
been proposed for finding a maximum-area or perimeter k-gon that is inscribed 
within a given convex n-gon, or for finding a minimum-area k-gon that circum- 
scribes a given convex n-gon. We improve the time complexity of these algorithms 
by a factor of log n. In Section 6.2 we show that our algorithm also reduces the 
time needed to solve certain wire-routing problems by a factor of log n. 

In the all-farthest-neighbors problem for convex polygons, we can determine 
the value of any entry of matrix A, say A(u, v), in constant time since either 
A(u, v) is negative or it is the Euclidean distance between vertices u and v of  
the polygon. (See Section 2.) Consequently, procedure REDUCE can be executed 
in linear time without the entire calculation of  matrix A explicitly, and this can 
be achieved, for example, by storing a list of  all those columns that are live at 
any step during the execution of REDUCE. Now, for solving the maximum 
problem for this n x (2n-1)  matrix, note that MAXCOMPUTE(A) calls pro- 
cedure REDUCE [log n ] + 1 times, and for i -> 1, during the ith level of recursion, 
procedure REDUCE is executed on a matrix of size at most In /2  i] by [n /2i - l ] .  
Since only those columns of the matrix that were live after the execution of  
( i - 1 ) t h  level are used in the ith level, hence a list of size at most In /2  i-1] is 
sufficient for executing procedure REDUCE at the ith level of  recursion. Con- 
sequently, the overhead in time and space required for storing and maintaining 

0 (•l°gn+l n/2 i) and hence procedure MAXCOMPUTE still these lists is only ,~=~ 
requires O(n) time and O(n) space. This also implies that the all-farthest- 
neighbors problem can be solved in O(n) time and O(n) space. 
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6.1. Finding the Extremal Polygons o f  a Convex Polygon. Boyce et al. [4] have 
shown that, given a convex n-gon, the maximum-area (or maximum-perimeter) 
inscribed k-gon can be found in time O(kn  log n + n log 2 n). Since the diameter 
of a convex polygon can be regarded as the maximum-perimeter inscribed k-gon 
when k = 2, it is not surprising that our algorithm can be used to reduce the 
complexity of the algorithm of Boyce et al. to O ( k n  + n log n). In particular, we 
can find a maximum-area (or maximum-perimeter) inscribed quadrilateral in 
O(n  log n) time. We sketch enough o f  Boyce et al.'s algorithm to show how our 
algorithm can be incorporated in it. 

Given a convex polygon P with vertices p~, P2, �9 . . ,  Pn, in clockwise order, we 
wish to find a maximum inscribed k-gon. (When we use "maximum" without 
qualification, we mean either maximum with respect to area or maximum with 
respect to perimeter, as long as as the word is used in the same sense throughout.) 
It can be shown [4] that there is always a maximum inscribed k-gon whose 
vertices are a subset of the vertices of P. So henceforth we will assume that all 
inscribed polygons of P have as their vertices some subset of the vertices of P. 
Let x be a vertex of P. We say that an inscribed polygon of P is rooted at x if 
its first vertex is equal to x. We say that a polygon is a maximum inscribed j-gon 
rooted at x if it is maximal among all those inscribed j-gons that are rooted at 
x. Let Q with vertices q l , . . . ,  q,, and R with vertices r l , . . . ,  rt be inscribed 
polygons of P, where as usual the vertices of Q and R are given in clockwise 
order. If  m = l we say that Q and R interleave if, for each 1 -< i-< m, vertex ri is 
on the polygonal chain of P going clockwise from qi to q(imod,,)+l, inclusive. If  
l = m + 1 then Q and R interleave if ql = rl and, for 1 -< i < l, vertex r~+~ is on the 
polygonal chain of P going clockwise from qi to q(~modm)+b inclusive. The key 
results used by Boyce et al. are as follows: 

FACT 1 [4]. Let x be a vertex of a convex polygon P. Let Q be a maximum 
inscribed j-gon rooted at x and let R be a maximum inscribed (j + 1)-gon rooted 
at x. Then Q and R interleave. 

FACT 2 [4]. Let x be a vertex of a convex polygon P. Let Q be a maximum 
inscribed k-gon rooted at x and let R be the globally maximum inscribed k-gon 
of P. Then the vertices of R can be numbered in clockwise order so that Q and 
R interleave. 

The algorithm of Boyce et al. is dividied into two phases. The first phase finds 
a maximum inscribed k-gon of P rooted at Pl. The second phase then finds the 
globally maximum inscribed k-gon. 

The first phase starts by finding a maximum inscribed 2-gon rooted at pl and 
then, for j = 3, 4 , . . ,  k, finding a maximum inscribed j-gon rooted at p~, making 
use of the previously determined maximum ( j -  1)-gon rooted at Pl. Fact 1 tells 
us that each of these inscribed polygons interleaves with the previously found 
inscribed polygon. Each iteration of phase 1 requires a dynamic programming 
operation to find the maximum inscribed j-gon rooted at pl. Suppose we have 
found Q, the maximum inscribed ( j - 1 ) - g o n  rooted at p~, and wish to find R, 
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the maximum inscribed j-gon rooted at Pl. Let Pi be the polygon chain of P 
going clockwise from qi to q(~odO-~>l and let n~ be the number of  vertices in 
Pi. We kno~v that ri+~ is a vertex of  P~. Suppose we are finding the maximum- 
perimeter inscribed polygon (the case for maximum-area is similar). At the start 
of the ith step of the dynamic programming phase we know, for each vertex v 
in P~, the length of the longest path from pl to v with i segments that interleave 
with Q. We can then determine this information for each vertex of P~+I by finding 
the maximum for each row of an ni x n,§ matrix, M~, where M~(c, d) equals the 
length of the longest interleaving path from Pl to the cth vertex in P,+~ that passes 
through the dth vertex in Pi. The obvious method for finding the maxima requires 
time O(ngn~+~). However, from the triangle inequality it can be shown that M~ 
is totally monotone [4]. Boyce et al. applied the naive divide-and-conquer 
algorithm to find the maxima of M~, with the result that each of the k - 2 iterations 
of the first phase required O(n log n) time, giving a total time for the first phase 
of O(kn log n). By using our linear algorithm instead, the time per iteration is 
reduced to O(n) and the total time for the first phase to O(kn). 

Let Q be the maximum inscribed k-gon rooted at Pl that is returned by the 
first phase. Let R be the (as yet undetermined) globally maximum inscribed 
k-gon. By Fact 2 we may assume that rl is one of the vertices on the polygonal 
chain between q~ and qe- Thus R can be determined by finding, for each vertex 
x in the chain, the maximum k-gon rooted at x that interleaves with Q, and then 
selecting the maximum of  these polygons. For a given x we can find the maximum 
inscribed k-gon rooted at x that interleaves with Q by applying the dynamic 
programming operation described above. If  done in a naive way this results in 
O(n) applications of  the dynamic programming step. However, Boyce et al. [4] 
showed that this work can be greatly reduced. First choose x to be the middle 
vertex of  the polygonal chain between ql and q2, and find the maximum k-gon 
rooted at x that interleaves with Q. Call this polygon Q'. The globally maximum 
k-gon must interleave with both Q and Q'. Let xl and x2 be the midpoints of the 
polygonal chains from ql to x and from x to q2, respectively. The maximum 
k-gons rooted at x~ and at x2 that interleave with Q and Q' can now both be 
found in the same amount of  time that it took to find Q' alone. We can continue 
to divide the intervals in half in this way for a total cost of log n times the cost 
of  one application of the dynamic programming step. Thus the second phase as 
described by Boyce et al. required time O(n log 2 n), and with our algorithm uses 
O(n log n) time. 

Aggarwal et al. [2] have shown that the minimum-area circumscribing k-gon 
can be found in O(n 2 log n log k) time. They made use of an interleaving lemma 
similar to the ones described above, and also used a similar dynamic programming 
phase consisting of  steps in which the maximum value in each row of  a matrix 
must be found. They showed that the matrix is monotone, and their result can 
be strengthened to show that the matrix is totally monotone. Thus the complexity 
of their algorithm can be reduced to O(n 2 log k). 

McKenna et aL [8] have provided a simple O(n log 5 n) time, O(n) space 
algorithm for finding a maximum-area inscribed rectangle that is contained in a 
given n-vertex orthogonal polygon and whose sides are parallel to the given 
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polygon. Their algorithm can also be modified to obtain a maximum-area  empty 
rectangle if the given polygon has holes. The algorithm uses several nested 
divide-and-conquer procedures, the last one being used to find the maxima of a 
certain totally monotone matrix in O(n log n) time. McKenna  et aL only claim 
that the maxtrix is monotone,  but their proof  shows that it is totally monotone. 
Consequently, if we replace the last level of  divide-and-conquer in their algorithm 
by our linear time algorithm, then we obtain an algorithm that uses O(n log 4 n) 
time and O(n) space. Thus, the space-t ime complexity of  this algorithm is the 
same as that given by Chazelle et aL [5]; the algorithm given in [5] takes 
O(n log 3 n) time and O(n log n) space. 

6.2. Wire Routing. Let Pl < P2 < �9 �9 �9 < P, be points on a line segment P that is 
horizontally imbedded in the plane. (We identify a point p~ with its offset relative 
to the leftmost point of  P.) Let xi be the x-coordinate of p~ in the plane. We call 
xl the offset of P and the y-coordinate of  pl the separation of P. Let q~ < q2 <"  �9 "< 
qn be points on a line segment Q imbedded horizontally in the plane so that ql 
is at the origin. (We identify a point q~ with its x-coordinate.) P and Q represent 
electrical components on a board or chip whose corresponding terminals, p~ and 
q~, must be wired together. A routing is a set of n nonintersecting continuous 
curves (wires), with the ith curve going from pi to q~, that satisfy a set of  design 
rules. The design rules are determined by the technology. At a minimum, there 
is a requirement that the distance between any two wires be at least some fixed 
constant, which we may take to be 1. There may be other constraints, such as 
the wires lie on a rectilinear integer grid, or that they consist of a union of straight 
line segments whose orientations with respect to the x-axis are multiples of 45 ~ . 
We are concerned with two problems: 

(i) Minimum Separation Problem. Given a fixed offset for P, find the minimum 
separation that allows a valid routing. 

(ii) Optimal Offset Problem. Find the offset for P for which the minimum separa- 
tion for P that allows a valid routing is minimized. 

Dolev et al. [6] found a linear time algorithm for the minimum separation 
problem in the case where the wires are constrained to lie on a rectilinear integer 
grid. Tompa  [14] showed that when the wires are allowed to have arbitrary shapes 
both the minimum separation and the actual layout of the wires can be found 
in O(n 2) time. Siegel and Dolev [13] showed that for a very general class of  
design rules the minimum separation problem can be solved in O(n log n) time. 
They also obtained linear bounds for more general constraints than those used 
by Dolev et al. [6]; such constraints include the cases where the wires lie on a 
quarter integer grid and consist of segments at angles that are multiples of  45 ~ . 
However, for some natural design rules, such as a wiring scheme that permits 
arbitrarily shaped wires, Siegel and Dolev were not able to to do any better than 
their generic O(n log n) algorithm. 

We now describe Siegel and Dolev's algorithm [13]. Say that the points are 
monotone if x~ -< q; for all i or if x~ -> qi for all i. We may assume that the points 
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are monotone,  for if they are not they may be partit ioned into maximal monotone 
blocks and the routing for each block may be done independently. Without loss 
of  generality assume xi -< qi for all i. Since the points are monotone we can assume 
that the wires are mono tone- - the  y-coordinate of  a wire is nonincreasing as the 
x-coordinate increases. For 1-< i-< n and 1-<j-< n -  i the j th  barrier about qi is 
defined to be the set of  points that delimit the closest possible approach to q; of  
the monotone wire going from Pi+i to qi+j. The barriers are determine6 by the 
design rules. For the case where the only design constraint is a lower bound on 
the distance between wires, the barriers are composed of circular arcs and line 
segments. 

Define an n• matrix M as follows. I f  i>j then M(i,j) is the height 
(y-coordinate)  of  the (i - j ) t h  barrier about q~ at the x-coordinate xi. I f  i<-j then 
M(i, j )  = 0. Thus for i > j  the value of M(i, j) is the minimum separation due to 
the interaction of point qj with the wire running from pi to qi. The minimum 
separation of P is simply the maximum of all of  the entries of  M. Siegel and 
Dolev [ 13] showed that under some very general assumptions about the barriers 
the matrix M is totally monotone.  In all practical cases each entry of  M can be 
computed in constant time, so they obtained an O(n log n) time algorithm for 
the separation problem, and the algorithm of Section 4 reduces this to O(n). In 
particular, we have a linear time algorithm for the case where the only design 
rule is a lower bound on the distance between wires. 

Siegel and Dolev also showed that when there is an f(n) time algorithm for 
the minimum separation problem and the wires are constrained to lie on an 
integer grid, the optimal offset problem can be solved in O(f(n)log n) time. 
Thus we can solve the optimal offset problem in such cases in time O(n log n). 
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