
Algorithmica (1987) 2 :195-208 Algorithmica
�9 1987 Springer-Verlag New York Inc.

Geometric Applications of a Matrix-Searching Algorithm

Alok Aggarwal, ~ Maria M. Klawe, 2 Shlomo Moran, 1'3 Peter S h o r , 4

and Robert Wilher 2

Abstract. Let A be a matrix with real entries and let j (i) be the index of the leftmost column
containing the max imum value in row i ofA. A is said to be monotone if il > i2 implies tha t j (i l) >-j(i2).
A is totally monotone if all of its submatrices are monotone. We show that finding the maximum
entry in each row of an arbitrary n x m monotone matrix requires O(m log n) time, whereas if the
matrix is totally monotone the time is O(m) when m-> n and is O(m(l+log(n /m))) when m < n.
The problem of finding the max imum value within each row of a totally monotone matrix arises in
several geometric algorithms such as the all-farthest-neighbors problem for the vertices of a convex
polygon. Previously only the property of monotonicity, not total monotonicity, had been used within
these algorithms. We use the | bound on finding the maxima of wide totally monotone matrices
to speed up these algorithms by a factor of log n.

Key Words. All-farthest neighbors, Monotone matrix, Convex polygon, Wire routing, Inscribed
polygons, Circumscribed polygons.

1. Introduction. The all-farthest-neighbors problem for a set of n points in the
plane, P, is to find for each point Pie P, another point pj ~ P with j ~ i such that

d(p;, pj)= max d(p;, Pk),

where d(pi, pj) denotes the Euclidean distance between Pi and pj. The all-nearest-
neighbors problem consists of finding the nearest point for every point in the set.
Shamos and Hoey [12] have shown that | log n) is the optimal time bound
for the all-nearest-neighbors problem, and Toussaint and Bhattacharya [17] as
well as Preparata [10] have shown that @(n log n) is also an optimal time bound
for the all-farthest-neighbors problem.

The f~(n log n) bounds given in [12], [17], and [10] are obtained under the
assumption that the algorithm is provided with an arbitrary set of points in the
plane. In particular, these bounds do not apply when the input set forms the
vertices of a convex polygon (given in clockwise order). In fact, using some
geometric properties of a convex polygon and the fact that any point can be the
nearest neighbor of at most six other points in the plane, Lee and Preparata [7]
obtained a O(n) algorithm for the all-nearest-neighbors problem on a convex
polygon. However, since a single point could be the farthest point for all n - 1

i IBM T. J. Watson Research Center, Yorktown Heights, New York, USA.
2 IBM Almaden Research Center, San Jose, California, USA.
3 On leave from the Technion, Haifa, Israel.
4 Mathematical Sciences Research Institute, Berkeley, California, USA.

Received September 15, 1986; revised October 20, 1986. Communica ted by Bernard Chazelle.

196 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

other points even if the points from the vertices of a convex polygon, the algorithm
proposed by Lee and Preparata cannot be modified to solve the all-farthest
neighbor problem in linear time.

A simple polygon is unimodal if for every vertex Pk the function defined by
the Euclidean distance between Pk and the remaining vertices (traversed in
clockwise order) contains only one local maximum. For any m -> 1 this definition
of unimodal polygons can be extended to m-modal polygons, in a natural manner.
Recently, Avis et al. [3] have provided counterintuitive examples of convex
polygons in which n/2 vertices have n/4 local maxima in each of their distance
functions. This false intuition regarding the multimodality of distance functions
has often resulted either in incorrect algorithms or in increased time complexities
for some of them. (See [15] for details.) Aggarwal and Melville [1] have shown
that whether a convex polygon is m-modal can be determined in O(n + m) time,
and Toussaint [15] has provided a very simple and intuitive algorithm for solving
the all-farthest-neighbors problem for a convex unimodal polygon in O(n) time.
Here we show that the all-farthest-neighbors problem can be solved for a convex
polygon in O(n) time regardless of its modality. We use the same method to
speed up several other geometric algorithms by a factor of log n.

This paper is divided into six sections. Section 2 discusses a combinatorial
problem for matrices under a weak constraint and a stronger one. We show that
each instance of the all-farthest-neighbors problem for convex polygons is an
instance of the matrix problem under the strong constraint. Section 3 demonstrates
that there is an P~(m log n) lower bound for solving the problem on n • m matrices
subject only to the weak constraint. Consequently, if one only makes use of the
weak constraint in solving the all-farthest-neighbors problem (in the manner used
by researchers in the past), then one cannot hope to achieve a linear time solution.
Section 4 shows that the matrix problem with strong constraint can be solved in
O(m) time when m-> n. This yields a linear time solution for the all-farthest
neighbor problem on convex polygons. In Section 5 we show that for matrices
subject to the strong constraint with m < n the time required to solve the problem
is O(m(1 +log(n /m))) . In Section 6 we describe how the linear time algorithm
of Section 4 can be applied to several geometric optimization and computer-aided-
design problems.

2. The Matrix Problem. Let A be an n • m matrix with real entries. Let A j
denote the j th column of A and Ai denote the ith row of A. A[il , �9 �9 �9 ik; j~,. �9 �9 jk]
denotes the submatrix of A that is the intersection of rows i ~ , . . . , ik and columns
J ~ , . . . , jk. Let j (i) be the smallest column index j such that A(i, j) equals the
maximum value in Ai. The matrix A is said to be monotone if for 1 -< i~ < i2 <- n,
we always have j(iO <-j(i2). A is totally monotone if every submatrix of A is
monotone. It is easy to verify that this holds if every 2 • 2 submatrix of A is
monotone. We will call the problem of finding the maximum entry in each row
of a matrix the maximum problem for that matrix and, in this paper, we will
investigate the time complexities of the maximum problem for monotone and
totally monotone matrices.

Geometric Applications of a Matrix-Searching Algorithm 197

The maximum problem for totally monotone matrices arises in several geometric
algorithms and we now show that an instance of the all-farthest-neighbors problem
for a convex polygon with n vertices can be regarded as an instance of the
maximum problem for an n x (2 n - 1) totally monotone matrix. Let P l , . . . , P,
denote the vertices of a convex polygon in clockwise order. For an integer u let
o u denote ((u - 1)mod n) + 1. Define an n x (2 n - 1) matrix A as follows:

I f i<j<_ i + n - 1 then A(i , j)=d(p , , poj).
If j -< i then A(i, j) = j - i, and if j -> i + n then A(i, j) = - 1.

Now suppose the 2 x 2 submatrix A[i, j; k, l], with i < j and k < l, has only positive
entries. Then we must have i < j < k < l < i + n. In this case the vertices p,, pj, po k,
and po~ are in clockwise order around the polygon. From the triangle inequality
one can show that d(p~,pok)+d(pj, pot)>-d(pi, pot)+d(pj, pok). Thus
A[i,j; k, I] is monotone. The nonpositive entries ensure that all other 2 x 2
submatrices of A are also monotone. Thus A is totally monotone, and by solving
the maximum problem on A we can solve the all-farthest-neighbors problem for
the polygon. (See Section 6.)

3. An l~(m log n) Lower Bound for the Maximum Problem an Arbitrary Monotone
Matrices. The maximum problem on a monotone n x m matrix A can be solved
by the following straightforward divide-and-conquer algorithm. Let i = In /2]
and in O(m) time find j = j (i) . Recursively solve the maximum problem on the
submatrices A [1 , . . . , i - 1 ; 1 , . . . , j] (when i > 1 and j > l) and A [i + I ,
. . . , n; j , . . . , m] (when i < n and j < m). The time required by this algorithm is
given by the recurrence

f(n, m) <- m + max (f (In /2] - 1, j) + f ([n /2J , m - j + 1)),
l ~ j ~ m

with f (0 , m)=f(n , 1)=constant. Solving the recurrence, we have f(n, m) =
O(m log n). (All logarithms in this paper are base 2.) The best previously known
algorithms for the all-farthest-neighbors problem on convex polygons and for
the problems described in Section 6 all contain a step that is essentially this
divide-and-conquer procedure. This algorithm works for arbitrary monotone
matrices; the much stronger property of total monotonicity is not used. In this
section we show that any algorithm that solves the maximum problem on arbitrary
monotone matrices must have a worst-case time of ~ (m log n). So any improve-
ment on the simple divide-and-conquer algorithm for the matrices corresponding
to the applications must make use of some property beyond monotonicity (such
as total monotonicity).

We derive a lower bound on the number of entries of the matrix that must be
queried by any algorithm for the maximum problem on monotone matrices. We
prove that when n is a power of 2 at least � 8 8 n) queries must be
made, from which it follows that for arbitrary n at least ~ (m - 1) log n queries
are required. The p roof uses an adversary argument. The value of each entry of

198 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

the matr ix is regarded as be ing inde te rmina te until it is first quer ied , at which
po in t the adversa ry will assign a value that is consis tent with the mono ton ic i ty
condi t ion .

THEOREM 3.1. Let A be an n x m matrix, where n is a power o f 2. Let h >- 1 and
let e = 1 or m. Set f = m + 1 - e. Suppose that at most m a x (m - 2, 0) entries o f A
have already been queried and are therefore fixed. Also, suppose that no entries
have been queried in A f that any entries that have been queried in A e have been
set to h, and that all other queried entries have been set to values less than 1. Then
an adversary can answer any queries for the remaining entries in a way consistent
with the monotonicity condition, so that in order to determine the positions o f the
maxima in each row a total o f at least � 8 8 1)(1 + log n) entries must be queried
(including those that were initially queried), and so that the max imum value in each
row is at least h.

PROOF. We will a s sume th roughou t that m->2 , for the case m = 1 is trivial.
When we say that the adversa ry sets an entry to a low value, we mean some
prev ious ly unused posi t ive value less than 1. Note that i f m - 2 or fewer quer ies
have been made then there are at least two co lumns with no queries, say A j' and
A j2. The adversa ry can answer future queries in these co lumns e i ther by sett ing
all entr ies in A j, to h + 1 and all entries in A j2 to low values or by sett ing all
entries in A J' to low values and all entries in A j: to h + 1. Ei ther the m a x i m a will
all be in A jl or they will all be in A j2, and in e i ther case the m a x i m u m value in
each row will be greater than h. Thus when m - 2 or fewer queries have been
m a d e the pos i t ions o f the m a x i m a have not yet been de te rmined .

We use induc t ion on n.
Basis step. Suppose n < 4 . By the observa t ion above, at least m - 1 queries

must be made , and when n < 4 , � 8 8 1)(1 + l o g n) < m - 1. So the c la im is true

in this case.
Induction step. Let n be a power of 2 grea ter than or equal to 4 and assume

that the t heo rem is true for all powers of 2 less than n. We show that the theorem
is true for n. The sequence o f queries is d iv ided into two stages. The first stage
lasts unti l a total of m - 1 entr ies have been quer ied (inc luding those entries that
had been quer ied at the start). Since at least m - 1 queries must be made , we
a lways reach the end o f the first stage. Any query m a d e af ter the (m - 1)st query
is in the second stage. The rules for answer ing a query to entry A(i, j) dur ing
the first s tage are as fol lows:

1. (a) I f i <-- n /2 a n d j = 1 then if e = 1 set A(i, j) to h, o therwise set A(i, j) to h + 1.
(b) I f i > n /2 and j = m then if e = m set A(i, j) to h, o therwise set A(i, j) to

h + l .
2. I f i<- n / 2 and j # 1 or i f i > n /2 and j # m, set A (i , j) to a low value.

When the first stage ends , exact ly m - 1 entr ies of A have been quer ied and
the values fixed are cons is ten t with all m a x i m a in rows 1 th rough n /2 being in
co lumn 1 and all m a x i m a in rows n / 2 + 1 th rough n being in co lumn m. Quer ied
entr ies in co lumns 2 th rough m - 1 all have values less than 1.

Geometric Applications of ~ Matrix-Searching Algorithm 199

After the first stage is completed a column c and two submatrices L and R are
selected as follows. For 0-<j-< m, let SJ be the number o f queried entries in
columns 1 through j o f A (So = 0). Let c be the smallest integer in [1, m] such
that sc = c - 1 . Such an integer exists because s,, = m - 1 . Since the s /s are
nondecreasing, it is easy to show by induct ion that for all j in [0, c - 1], sj ->j.
In particular, sc 1 -> c - 1. Since so-1 -< so, we conclude that s~_~ = sc = c - 1. There-
fore A ~ has no queried entries, the first c - 1 columns of A contain c - 1 queried
entries, and the last m - c columns contain m - c queried entries.

Let L be one of the two submatrices A [1 , . . . , n/4; 1 , . . . , c] or A[n/4+l,
� 9 n/2; 1 , . . . , c], whichever has the fewest queried entries�9 L has c columns and
at most [(c - 1)/2] -< max(c - 2, 0) queried entries. Let k~ be the index of the row
o f A containing the first row o f L (i.e., kl is equal to either 1 or n/4+ 1), and
let k2 be the index of the row of A containing the last row of L (i.e., k2 is equal
to either n/4 or n/2). Similarly, let submatrix R be either A[n/2+l,
�9 . . , 3 n / 4 ; c , . . . , m] or A[3n/4+l , . . . , n; c , . . . , m], whichever has the fewest
queried entries�9 Let k 3 be the index of the row of A containing the first row of
R, and let k4 be the index of the row of A containing the last row of R. R has
m - c + 1 columns and contains at most [(m - c) /2] -< max(rn - c - 1, 0) queried
entries.

Note that L satisfies the condit ions o f the theorem, with parameters h ' and e',
where e ' = 1 and h ' = h if e = 1 and h ' = h + 1 if e = rn. Similarly, R satifies the
condit ions o f the theorem, with parameters h" and e", where e "= m - c + 1 and
h"=h if e=m a n d h " = h + l i f e = l .

The rules for answering a query o f entry A(i, j) during the second stage are
as follows:

1. I f i < k ~ a n d j = l , o r i f i > k a a n d j = m , then set A(i, j) to h + l .
2. I fk2<i<k3 a n d j = c then set A(i,j) to h + 2 .
3. (a) I f A(i, j) is in submatrix L then fix the value for that entry by applying

the adversary strategy recursively to
(b) I f A(i, j) is in submatrix R then fix

the adversary s t ra tegy recursively to
4. For all other queries set A(i, j) to a low

L, using the parameters e' and h'.
the value for that entry by applying
R, using the parameters e" and h".
value.

Rule 1 ensues that the maxima in rows 1 through k 1 - 1 are in A 1 and that the
maxima in rows k4+ 1 th rough n are in A" . Rule 2 ensures that the maxima in
rows k2+ 1 through k 3 - 1 are in A C. The values o f entries in A[k l , . . . , kz; c + 1,
�9 . . , m] are all less than h', and the values o f entries in A [k 3 , . . . , k4; 1 , . . . , c - 1]

are all less than h". By assumption the recursively applied strategy results in a
maximum value o f at least h ' in eah row of L and of at least h" in each row of
R. Therefore the maxima for rows kl through k2 of A are all in submatrix L, and
the maxima for r o w s k 3 th rough k4 are all in submatrix R. By assumpt ion the
maxima within L and R are arranged in a way consistent with the monotonic i ty
condit ion so the posit ions o f the maxima of A also satisfy the monotonic i ty
condition. Also, the max imum value in each row is at least h.

Submatrices L and R each have n/4 rows. By assumption, at least 4t(c- 1) •
(1 + l o g (n / 4)) queries are needed to locate the maxima within L and at least

200 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

l (m - c) (l + l o g (n / 4)) queries are needed to locate the maxima within R. In
addition, at the end of the first stage there are at least (m - 1) / 2 queries in A
outside of L and R. So the total number of queries needed to find the maxima
in A is at least

m - l . + l (c _ l) (l + l o g 4) 1 _ c) (l + l o g 4) 1 2 +~(m =~(m - 1)(1 + log n). []

When A has no initial queries the conditions of the theorem are obviously met
for any h-> 1 and e equal to either 1 or m, so we have the desired l)(m log n)
lower bound.

4. A Linear Time Algorithm for the Maximum Problem on Wide Totally Monotone
Matrices. Here we show that by making use of the strict constraints imposed
by total monotonicity we can solve the maximum problem in O(m) time on n • m
matrices when m -> n. As above we define j (i) as the smallest column index such
that A(i , j (i)) equals the maximum element in Ai. The key component of the
algorithm is the subroutine REDUCE. It takes as input an n • m totally monotone
matrix A, with m >- n. The value returned by R E D U C E is an n • n submatrix of
A, C, with the property that, for 1 -< i-< n, submatrix C contains column A j(i).
R E D U C E does a constant amount of work per comparison and does at most
2 m - n - 1 comparisons, so it runs in time O(m).

We say that an element A(i, j) is dead if, using the results of any comparisons
made so far and the total monotonicity of A, it can be shown that j # j (i) . A
column is dead if all of its elements are dead.

LEMMA 4.1. Let
A(r, j l) >- A(r, J2)
hand, if A(r, j~) <

A be a totally monotone n x m matrix and let 1 <--Jl <j2 <- m. If
then the entries in {A(i, j2): 1 <- i<_ r} are dead. On the other
A(r, J2) then the entries in {A(i, jl): r <- i <- n} are dead.

PROOF. The first claim follows from the fact that A[i, r; j l , j2] is monotone for
all 1 <- i < r. Similarly, the second claim follows from the fact that A[r, i; j l , J2]
is monotone for all r < i-< n. []

Let the index of C be the largest k such that for all 1 ~<j-< k and 1 ~< i < j ,
element C(i, j) is dead. Note that every matr ixhas index at least 1.

The algorithm R E D U C E is a follows:

R E D U C E (A)
C<--A; k<--1
while C has more than n columns do

c a s e

C(k, k) > - C(k, k + l) and k < n: k<--k+ l.

Geometric Applications of a Matrix-Searching Algorithm 201

C (k , k) > - C (k , k + l) and k = n :

C (k , k) < C (k , k + l) :

endcase
return(C)

Delete co lumn C k+~.
Delete co lumn ck'~ if

k > l thenk~-k-1 .

The invar ian t ma in t a ined is that k is the index o f C. Also, only dead columns
are dele ted . It is easy to see that these cond i t ions hold. The invar ian t holds
in i t ia l ly because the index o f C at the start is 1. I f C(k , k)>- C(k , k + 1) then by
L e m m a 4.1 all e lements o f C k+l in rows 1 th rough k are dead . Thus i f k < n the
index o f C increases by 1, and if k = n co lumn C k+l is dead and the index o f

C remains the same. I f C (k , k) < C (k , k + 1) then by Lemma 4.1 all e lements o f
C k in rows k th rough n are dead , and s ince the e lements o f C k in rows I th rough
k - 1 were a l r eady dead , C k is dead . In that case the index o f C decreases by 1
if k was grea ter than 1 and stays equal to 1 otherwise.

THEOREM 4.2. In O(m) comparisons, algorithm R E D U C E reduces the m ax im um
problem f o r an n x m totally monotone matrix to the m a x i m u m problem f o r an n x n

totally monotone matrix.

PROOF. R E D U C E t e rmina tes when C has n columns , so the ou tpu t is an n x n

submat r ix o f A. Submat r ix C conta ins all co lumns A j(i) for 1 -< i-< n because only
d e a d co lumns are de le ted . F o r the t i m e a n a l y s i s , let a, b, and c denote , respect ively,
the n u m b e r o f t imes the first, second, and th i rd b ranches o f the case s ta tement
are executed . A co lumn is de le ted only in the last two cases, and since a total o f
m - n co lumns are de le ted we have b + c = m - n. The index increases in the first
case, decreases or stays the same in the last case, and is u n c h a n g e d in the second
case. Since the index starts at 1 and ends no larger than n we have a - c - < the
net increase in the i n d e x - < n - 1 . C o m b i n i n g these two facts, we have t ime
t = a + b + c < - a + 2 b + c < - 2 m - n - 1 . []

We now descr ibe M A X C O M P U T E , which solves the m a x i m u m p rob l e m on
an n x m tota l ly m o n o t o n e matr ix , where m -> n.

M A X C O M P U T E (A)
B ~- R E D U C E (A)

if n = 1 then ou tpu t the m a x i m u m and re turn
C ~ B [2 , 4 , . . . , 2 [n / 2 J ; 1 ,2 n]
M A X C O M P U T E (C)

From the known pos i t ions o f the m a x i m a in the even rows o f B, find the
m a x i m a in its odd rows
end

THEOREM 4.3. When n -< m M A X C O M P U T E solves the m a x i m u m problem on
a totally monotone n x m matrix in time O (m) .

202 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

PROOF. Let f (n , m) be the t ime taken by M A X C O M P U T E for solving the
m a x i m u m p r o b l e m of an n x m matrix. F rom Theorem 4.2 we know that the call

to R E D U C E takes t ime O(m) and that by f inding the m a x i m a in the rows o f
the n x n mat r ix B we have found the m a x i m a in the rows of A. The ass ignment

o f the even rows of B to C is real ly jus t the m a n i p u l a t i o n o f a list of rows, and
can be done in O(n) t ime. C is an n / 2 x n to ta l ly m o n o t o n e mat r ix so the
recurs ive call to M A X C O M P U T E takes t ime f (n / 2 , n). Once the pos i t ions o f
the m a x i m a in the even rows o f B have been found all m a x i m a in the o d d rows
are res t r ic ted to be ing in one of at most n + [(n - 1)/2J entr ies o f B, so t h e l a s t
s tep can be done in O(n) t ime. Thus, for sui table constants ca and c2, the t ime

satisfies the fo l lowing re la t ion:

f (n , m) <- C l n + c 2 m + f (n / 2 , n),

which has the so lu t ion f (n,m)<-2(Cx+C2)n+c2m. Since m>-n, this is
O(m). []

5. Tight Bounds for the Maximum Problem on Narrow Totally Monotone
Matrices. As far as we know, m -> n in all p rac t ica l appl ica t ions . However , for
the sake o f comple teness we now give t ight b o u n d s for the case where m < n.

THEOREM 5.1. When 2 < - m < n, O(m(1 + l o g (n / m))) time is both necessary and
sufficient to solve the maximum problem on a totally monotone n x m matrix.

PROOF. The upper bound. Let A be an n x m to ta l ly m o n o t o n e matr ix with n > m.
Fo r O<-i<-m, let ri = [in /m] . We first a p p l y M A X C O M P U T E to the m x m
submat r ix A[ra, r 2 , . . . , rm; 1, 2 , . . . , m] to ge tpa , P2, �9 �9 �9 p,n where Pi = j (r i) . This

takes O(m) t ime.
Let Po = 1. The last s tep is to a p p l y the naive d i v i d e - a n d - c o n q u e r a lgor i thm to

the submat r ices Bi = A[ri_l + 1, ri-a + 2 , . . . , ri - 1; P i - l , P~-a + 1 , . . . , Pi], for 1 <-
i < - m and r H <- r~ - 2 . This gives us the pos i t ions of the m a x i m a in all r ema in ing
rows. Fo r 1-< i <- m submat r ix Bi has at most [n /mJ rows, so the t ime requ i red
to find the m a x i m a in B~ is b o u n d e d by c(p~ - P H + 1) log(n~ m) for some cons tan t
c. Summing over all 1 <- i <- m, we have a total t ime for the last s tep o f at most
e(2m - 1) log(n /m) . So the t ime for the ent ire a lgo r i thm is O(m(1 +tog(n /m))) .

The lower bound. First , cons ider the case where m = 2. Then there is an integer
q such that for all 1 <- i <- q we have j (i) = 1 and for all q < i -< n we have j (i) = 2.
Thus to locate the m a x i m a it is necessary and sufficient to de te rmine q, and this
can be done by b ina ry search in O(log n) t ime. It is also clear that an adversa ry
has a b ina ry search counte rs t ra tegy that will force any a lgor i thm to make at least
2 [1 + l o g nJ q u e r i e s - - t h e adversa ry s imply gives an a rb i t ra ry answer to the first
query in any given row and for the second query in a row it answers so as to at
most halve the interval that can conta in q.

Now for the genera l case where 2 <- m < n. For 0-< i -< [m / 2] , let r i = i In~ m].
For 1 - < i ~ [m / 2] , let B~=A[r i_I+I , rg; i, i + 1] . Fo r each l<--i<- [m/2J sub-
matr ix B~ has 2 co lumns and r~-r~_l >-n/m rows. Note that for any i~ ~ i2 the
pos i t ions o f the m a x i m a in Bi, do not p lace any const ra ints on the pos i t ions of

Geometric Applications of a Matrix-Searching Algorithm 203

the maxima in B~ 2. The adversary responds to queries made by some algorithm
as follows. If a query is made outside of any of the B~'s the adversary answers
with some arbitrary nonpositive value consistent with the total monotonicity
constraint. (For example, if a queried entry in column j is to the left of the B~'s
or below row rim~2 j the entry can he set to j - m and if it is to the right of the
Bi's and in or above row rtm/2 j it can be set to -1 .) Within each submatrix Bi
the adversary independently carries out the binary search counterstrategy, always
responding with positive values. Thus the algorithm will have to make at least
2 [m/2j [1 + log(n/m)J = ~(m(1 + log(n/m))) queries within the Bi's. []

6. Applications of the Matrix-Searching Algorithm. Total monotonicity occurs
in many computational problems that are geometric in nature. In Section 2 we
showed that the all-farthest-neighbors problem can be reduced to the maximum
problem for a totally monotone n x (2n - 1) matrix when the point set contains
the vertices of a convex n-gon, say, in clockwise order. Clearly, ~ (n 2) time would
be required if we first construct this matrix and then solve the maximum problem.
However, in the next paragraph, we will show that because this matrix contains
only Euclidean distances and negative numbers as its entries, we can use some
simple data structures and compute only O(n) entries of this matrix to solve the
maximum problem for this matrix. Consequently, this yields an optimal ®(n)
time algorithm for the all-farthest-neighbors problem when the point set forms
the vertices of a convex n-gon. In Section 6.1 we describe how our algorithm
can be used to improve the time complexity of previous algorithms that have
been proposed for finding a maximum-area or perimeter k-gon that is inscribed
within a given convex n-gon, or for finding a minimum-area k-gon that circum-
scribes a given convex n-gon. We improve the time complexity of these algorithms
by a factor of log n. In Section 6.2 we show that our algorithm also reduces the
time needed to solve certain wire-routing problems by a factor of log n.

In the all-farthest-neighbors problem for convex polygons, we can determine
the value of any entry of matrix A, say A(u, v), in constant time since either
A(u, v) is negative or it is the Euclidean distance between vertices u and v of
the polygon. (See Section 2.) Consequently, procedure REDUCE can be executed
in linear time without the entire calculation of matrix A explicitly, and this can
be achieved, for example, by storing a list of all those columns that are live at
any step during the execution of REDUCE. Now, for solving the maximum
problem for this n x (2n-1) matrix, note that MAXCOMPUTE(A) calls pro-
cedure REDUCE [log n] + 1 times, and for i -> 1, during the ith level of recursion,
procedure REDUCE is executed on a matrix of size at most In /2 i] by [n /2i - l] .
Since only those columns of the matrix that were live after the execution of
(i - 1) t h level are used in the ith level, hence a list of size at most In /2 i-1] is
sufficient for executing procedure REDUCE at the ith level of recursion. Con-
sequently, the overhead in time and space required for storing and maintaining

0 (•l°gn+l n/2 i) and hence procedure MAXCOMPUTE still these lists is only ,~=~
requires O(n) time and O(n) space. This also implies that the all-farthest-
neighbors problem can be solved in O(n) time and O(n) space.

204 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

6.1. Finding the Extremal Polygons o f a Convex Polygon. Boyce et al. [4] have
shown that, given a convex n-gon, the maximum-area (or maximum-perimeter)
inscribed k-gon can be found in time O(kn log n + n log 2 n). Since the diameter
of a convex polygon can be regarded as the maximum-perimeter inscribed k-gon
when k = 2, it is not surprising that our algorithm can be used to reduce the
complexity of the algorithm of Boyce et al. to O (k n + n log n). In particular, we
can find a maximum-area (or maximum-perimeter) inscribed quadrilateral in
O(n log n) time. We sketch enough o f Boyce et al.'s algorithm to show how our
algorithm can be incorporated in it.

Given a convex polygon P with vertices p~, P2, �9 . . , Pn, in clockwise order, we
wish to find a maximum inscribed k-gon. (When we use "maximum" without
qualification, we mean either maximum with respect to area or maximum with
respect to perimeter, as long as as the word is used in the same sense throughout.)
It can be shown [4] that there is always a maximum inscribed k-gon whose
vertices are a subset of the vertices of P. So henceforth we will assume that all
inscribed polygons of P have as their vertices some subset of the vertices of P.
Let x be a vertex of P. We say that an inscribed polygon of P is rooted at x if
its first vertex is equal to x. We say that a polygon is a maximum inscribed j-gon
rooted at x if it is maximal among all those inscribed j-gons that are rooted at
x. Let Q with vertices q l , . . . , q,, and R with vertices r l , . . . , rt be inscribed
polygons of P, where as usual the vertices of Q and R are given in clockwise
order. If m = l we say that Q and R interleave if, for each 1 -< i-< m, vertex ri is
on the polygonal chain of P going clockwise from qi to q(imod,,)+l, inclusive. If
l = m + 1 then Q and R interleave if ql = rl and, for 1 -< i < l, vertex r~+~ is on the
polygonal chain of P going clockwise from qi to q(~modm)+b inclusive. The key
results used by Boyce et al. are as follows:

FACT 1 [4]. Let x be a vertex of a convex polygon P. Let Q be a maximum
inscribed j-gon rooted at x and let R be a maximum inscribed (j + 1)-gon rooted
at x. Then Q and R interleave.

FACT 2 [4]. Let x be a vertex of a convex polygon P. Let Q be a maximum
inscribed k-gon rooted at x and let R be the globally maximum inscribed k-gon
of P. Then the vertices of R can be numbered in clockwise order so that Q and
R interleave.

The algorithm of Boyce et al. is dividied into two phases. The first phase finds
a maximum inscribed k-gon of P rooted at Pl. The second phase then finds the
globally maximum inscribed k-gon.

The first phase starts by finding a maximum inscribed 2-gon rooted at pl and
then, for j = 3, 4 , . . , k, finding a maximum inscribed j-gon rooted at p~, making
use of the previously determined maximum (j - 1)-gon rooted at Pl. Fact 1 tells
us that each of these inscribed polygons interleaves with the previously found
inscribed polygon. Each iteration of phase 1 requires a dynamic programming
operation to find the maximum inscribed j-gon rooted at pl. Suppose we have
found Q, the maximum inscribed (j - 1) - g o n rooted at p~, and wish to find R,

Geometric Applications of a Matrix-Searching Algorithm 205

the maximum inscribed j-gon rooted at Pl. Let Pi be the polygon chain of P
going clockwise from qi to q(~odO-~>l and let n~ be the number of vertices in
Pi. We kno~v that ri+~ is a vertex of P~. Suppose we are finding the maximum-
perimeter inscribed polygon (the case for maximum-area is similar). At the start
of the ith step of the dynamic programming phase we know, for each vertex v
in P~, the length of the longest path from pl to v with i segments that interleave
with Q. We can then determine this information for each vertex of P~+I by finding
the maximum for each row of an ni x n,§ matrix, M~, where M~(c, d) equals the
length of the longest interleaving path from Pl to the cth vertex in P,+~ that passes
through the dth vertex in Pi. The obvious method for finding the maxima requires
time O(ngn~+~). However, from the triangle inequality it can be shown that M~
is totally monotone [4]. Boyce et al. applied the naive divide-and-conquer
algorithm to find the maxima of M~, with the result that each of the k - 2 iterations
of the first phase required O(n log n) time, giving a total time for the first phase
of O(kn log n). By using our linear algorithm instead, the time per iteration is
reduced to O(n) and the total time for the first phase to O(kn).

Let Q be the maximum inscribed k-gon rooted at Pl that is returned by the
first phase. Let R be the (as yet undetermined) globally maximum inscribed
k-gon. By Fact 2 we may assume that rl is one of the vertices on the polygonal
chain between q~ and qe- Thus R can be determined by finding, for each vertex
x in the chain, the maximum k-gon rooted at x that interleaves with Q, and then
selecting the maximum of these polygons. For a given x we can find the maximum
inscribed k-gon rooted at x that interleaves with Q by applying the dynamic
programming operation described above. If done in a naive way this results in
O(n) applications of the dynamic programming step. However, Boyce et al. [4]
showed that this work can be greatly reduced. First choose x to be the middle
vertex of the polygonal chain between ql and q2, and find the maximum k-gon
rooted at x that interleaves with Q. Call this polygon Q'. The globally maximum
k-gon must interleave with both Q and Q'. Let xl and x2 be the midpoints of the
polygonal chains from ql to x and from x to q2, respectively. The maximum
k-gons rooted at x~ and at x2 that interleave with Q and Q' can now both be
found in the same amount of time that it took to find Q' alone. We can continue
to divide the intervals in half in this way for a total cost of log n times the cost
of one application of the dynamic programming step. Thus the second phase as
described by Boyce et al. required time O(n log 2 n), and with our algorithm uses
O(n log n) time.

Aggarwal et al. [2] have shown that the minimum-area circumscribing k-gon
can be found in O(n 2 log n log k) time. They made use of an interleaving lemma
similar to the ones described above, and also used a similar dynamic programming
phase consisting of steps in which the maximum value in each row of a matrix
must be found. They showed that the matrix is monotone, and their result can
be strengthened to show that the matrix is totally monotone. Thus the complexity
of their algorithm can be reduced to O(n 2 log k).

McKenna et aL [8] have provided a simple O(n log 5 n) time, O(n) space
algorithm for finding a maximum-area inscribed rectangle that is contained in a
given n-vertex orthogonal polygon and whose sides are parallel to the given

206 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

polygon. Their algorithm can also be modified to obtain a maximum-area empty
rectangle if the given polygon has holes. The algorithm uses several nested
divide-and-conquer procedures, the last one being used to find the maxima of a
certain totally monotone matrix in O(n log n) time. McKenna et aL only claim
that the maxtrix is monotone, but their proof shows that it is totally monotone.
Consequently, if we replace the last level of divide-and-conquer in their algorithm
by our linear time algorithm, then we obtain an algorithm that uses O(n log 4 n)
time and O(n) space. Thus, the space-t ime complexity of this algorithm is the
same as that given by Chazelle et aL [5]; the algorithm given in [5] takes
O(n log 3 n) time and O(n log n) space.

6.2. Wire Routing. Let Pl < P2 < �9 �9 �9 < P, be points on a line segment P that is
horizontally imbedded in the plane. (We identify a point p~ with its offset relative
to the leftmost point of P.) Let xi be the x-coordinate of p~ in the plane. We call
xl the offset of P and the y-coordinate of pl the separation of P. Let q~ < q2 <" �9 "<
qn be points on a line segment Q imbedded horizontally in the plane so that ql
is at the origin. (We identify a point q~ with its x-coordinate.) P and Q represent
electrical components on a board or chip whose corresponding terminals, p~ and
q~, must be wired together. A routing is a set of n nonintersecting continuous
curves (wires), with the ith curve going from pi to q~, that satisfy a set of design
rules. The design rules are determined by the technology. At a minimum, there
is a requirement that the distance between any two wires be at least some fixed
constant, which we may take to be 1. There may be other constraints, such as
the wires lie on a rectilinear integer grid, or that they consist of a union of straight
line segments whose orientations with respect to the x-axis are multiples of 45 ~ .
We are concerned with two problems:

(i) Minimum Separation Problem. Given a fixed offset for P, find the minimum
separation that allows a valid routing.

(ii) Optimal Offset Problem. Find the offset for P for which the minimum separa-
tion for P that allows a valid routing is minimized.

Dolev et al. [6] found a linear time algorithm for the minimum separation
problem in the case where the wires are constrained to lie on a rectilinear integer
grid. Tompa [14] showed that when the wires are allowed to have arbitrary shapes
both the minimum separation and the actual layout of the wires can be found
in O(n 2) time. Siegel and Dolev [13] showed that for a very general class of
design rules the minimum separation problem can be solved in O(n log n) time.
They also obtained linear bounds for more general constraints than those used
by Dolev et al. [6]; such constraints include the cases where the wires lie on a
quarter integer grid and consist of segments at angles that are multiples of 45 ~ .
However, for some natural design rules, such as a wiring scheme that permits
arbitrarily shaped wires, Siegel and Dolev were not able to to do any better than
their generic O(n log n) algorithm.

We now describe Siegel and Dolev's algorithm [13]. Say that the points are
monotone if x~ -< q; for all i or if x~ -> qi for all i. We may assume that the points

Geometric Applications of a Matrix-Searching Algorithm 207

are monotone, for if they are not they may be partit ioned into maximal monotone
blocks and the routing for each block may be done independently. Without loss
of generality assume xi -< qi for all i. Since the points are monotone we can assume
that the wires are mono tone- - the y-coordinate of a wire is nonincreasing as the
x-coordinate increases. For 1-< i-< n and 1-<j-< n - i the j th barrier about qi is
defined to be the set of points that delimit the closest possible approach to q; of
the monotone wire going from Pi+i to qi+j. The barriers are determine6 by the
design rules. For the case where the only design constraint is a lower bound on
the distance between wires, the barriers are composed of circular arcs and line
segments.

Define an n• matrix M as follows. I f i>j then M(i,j) is the height
(y-coordinate) of the (i - j) t h barrier about q~ at the x-coordinate xi. I f i<-j then
M(i, j) = 0. Thus for i > j the value of M(i, j) is the minimum separation due to
the interaction of point qj with the wire running from pi to qi. The minimum
separation of P is simply the maximum of all of the entries of M. Siegel and
Dolev [13] showed that under some very general assumptions about the barriers
the matrix M is totally monotone. In all practical cases each entry of M can be
computed in constant time, so they obtained an O(n log n) time algorithm for
the separation problem, and the algorithm of Section 4 reduces this to O(n). In
particular, we have a linear time algorithm for the case where the only design
rule is a lower bound on the distance between wires.

Siegel and Dolev also showed that when there is an f(n) time algorithm for
the minimum separation problem and the wires are constrained to lie on an
integer grid, the optimal offset problem can be solved in O(f(n)log n) time.
Thus we can solve the optimal offset problem in such cases in time O(n log n).

Acknowledgments. The authors thank Ashok K. Chandra, Don Coppersmith, S.
Rao Kosaraju, Ravi Nair, and Martin Tompa for stimulating discussions. The
authors also thank one of the referees for improving the presentation of this paper.

References

[1] A. Aggarwal and R. C. Melville, Fast computation of the modality of polygons, Proceedings
of the Conference on Information Sciences and Systems, The Johns Hopkins University. Also
appears in J. Algorithms, 7 (1986), 369-381.

[2] A. Aggarwal, J. S. Chang, and C. K. Yap, Minimum area circumscribing polygons, Technical
Report, Courant Institute of Mathematical Sciences, New York University, 1985. Also to appear
in Visual Comput. (1986).

[3] D. Avis, G. T. Toussaint, and B. K. Bhattacharya, On the multimodality of distance in convex
polygons, Comput. Math. AppL, 8 (1982), 153-156.

[4] J.E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding extremal polygons, SIAM
J. Comput., 14 (1985), 134-147.

[5] B.M. Chazelle, R. L. Drysdale, and D. T. Lee, Computing the largest empty rectangle, S lAM
J. Comput., 15 (1986), 300-315.

[6] D. Dolev, K. Karplus, A. Siegel, A. Strong, and J. D. Ullman, Optimal wiring between rectangles,
Proceedings of the 13th Annual A C M Symposium on the Theory of Computing, Milwaukee, WI,
1981, pp. 312-317.

208 A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber

[7] D.T. Lee and F. P. Preparata, The all-nearest-neighbor problem for convex polygons, Inform.
Process. Left., 7 (1978), 189-192.

[8] M. McKenna, J. O'Rourke, and S. Suri, Finding the largest rectangle in an orthogonal polygon,
Technical Report, The Johns Hopkins University, 1985. Also appears in Proceedings of the
Allerton Conference on Control, Communications, and Computing, AileRon, IL, 1985.

[9] M.H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane, J. Comput.
System Sci., 23 (1981), 166-204.

[10] F.P. Preparata, Minimum spanning circle, in Steps in Computational Geometry (F. P. Preparata,
ed.), University of Illinois Press, Urbana, 1977, pp. 3-5.

[11] M.I. Shamos, Geometric complexity, Proceedings of the Seventh Annual Symposium on Theory
of Computing, Albuquerque, NM, 1975, pp. 224-233.

[12] M. I. Shamos and D. Hoey, Closest-point problems, Proceedings of the 16th Annual IEEE
Symposium on Foundations of Computer Science, Berkeley, CA, 1975, pp. 151-162.

[13] A. Siegel and D. Dolev, The separation for general single-layer wiring barriers, Proceedings of
the CMU Conference on VLSI Systems and Computations, Pittsburgh, PA, 1981, pp. 143-152.

[14] M. Tompa, An optimal solution to a wire routing problem, J. Comput. System Sci., 23 (1981),
127-150.

[15] G.T. Toussaint, Complexity, convexity and unimodality, Proceedings of the Second World
Conference on Mathematics, Las Palmas, Spain, 1982.

[16] G.T. Toussaint, The symmetric a!l-furtherst-neighbor problem, Comput. Math Appl., 9 (1983),
747-754.

[17] G.T. Toussaint and B. K. Bhattacharya, On geometric algorithms that use the furthest-neighbor
pair of a finite planar set, Technical Report, School of Computer Science, McGill University,
1981.

