
COSC 249.09 Introduction to Computational Topology Homework 4

1. Generating mazes.

Consider a rectangular grid. For each square in the grid, add either a diagonal (�) or an
anti-diagonal (�). The diagonals connect into paths on the rectangular grid (see Figure 1
for an illustration).

Prove that there is a path either from the top to the bottom, or from the left to the right of
the rectangle, using only the diagonals and the anti-diagonals.

Figure 1. A random maze generated from random diagonals. From 10 PRINT: CHR$(205.5+RND(1)); : GOTO 10 by
Montfort et al., November 2012. Shared under a Creative Commons BY-NC-SA 3.0 license.

2. Proving Jordan curve theorem. Remember our old friend — the Jordan curve theorem
— from the first lecture? Both of you have grown so much since; last time you met her she
was just a little polygon theorem, and you were new to the whole topology business.

(a) Read about the Mayer-Vietoris sequence from any source you like. State a version of
the Mayer-Vietoris sequence here, in your own words.

(b) Prove that for any function f : [0, 1]k→ Sn, one has Hi(Sn − f ([0, 1]k))∼= 0 for any
i > 0 and H0(Sn − f ([0,1]k))∼= Z, using Mayer-Vietoris sequence.
[Hint: If there is a nontrivial cycle α in Sn− f ([0, 1]k), argue that α remains nontrivial
in either

Sn − f ([0,1]k−1 × [0,0.5]) or Sn − f ([0,1]k−1 × [0.5,1]).

Repeat the argument ad infinitum one produces a sequence of nested intervals
I1 ⊃ I2 ⊃ · · · where α is nontrivial in any of the Sn − f ([0,1]k−1 × I j). Derive a
contradiction.]

(c) Prove the Jordan curve theorem.
[Hint: Remember, the Jordan curve theorem is a statement about the complement of
the curve.]

(You are allowed to use any resources available; so this is really a test of literacy, seeing
if you can read and communicate your ideas using the language of homology. Find the
right tools, state them correctly, and prove that the spaces you apply on satisfy all the
requirements of the statement. You may use any standard results from algebraic topology
without proofs.)


