
COSC 249.09 Introduction to Computational Topology Homework 0

1. Introduce yourself. Why do you take the course? What is your personal goal and
expectations? What parts of topology might potentially be useful to you? How much time
and energy do you plan to invest this term?

2. Fun with groups. A group (Σ,•) is a set Σ equipped with a binary relation • : Σ×Σ→ Σ,
satisfying the following properties:

• Associativity: for any three elements x , y , and z in Σ, one has (x • y)• z = x • (y • z);

• Identity: there is an element e in Σ such that e • x = x • e = x for any x in Σ;

• Inverses: for any x in Σ, there is an element x−1 in Σ such that x−1 • x = x • x−1 = e.

A group homomorphism φ from group (Σ,•) to group (Π,◦) is a map φ : Σ→ Π respecting
the group operations; that is, for every pair of elements x and y in Σ,

φ(x • y) = φ(x) ◦φ(y).

The kernel of a group homomorphism, denoted as kerφ, is the subset of elements in Σ
that maps by φ to the identity eΠ of Π; in notation,

kerφ := {x ∈ Σ: φ(x) = eΠ} .

Let G be an arbitrary graph. There are two natural objects associated with G:

• The vertex space ΣV , containing all possible subsets of vertices of G;

• The edge space ΣE , containing all subgraphs of G.

Both the vertex space and the edge space can be made into a group under element-wise
symmetric difference operation. (Verify this yourself!)

(a) Prove that the map from ΣE to ΣV , taking a subgraph H of G and returns the subset
of odd-degree vertices in H (that is, vertices that incident to an odd number of edges),
is a group homomorphism. What is the kernel of this map?

(b) Both the vertex and the edge space can be viewed as a vector space, where the basis is
the set of vertices/edges, and the coefficients are in the two-element field Z2, where
1 means the element is presented and 0 if not.
As a vector space over the two-element field Z2, what is the dimension of kerφ?

Groups and vector spaces will appear a few times in this class, so it would be helpful to equip
yourself with basic knowledge about them. There is no need to go through a whole textbook
on linear/abstract algebra; sufficient knowledge on the following items will be good enough:

• definitions of groups, fields, vector spaces, and linear transformations

• subgroups, quotient groups, group homomorphisms, and first isomorphism theorem

• column and null spaces of a linear transformation, rank-nullity theorem



COSC 249.09 Introduction to Computational Topology Homework 0

3. Length-decreasing path. Let G be an arbitrary undirected graph, equipped with an edge-
length function where each edge e has a non-negative length `(e). (For sake of simplicity,
you are free to assume all the edge lengths are different.)

Design and analyze an efficient algorithm that, given two vertices s and t in G, compute a
shortest path between s to t among those whose edge lengths are monotonically decreasing.
(Or, correctly report that there are no such paths.) In other words, if the computed path
from s to t uses the edges e1, . . . , ek in sequence, then

`(e1)> · · ·> `(ek).

4. Winter is coming. A bush T is an unordered tree where each internal node has degree
exactly 3 (and each leaf has degree 1). We refer to edges as branches, and both internal
nodes and leaves as nodes.

(a) Prove that there is a branch e∗ in an n-node bush T such that each tree component
of T − e∗ has at least n/4 nodes.

Such a branch e∗ is called balanced. We can cut a bush T into two by choosing a branch e∗

and cut it in half. As a graph, this is equivalent to taking each component of T − e∗ and
glue a copy of e∗ back to where it was. Because we made a copy of e∗ for each of the two
components in T − e∗, the total number of branches and nodes in the final two bushes are
exactly n and n+ 2, respectively.

Consider the following algorithm FIREWOOD.

FIREWOOD(T, r):
if T has at most r nodes:

return singleton set {T}
find a balanced branch e∗ in T
cut the bush T at e∗ into T1 and T2
return FIREWOOD(T1, r)∪ FIREWOOD(T2, r)

Figure 1. Pseudocode for Firewood, cutting the original bush into roughly equal-sized chunks.

(b) Prove that the number of bushes returned is at most O(n/r) for any big enough r.
[Hint: Careful. Why does the algorithm even terminate?]

A branch is trimmed if it was ever cut during the execution of FIREWOOD. If we just execute
the algorithm naïvely, some bushes returned might have up to Ω(r) trimmed branches.

?(c) Design and analyze an algorithm so that every bush returned has O(1)many trimmed
branches, where the constant is independent to r.

Skills in algorithm design and analysis is a must for this course. You need the following:

• reading pseudocode, correctness/time analysis

• induction, binary search, whatever-first search, spanning trees, shortest-path algorithms

• basic data structures like lists, queues, and binary search trees, amortization


