

Kiumech Formula. $H^{0}(x ; \pi) \otimes_{R} H^{0}(T ; \pi) \xrightarrow{\rightarrow} H^{i}(x-Y ; \pi$ Cor. $\operatorname{dim} H^{k}(X \cdot Y)=\sum_{i=0}^{k} \operatorname{din} H^{i}(x) \cdot \operatorname{dan} H^{k-1}(r)$
exauple: $\quad \operatorname{dim} H^{k}\left(\pi^{\prime \prime}\right)=? \quad \operatorname{din} H^{k}\left(\Sigma_{g}\right)=[1,2 g, 1]$ $\operatorname{dim} H^{k}\left(T^{\prime}\right)=\operatorname{dim} H H^{k}\left(S^{2} \times \cdots, s^{1}\right)=\binom{n}{k}$

- The Bayti: numbers are palmdowic. Coincitence ${ }^{3}$ nat...

 Eccision Them. $A \leq V \leq X \leq A^{0} \leq V^{0}$. Then
$H_{0}(X-A, V-A) \sim H_{0}(X, U)$
 bit so dess the conplemer of a kwot.
Appleapen. Helly Then (in drocere/ / capp. geanemy)∞

Gugh Leplocian $L_{G}:=D_{G}-A_{G}$
 Groph as eleatical (resiter) refanork.

\Rightarrow Tyedter. $L_{v}=B^{\top} B v=c$
. find wotex voltuse v.

Assmed G is phan

$H^{\prime}(G)=0!\Rightarrow k o r \partial_{2}=\operatorname{ind} ; \quad$ i $\partial_{2} i=0$ then $\exists v \cdot \partial^{2} v=$
- Given $G \times c$. find fow i w/ excess ch a crateion in G
ema. All eironalues of $L a$ are real
of. Because La is real α spmaderc,
tums $\lambda\|w\|^{2}=\lambda^{*}\|v\|^{2} \cdot \lambda=\lambda^{*}$ real
Let $\lambda_{1} \leqslant \lambda_{2} \leq \cdots \leq \lambda_{n}$
Lame. $L_{G}=\bar{\Sigma}_{i} \lambda_{i} u_{i}$
Ff. $\sum_{i} \lambda_{i} u_{i} u_{i}^{\top} u_{j}=\lambda_{i} u_{j}{ }^{\top} u_{j} u_{j}=\lambda_{i} u_{j}=A_{j} \quad$,

Lamme. $\lambda_{1}=0$.
Lemus. $\lambda_{2}>0$ If G amexed.
$\begin{aligned} \text { of. } & \Rightarrow \text { easy } \\ & \Leftrightarrow \lambda_{2}\end{aligned}$

Woak. What are ve dany?
 ($~=$ P $^{-1 / 2}\left\llcorner D^{-\gamma}\right)$
$\lambda_{2}(\mathcal{L})=\theta(1)$: aparter.

SToy. Koseris) Laplecian
Tinte embedany.
Trated $2-1 \mathrm{ift}$

