
COSC 49.09 Introduction to Computational Topology Homework 2 (due 10/23)

1. Chasing Puppies. Watch Chasing Puppies1, the Ferran Hurtado Memorial Lecture at the
32nd Canadian Conference on Computational Geometry by Jeff Erickson. (The video is
about one hour long. Make sure you start watching it early on.)

Let γ be a generic simple closed curve in the plane (the trail), and let h and p be the
positions of the human and the puppy on the trail respectively. The human and the puppy
always stay on the trail; in other words, points h and p themselves can be view as a map
from the parameter space S1 to the plane R2. The puppy wants to find its way to the
human, by simply running towards the direction of the trail that reduces its distance to the
human. The goal of the human is to move back-and-forth on the trail, in order to guide
the puppy back. Can the puppy always catch the human?

To solve the problem, Jeff defined the puppy and human (hooman?) diagrams in his talk.
The puppy diagram is the subset of critical points in the human-puppy configuration space
(which is a torus); in other words, the puppy diagram is the set

�

(h, p) ∈ S1 × S1 : ∂D(h, p)/∂p = 0
	

,

where D(h, p) is the distance between the human and the puppy.

The human diagram is the subset of points at which the human can be in the puppy vision
space (which is an infinite cylinder); in other words, the human diagram is the set

�

(p, L(h, p)) ∈ S1 ×R : (h, p) is critical
	

,

where L(h, p) is the (signed) distance between h and the tangent line of γ at p.

Consider the map F from the human-puppy configuration space to the puppy vision space,
by sending (h, p) to (p, L(h, p)). Prove the following statements:

(a) Map F is a homeomorphism between the puppy and human diagrams.

(b) Map F sends a contractible cycle in the puppy diagram to a contractible cycle in the
human diagram.

(c) Map F sends an essential (that is, non-contractible) cycle in the puppy diagram to an
essential cycle in the human diagram.

(d) The puppy diagram has only one essential closed curve besides the diagonal. (Yes, I
know Jeff has already proved this in the talk. But do you understand the argument?)

1https://www.youtube.com/watch?v=Ysk0yhO4jVk

https://www.youtube.com/watch?v=Ysk0yhO4jVk
https://www.youtube.com/watch?v=Ysk0yhO4jVk


COSC 49.09 Introduction to Computational Topology Homework 2 (due 10/23)

2. Rolling cube puzzles. A rolling cube puzzle2 consists of a cube, sitting on top of a map
assembled by a collection of unit-size squares identifying along the edges; at most two
squares meet at a common edge at a time. The map naturally identifies with a surface,
possibly with boundaries. (For sake of simplicity, you can assume the surface is orientable.)
In addition, for purpose of the problem, each face of the cube is identical in size to the
map squares; also a unique color is associated with each face of the cube.

An instance of the rolling cube puzzle on a given map is a pair of squares, each with a
color label. A rolling cube puzzle instance is solvable if one can transfer the cube from
the starting position to the ending position by rolling the cubes: First, put the cube at
the starting position with the color required by the label facing up. Roll the cube square-
by-square along a common intersecting edge as axis; the cube is never allowed to go off
the map. At the ending position, the color of the cube facing up has to match the color
required by the label. Notice that the order of the colors on the side of the cube does not
matter (in particular, you have the freedom to choose how the cube is initially placed as
long as the top of the cube matches the color label.)

Design and analyze an algorithm, which after some preprocessing on the input map
(without the starting and ending positions), solves an instance of the rolling cube puzzle
efficiently. Notice that the starting and ending positions and the color labels are only given
after the preprocessing. To get full credit, your algorithm must spend time linear to the
size of the map in preprocessing, and constant time per instance afterwards. [Hint: Why
is this problem here?]

2see, for example, commercial games like Rubek and Hocus or free games like Bloxorz

https://store.steampowered.com/app/531740/Rubek/
https://store.steampowered.com/app/418040/hocus/
https://bloxorzonline.com/

