1. *Gauss code*. A *Gauss code* is a cyclic string of 2n symbols where each symbol occurs exactly two times; it is *signed* if in addition each symbol x is attached with a plus/minus sign +/-, one for each occurrence of x. A Gauss code is *planar* if it encodes the sequence of crossings we see as we traverse an *n*-vertex planar curve γ ; the signing of the Gauss code correspond to the Gauss signs of the crossings of γ .

Describe and analyze an algorithm whether a given signed Gauss code is planar.

Figure 1. A planar curve with Gauss code [abcdefgchaigdjkhbifejk] and signing [++--++++-++++--+++].

- 2. Spanning trees as *a*-orientations. Let *G* be a plane graph and G^* be its dual, drawn in the plane in such a way that every crossing correspond to exactly one primal-dual edge pair from (G, G^*) . Consider the *overlay graph* G^+ :
 - Add all vertices in G and G^* , and all the crossings in the drawing as vertices of G^+ ;
 - Subdivide each edge (u, v) in *G* and G^* at the crossing point *x*, and add the two edges (u, x) and (x, v) as edges of G^+ .

(Alternatively, one can construct the overlay graph by performing the radial construction twice on the primal graph $G: G^+ := G^{\infty}$.¹)

Figure 2. (a) Plane graph *G* and its dual G^* . (b) Medial graph G^{\times} and radial graph G° . (c) Overlay graph G^+ and its dual G^{\Box} .

¹The overlay graph G^+ , obtained by performing the radial construction twice, is a subgraph of the barycentric subdivision of *G*. The dual graph of G^+ , conveniently denoted as G^{\Box} , can be obtained by performing the medial construction twice ($G^{\Box} := G^{\times \times}$), and is a *minor* of the band decomposition/ribbon graph of *G*.

- (a) Prove that there is a feasible function α defined on the overlay graph G^+ , such that a tree-cotree pair in the primal-dual plane graph (G, G^*) is in bijection with α -orientations of G^+ , after fixing one primal "root" and one dual "root" from the vertices of G^+ .
- (b) Prove that the essential cycles for the above collection of α -orientations are exactly the faces of G^+ (which are exactly the corners of *G*) not incident to the two roots.
- *3. *Improving presentation.* In class we showed that given any \pm -labeling on the edges of a planar graph with vertex set *V*, we have

$$\sum_{\nu \in V} alt(\nu) < 4|V|$$

where alt(v) is the number of sign alternation around the vertex v.

Provide a new proof to the result using discrete Gauss-Bonnet Theorem.