1. Flip a fair coin repeatedly until you get two heads in a row (HH). On average, how many flips should this take?

- First, try modeling this random experiment as a DFA.
- Assign to each transition a number in [0, 1], representing the probability of crossing that transition given that we are already in the given state.
Congrats! You made a Markov Chain.
- Let E_{i} be the average number of transitions (tosses) it takes to get from state i in your DFA to the accept state. Can you find a relationship between the E_{i} s?

2. What if we flip until we get heads followed by tails (HT)? Is the answer the same as (1)?
3. Flip a fair coin repeatedly n times. How many two heads in a row (HH) do we expect to see? How about three heads in a row (HHH)?

- First, let's make an educated guess. How many heads do we expect? For each of those heads, how many of the next tosses will also be heads on average?
- Let's formalize! Hint: Linearity of...?

4. Argue that within a sequence of n fair coin flips, we are expected to see some consecutive heads (or tails) of logarithmic length.
5. Harder: How many coin flips will it take on average to get n heads in a row?
