- A problem cannot be solved in $O\left(2^{\delta n}\right)$ time if for all functions $f(n) \in O\left(2^{\delta n}\right)$, there exists an input of sufficiently large size n for which the algorithm requires time $>f(n)$.
- If the Exponential Time Hypothesis (ETH) is true, then no algorithm can solve CNF-SAT in time $O\left(2^{\delta n}\right)$ for some $\delta>0$.
- If the Strong Exponential Time Hypothesis (SETH) is true, then no algorithm can solve CNF-SAT in time $O\left(2^{\delta n}\right)$ for any $0<\delta \leq 1$.

1. We are given a system of m linear inequalities on n variables. All coefficients $A_{i j}$ and B_{j} are integers:

$$
\left\{\begin{array}{cc}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n} & \leq b_{1} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n} & \leq b_{2} \\
\vdots & \vdots \\
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n} & \leq b_{m}
\end{array}\right.
$$

The 0 -1 integer-programming problem (01-IP) asks: "Is there a vector $\left(x_{1}, \ldots, x_{n}\right) \in$ $\{0,1\}^{n}$ satisfying all inequalities?"
(a) Reduce from 3-SAT to show that 01-IP is NP-hard.
(b) Assuming ETH is true, show that no algorithm can solve 01-IP in time $O\left(2^{o(\sqrt{m n})}\right)$.
2. In a graph $G=(V, E)$, a dominating set is set of vertices $S \subseteq V$ so that $N(S)=V$. The Dominating-Set problem asks whether a graph G has a dominating set of size k.
(a) Is Dominating-Set in P?
(b) Reduce an instance ϕ of CNF-SAT with n variables and m clauses to an instance $\langle G, k\rangle$ of Dominating-Set with $|V|=k 2^{n / k}+m$ vertices.
(c) How fast can an algorithm be in solving Dominating-Set if SETH is true?
3. If there's time: Let A and B be two sets of $n d$-dimensional $\{0,1\}$-vectors. For instance, if $n=3$ and $d=4$, set A could be $\{(1,0,0,0),(1,0,1,0),(0,0,0,1)\}$.
The orthogonal vectors problem (OV) asks whether there are vectors $\alpha \in A$ and $\beta \in B$ such that α and β are orthogonal:

$$
\langle\alpha, \beta\rangle=\sum_{i=1}^{d} \alpha_{i} \beta_{i}=0
$$

(a) Assuming SETH is true, reduce from CNF-SAT to show that no algorithm can solve OV in $O\left(n^{2-\varepsilon}\right)$ time for any $\varepsilon>0$.

