- A problem *cannot be solved in* $O(2^{\delta n})$ time if for all functions $f(n) \in O(2^{\delta n})$, there exists an input of sufficiently large size *n* for which the algorithm requires time > f(n).
- If the Exponential Time Hypothesis (ETH) is true, then no algorithm can solve CNF-SAT in time O(2^{δn}) for some δ > 0.
- If the Strong Exponential Time Hypothesis (SETH) is true, then no algorithm can solve CNF-SAT in time O(2^{δn}) for any 0 < δ ≤ 1.
- 1. We are given a system of *m* linear inequalities on *n* variables. All coefficients A_{ij} and B_j are *integers*:

 $\begin{cases} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n &\leq b_1 \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n &\leq b_2 \\ \vdots &\vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n &\leq b_m \end{cases}$

The **0-1** integer-programming problem (01-IP) asks: "Is there a vector $(x_1, ..., x_n) \in \{0, 1\}^n$ satisfying all inequalities?"

- (a) Reduce from 3-SAT to show that 01-IP is NP-hard.
- (b) Assuming ETH is true, show that no algorithm can solve 01-IP in time $O(2^{o(\sqrt{mn})})$.
- 2. In a graph G = (V, E), a *dominating set* is set of vertices $S \subseteq V$ so that N(S) = V. The DOMINATING-SET problem asks whether a graph *G* has a dominating set of size *k*.
 - (a) Is DOMINATING-SET in P?
 - (b) Reduce an instance ϕ of CNF-SAT with *n* variables and *m* clauses to an instance $\langle G, k \rangle$ of DOMINATING-SET with $|V| = k2^{n/k} + m$ vertices.
 - (c) How fast can an algorithm be in solving DOMINATING-SET if SETH is true?
- 3. If there's time: Let *A* and *B* be two sets of *n d*-dimensional {0,1}-vectors. For instance, if *n* = 3 and *d* = 4, set *A* could be {(1,0,0,0), (1,0,1,0), (0,0,0,1)}.

The *orthogonal vectors* problem (OV) asks whether there are vectors $\alpha \in A$ and $\beta \in B$ such that α and β are orthogonal:

$$\langle \alpha, \beta \rangle = \sum_{i=1}^{d} \alpha_i \beta_i = 0$$

(a) Assuming SETH is true, reduce from CNF-SAT to show that no algorithm can solve OV in $O(n^{2-\varepsilon})$ time for any $\varepsilon > 0$.