Let *G* be an (either undirected or directed) graph. A *Hamiltonian path* in *G* is a path that visits every single vertex in *G* exactly once. A *Hamiltonian cycle* in *G* is a closed Hamiltonian path that starts and ends at the same vertex. Consider the following problems:

DrtHamiltonianPath

- Input: A directed graph G
 - **Output:** Is there a Hamiltonian path in G?

HAMILTONIANPATH

- Input: An undirected graph G
- **Output:** Is there a Hamiltonian path in G?

HAMILTONIANCYCLE

- Input: An undirected graph G
- Output: Is there a Hamiltonian cycle in G?
- 1. Describe a polynomial-time reduction from HAMILTONIANPATH to DRTHAMILTONIANPATH.
- 2. Describe a polynomial-time reduction from DRTHAMILTONIANPATH to HAMILTONIANPATH.
- 3. Describe a polynomial-time reduction from HAMILTONIANPATH to HAMILTONIANCYCLE.
- 4. Describe a polynomial-time reduction from HAMILTONIANCYCLE to HAMILTONIANPATH. *[Hint: Might be easier to describe an oracle reduction.]*
- 5. *After class:* Read the proof from Erickson's note that HAMILTONIANPATH is NP-complete.

You may assume the following problems are NP-hard:
CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output TRUE?
3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?
MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them?
MAXCLIQUE: Given an undirected graph <i>G</i> , what is the size of the largest complete subgraph of <i>G</i> ?
MINVERTEXCOVER: Given an undirected graph <i>G</i> , what is the size of the smallest subset of vertices that touch every edge in <i>G</i> ?
3COLOR: Given an undirected graph <i>G</i> , can its vertices be colored with three colors, so that every edge touches vertices with two different colors?
HAMILTONIANPATH: Given an undirected graph <i>G</i> , is there a path in <i>G</i> that visits every vertex exactly once?
HAMILTONIANCYCLE: Given an undirected graph G , is there a cycle in G that visits every vertex exactly once?
DIRECTEDHAMILTONIANCYCLE: Given an directed graph <i>G</i> , is there a directed cycle in <i>G</i> that visits every vertex exactly once?
TRAVELINGSALESMAN: Given a graph <i>G</i> (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in <i>G</i> ?