Let's recall two fundamental and related concepts: polynomial-time reducibility and NPcompleteness.

- A problem L is polynomial-time reducible to a problem R when we can solve any instance of L in polynomial time by querying an oracle of R that correctly solves any instance of R. More formally, there exists a Turing Machine M that works in polynomial time and outputs $f(w)$ for any input w, such that $w \in L$ if and only if $f(w) \in R$.
- A problem L is NP-complete when:
- It is in NP. What does this mean again?
- Every other problem P in NP can be reduced to L in polynomial time.

Today's exercises will highlight self-reducibility: the notion that finding a solution can be reduced to deciding if a solution exists.

1. Warm-up 1. Consider the VertexCover problem: Given an undirected graph G, a vertex cover is a set of vertices where every edge touches some vertex in the set. In terms of languages and Turing Machines, phrase the following problems:
(a) Deciding if a graph has a vertex cover of size k. This is an example of a decision problem.
(b) Finding a vertex cover of size k in a graph G (if such a cover exists). This is an example of a search problem.
2. Warm-up 2. What do you think is more difficult: reducing a decision problem to a search problem or the opposite (reducing a search problem to a decision problem)?
3. Are you satisfied now? Given a Boolean formula, the SAt problem asks whether there is an assignment to the variables such that the formula is satisfied. The Cook-Levin Theorem tells us that SAT is NP-complete.
Reduce the problem of finding a valid assignment to the problem of deciding whether a valid assignment exists.
4. Cover-up. Show that the problem of finding a vertex cover of size k in a graph G is poly-time reducible to the problem of deciding whether such a vertex cover exists in G.
5. By Cook-Levin theorem, the SAT problem is NP-complete. The 3-Sat problem requires that each clause consists of at most three literals. Show that Sat reduces to the 3-Sat problem in polynomial time. This proves that 3-SAT is NP-hard.
6. To think about later: Reduce 3-Sat to the VertexCover problem in polynomial time. This proves that VertexCover is also NP-hard.
