
COSC 39 Working Session — Feb 12 Winter 2021

Let’s recall two fundamental and related concepts: polynomial-time reducibility and NP-
completeness.

• A problem L is polynomial-time reducible to a problem R when we can solve any instance
of L in polynomial time by querying an oracle of R that correctly solves any instance of R.

More formally, there exists a Turing Machine M that works in polynomial time and outputs
f (w) for any input w, such that w ∈ L if and only if f (w) ∈ R.

• A problem L is NP-complete when:

– It is in NP. What does this mean again?

– Every other problem P in NP can be reduced to L in polynomial time.

Today’s exercises will highlight self-reducibility: the notion that finding a solution can be
reduced to deciding if a solution exists.

1. Warm-up 1. Consider the VERTEXCOVER problem: Given an undirected graph G, a vertex
cover is a set of vertices where every edge touches some vertex in the set. In terms of
languages and Turing Machines, phrase the following problems:

(a) Deciding if a graph has a vertex cover of size k. This is an example of a decision
problem.

(b) Finding a vertex cover of size k in a graph G (if such a cover exists). This is an
example of a search problem.

2. Warm-up 2. What do you think is more difficult: reducing a decision problem to a search
problem or the opposite (reducing a search problem to a decision problem)?

3. Are you satisfied now? Given a Boolean formula, the SAT problem asks whether there is
an assignment to the variables such that the formula is satisfied. The Cook-Levin Theorem
tells us that SAT is NP-complete.

Reduce the problem of finding a valid assignment to the problem of deciding whether a
valid assignment exists.

4. Cover-up. Show that the problem of finding a vertex cover of size k in a graph G is
poly-time reducible to the problem of deciding whether such a vertex cover exists in G.

5. By Cook-Levin theorem, the SAT problem is NP-complete. The 3-SAT problem requires that
each clause consists of at most three literals. Show that SAT reduces to the 3-SAT problem
in polynomial time. This proves that 3-SAT is NP-hard.

6. To think about later: Reduce 3-SAT to the VERTEXCOVER problem in polynomial time.
This proves that VERTEXCOVER is also NP-hard.


