Find a fooling set of infinite size for each of the following languages, thus showing that all of them are non-regular:

1. $L_{1}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$
2. $L_{2}=\left\{0^{m} 1^{n} \mid n\right.$ divides m and $\left.m \geq 0, n>0\right\}$
3. $L_{3}=\left\{0^{m} 1^{n} 0^{m+n} \mid m, n \geq 0\right\}$
4. Let $\Sigma=\{\rightarrow, \leftarrow, \uparrow, \downarrow\}$. Starting at position (0,0), the strings in Σ^{*} represent walks on an infinite grid. A walk is closed if both its starting and ending point are at $(0,0)$. For example, the string $\rightarrow \uparrow \leftarrow \uparrow$ corresponds to a walk starting at $(0,0)$ and ending at $(0,2)$, and string $\uparrow \uparrow \downarrow \downarrow \leftarrow \rightarrow \leftarrow \rightarrow$ corresponds to a closed walk.
Let L_{4} be the set of all strings that are closed walks on the infinite grid.
5. L_{5} consists of all strings in which the substrings 00 and 11 appear the same number of times.
