1. Turn the following regular expressions into equivalent $D F A s$.
(a) $(01+10) *(0+1+\varepsilon)$
(b) $1^{*}+10^{*}+100^{*}$
(c) $\varepsilon+0(0+1)^{*}+1(0+1)^{*}$
2. Let N be a given NFA $(Q, S, A, \Sigma, \delta)$. The language accepted by N is defined as

$$
L(N):=\left\{w \in \Sigma^{*}: \delta^{*}(S, w) \cap A \neq \varnothing\right\}
$$

We showed in class that the language $L(N)$ must be regular/automatic.
Prove that the following language associated to the given NFA N is also regular/automatic.

$$
L^{\forall}(N):=\left\{w \in \Sigma^{*}: \delta^{*}(S, w) \subseteq A\right\}
$$

3. Let L be an arbitrary regular/automatic language. Prove that the following languages are also regular/automatic.
(a) complement $(L):=\left\{w \in \Sigma^{*}: w \notin L\right\}$
(b) $\operatorname{reverse}(L):=\left\{w^{R} \in \Sigma^{*}: w \in L\right\}$
(c) $\operatorname{both}\left(L, L^{\prime}\right):=\left\{w \in \Sigma^{*}: w \in L \cap L^{\prime}\right\}$
(d) $\operatorname{prefix}(L):=\left\{x \in \Sigma^{*}: x y \in L\right.$ for some $\left.y \in \Sigma^{*}\right\}$
(e) $\operatorname{cycle}(L):=\left\{x y: y x \in L\right.$ for some $\left.x, y \in \Sigma^{*}\right\}$
