
COSC 39 Homework 5 solutions Winter 2021

1. Ice-sliding puzzle. Let ICESLIDING denote the following problem:

ICESLIDING

• Input: The n× n grid together with the positions of all the obstacles, items, entrances, and exits,
as well as an integer k.

• Output: Is there a way to slide across the ice from an entrance to an exit while collecting all the
items, using at most k steps/key-presses?

(a) Prove that ICESLIDING is in NP.

Solution: The prover can provide an entrance, an exit, and a sequence of key presses. The
proof itself will be polynomial in length as the number of key presses needed is at most the
number of all possible positions in the map. The verifier can check if the sequence of key
presses is indeed at most k steps, and actually takes the character from the entrance to the
exit while collecting all the items. The check can be carried out in time polynomial to the size
of the puzzle. �

(b) Prove that we can find a sequence of at most k key presses solving the puzzle in polynomial
time given an oracle to ICESLIDING.

Solution: We prove that the ICESLIDING problem is self-reducible. Given an oracle that decides
any instance of the ICESLIDING problem, we will find the sequence of k key presses using the
following algorithm. Given an instance of ICESLIDING, create four new instances as follows:

• Keep the whole map unchanged.
• Move the character to a new position by simulating the four possible key presses, one for

each direction; set the new position of the character as the new entrance. This creates
four instances, one for each direction.

• Set the original exit as exit.
• Set the integer parameter as k− 1.

Now query the oracle with all four new instances. If the oracle answers no to all of them,
then the original instance has no solutions. Otherwise, choose an instance which the oracle
answered yes to, and record the corresponding key press. Now repeat the algorithm on such
yes-instance, unless the number of remaining stpes is already 0, in which case we have the
sequence of k key presses recorded.

Generating each new instance takes time proportional to the input size, and we generate
4k new instances in total. This implies that we find the right sequence of k key presses in
polynomial time. �

(c) Either prove that ICESLIDING is NP-hard, or solve ICESLIDING in polynomial time.

Solution: It turns out that if we drop the restriction on the number of key presses, then the
problem becomes solvable in polynomial time.

ICESLIDINGUNLIMITED

• Input: The n× n grid together with the positions of all the obstacles, items, entrances,
and exits.

• Output: Is there a way to slide across the ice from an entrance to an exit while
collecting all the items?

We will solve ICESLIDINGUNLIMITED in polynomial time. Create a (directed) traversal graph
G based on the ICESLIDINGUNLIMITED instance: Create a vertex for each possible staying
positions on the map. Add a directed edge from one position to the other if the latter can be
reached by one key press from the former. For each item in the map (which we assumed to be
an ice-free tile), put an item on the corresponding vertex in the graph. Name the vertex of the
starting position as s and the one of the ending position as t. The graph has at most n2 vertices



COSC 39 Homework 5 solutions Winter 2021

and O(n2) edges (because each vertex has out-degree at most 4), and can be constructed in
polynomial time.

Now the original problem turns into whether we can walk from s to t while collecting all
the items. We compute the strongly-connected components in G, that is, equivalent classes of
vertices in G under the “reachable” relation: two vertices x and y are in the same component
if and only if there is a directed path from x to y and a directed path from y to x . This can
be computed in polynomial time by performing graph-traversal algorithm (like depth-first
search) on every vertex and group the vertices based on the set of vertices reachable. Order the
components as C1, . . . , C` where every edge between two different components is directed from
the smaller-index one to the bigger-index one. Let Ci and C j be the components containing s
and t respectively. Now there is a path from s to t collecting all the items if and only if s ≤ t
and all items lie on vertices in Ci ∪ · · · ∪ C j . This can be checked in time linear to G. �

Rubric: It turns out the the problem is subtle. On one hand, IceSliding is NP-hard become we
can reduce HamiltonianPath to it, by setting k to be just right so that there is just enough key
presses to collect all the items; on the other hand, once the restriction on k is dropped, the
problem can be solved in polynomial time.

In the ice-sliding puzzle, the character might reuse the path they have already taken. In such
case, if we construct and IceSliding puzzle based on a graph, when we convert the key press
sequence to a path in the graph, such path might not be Hamiltonian as some vertices might
be visited more than once. One can resolve the issue by introducing single-pass tiles or putting
a restriction on the maximum number of moves/key-presses, and indeed in those cases the
problem becomes NP-hard.

One can actually compute the strongly-connected components in G using one single depth-
first search in linear time (standard CS 31 material); but this is not necessary here as our goal is
just polynomial time.

Standard 5-point grading scale (plus deadly-sins and sudden-death rules) for each subprob-
lem for first two subproblems, each scaled to 2.5 points; everyone gets full credit on the
last question because my initial official solution was incorrect.


