
COSC 39 Homework 4 solutions Winter 2021

1. Punched-tape machine. Prove that the punched-tape machine is equivalent in power to the
standard Turing machine. In other words, the languages accepted by the punched-tape machines
are exactly all the computable languages.

Solution: Any punched-tape machine can be simulated by a Turing machine because by definition
a punched-tape machine is a Turing machine with a more restricted set of instructions. Now given
an arbitrary Turing machine M , we will describe how to simulate M using a punched-tape machine
P. Without loss of generality we assume that M has binary input alphabet {0,1}, along with the
empty cell symbol �.

First we create another Turing machine M ′ mimicking the behavior of M . Machine M ′ contains a
marked version of the binary symbols {0̇, 1̇}, a pointed version of the binary symbols {0̌, 1̌}, together
with a delimiter symbol | and a special prep symbol x whose use will be explained later. For each
transition of M (that is, read a symbol, write a symbol, and move the head), the new machine M ′

performs the following:

• Move all the way beyond the last delimiter at the right end of (the dirty portion of) the tape.

• Copy the old section of the tape between the last and the second-to-last delimiters symbol-by-
symbol from left to right, into a new section on the right of the last delimiter, except for the
two symbols to be changed.

– To remember the positions of the old symbol to be copied and the new symbol to be
written, whenever we are about to copy a symbol in the section, (1) mark the position
in the new section with the prep symbol x, (2) move to the old section and mark the
symbol to be copied (using the new characters introduced in M ′), and (3) move to the
new section and write down the unmarked version to the symbol to replace the prep
symbol.

– When copying the two symbols around the one that contains the pointer ˇ, the machine
enters the special states and makes all the proper changes based on the transition of M
that we are trying to emulate.

• Add a delimiter at the end of the new section.

This concludes the description of M ′ that emulates M , and therefore M ′ decides the exact same
language as M .

Now we describe how to encode each symbol of M ′ as a sequence of five (un)punches using the
punched-tape machine P, and thus proving that P and M ′ (and thus M) are equivalent in power.
Let

〈0〉= �����, 〈1〉= �����, 〈0̇〉= �����, 〈1̇〉= �����,

〈0̌〉= �����, 〈1̌〉= �����, 〈|〉= �����, 〈x〉= �����.

The empty symbol � is naturally mapped to �����. One can summarize the encoding as follows:
the last punch decides if the cell is empty; the fourth one decides if it is a special character (prep
symbol x or delimiter |); if the last two punches are ��, then the first punch decides if the symbol
was 0 or 1, the second punch decides if the symbol was marked, and the third punch decides if the
symbol was pointed at by the head.

During the execution of M ′, only the following symbol overwrites can happen:

�→ x,|,

x→ 0,1, 0̌, 1̌,

0,1→ 0̇, 1̇.

It is straightforward to check that the corresponding sequence of punched can be obtained by
making new punches alone, without removing any existing punches. �



COSC 39 Homework 4 solutions Winter 2021

Rubric: Standard 5-point grading scale (plus deadly-sins and sudden-death rules).
Maximum 3 points if the idea of representing a single symbol in the original Turing machine

using multiply punches is missing. Maximum 1 point if the idea of copying the whole current
working tape is missing.



COSC 39 Homework 4 solutions Winter 2021

2. Self-referential machines.

(a) Design an algorithm B that, assuming that its own source code 〈B〉 is conveniently given as
input when starts, outputs the source code of another algorithm A that prints the source code of
B on execution. (The algorithm should be described using pseudocode, not an explicit Turing
machine.)

Solution: Consider the following programs:

Aw():
input: none
write w

B(w):
input: some data w
print 〈Aw〉

Algorithm B will construct and print out the source code of Aw, whose sole purpose is to
write the data w in memory. If we are given 〈B〉 as input to B, the algorithm will treat 〈B〉 as
yet another input and correctly print out the source code of A〈B〉.

�

(b) Design an algorithm that outputs its own source code without any input. (Remember that
your algorithm does not have access to its own source code. The executable of the algorithm
alone has to generate its source code back.)

Solution: First we modify the definition of B slightly. The only difference is that after printing
out 〈Aw〉, B also prints out a copy of the input w.

Aw():
input: none
print w

B(w):
input: some data w
print 〈Aw〉 ·w

From here, we consider the program AB by concatenating program A〈B〉 and B together. Notice
that because we have properly defined B, the source code 〈B〉 exists and is well-defined.

AB():
run A〈B〉
run B on input 〈B〉

Running AB on empty input, we will see the program perform the following tasks:

• Program A〈B〉 writes 〈B〉 in memory,
• Program B read 〈B〉 from the memory as input,
• Program B runs on 〈B〉 and prints




A〈B〉
�

· 〈B〉.
Assume that we choose our programming language (encoding of the machines) such that
concatenation of source codes translates to sequential execution of the programs, the final
output



A〈B〉
�

· 〈B〉 is indeed the source code of AB. �

Rubric: Standard 5-point grading scale (plus deadly-sins and sudden-death rules).
Maximum 2 points if the definition of the machines is circular; in particular, it is not allowed for

the source code of program M to mention the program itself, or if the description of B includes
the source code of A and in the description of A there’s mention to the machine B (because
one has to properly define A before defining B, so machine B does not exist when you are still
describing A).


