1. Regular or not? Prove or disprove that each of the languages below is regular (or not). Let Σ^{+}denote the set of all nonempty strings over alphabet Σ; in other words, $\Sigma^{+}=\Sigma \cdot \Sigma^{*}$. Denote $n(w)$ the integer corresponding to the binary string w.
(a) $\left\{3 x=y: x, y \in\{0,1\}^{*}, n(y)=3 n(x)\right\}$
(b) $\left\{\begin{array}{l}3 \mathrm{x} \\ =\mathrm{y}\end{array} \underset{\mathrm{y}}{\mathrm{x}} \in\left\{\begin{array}{llll}0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1\end{array}\right\}^{*}, n(y)=3 n(x)\right\}$
(c) $\left\{w x w^{R}: w, x \in \Sigma^{+}\right\}$
(d) $\left\{w w^{R} x: w, x \in \Sigma^{+}\right\}$
[Hint: To prove that a language L is regular, construct an NFA that recognizes L; to disprove that L is regular, construct a fooling set for L and argue that the construction is correct.]

2. Telling DFAs apart.

Let M_{1} and M_{2} be two DFAs, each with exactly n states. Assume that the languages associated with the two machines are different (that is, $L\left(M_{1}\right) \neq L\left(M_{2}\right)$), there is always some string in the symmetric difference of the two languages.
Prove that there is a string w of length polynomial in n in the symmetric difference of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. What is the best upper bound you can get on the length of w ?

* 3. Telling strings apart.

Let w_{1} and w_{2} be two strings over binary alphabet $\Sigma=\{0,1\}$, each of length exactly n. Assume that the two strings are different, there is always some DFA that accepts exactly one of the two strings.

Prove that there is a DFA M of size $o(n)$ such that exactly one of w_{1} and w_{2} is in $L(M)$. What is the best upper bound you can get on the size of M ?

