1. Regular or not? Prove or disprove that each of the languages below is regular (or not). Let Σ^{+} denote the set of all nonempty strings over alphabet Σ; in other words, $\Sigma^{+}=\Sigma \cdot \Sigma^{*}$. Denote $n(w)$ the integer corresponding to the binary string w.
(a) $\left\{3 x=y: x, y \in\{0,1\}^{*}, n(y)=3 n(x)\right\}$

Solution: Denote the language in the problem 1(a) as L_{a}. We prove that L_{a} is not regular by constructing a fooling set for L_{a} of infinite size.

Let $F=\left\{310^{i}: i \geq 0\right\}$. For two distinct prefixes $x=310^{i}$ and $y=310^{j}$ in F, let z be $=110^{i}$.

- $x z=310^{i}=110^{i}$; because $n\left(110^{i}\right)=3 n\left(10^{i}\right)$, we have $x z$ in F.
- $y z=310^{j}=110^{i}$; because $n\left(110^{i}\right) \neq 3 n\left(10^{j}\right)$ if $i \neq j$, we have $y z$ not in F.

This implies that F is a fooling set of infinite size, and thus L_{a} is not regular.
(b) $\left\{\begin{array}{l}3 \mathrm{x} \\ =\mathrm{y}\end{array}: \underset{\mathrm{y}}{\mathrm{x}} \in\left\{\begin{array}{l}0 \\ 0\end{array},{ }_{1}, 1,{ }_{0}^{1},{ }_{1}^{1}\right\}^{*}, n(y)=3 n(x)\right\}$

Solution: Denote the language in the problem 1 (b) as L_{b}. We prove that L_{b} is regular by constructing an NFA recognizing L_{b}.

We construct NFA recognizing the reverse of the language, L_{b}^{R}; by the exercise problems, L_{b} is regular if and only if L_{b}^{R} is regular.

The NFA reads the input from the least significant bits of x and y, and records the amount of carry at any moment. The transitions are implemented so that the machine only continues if the current digit of y equals to (the least significant bit of) three times the corresponding digit in the x plus the carry. After reading the full strings x and y, if there is any carry left then we reject; otherwise the NFA finishes off by reading the leading ${ }_{=}^{3}$ and accepts.
(c) $\left\{w x w^{R}: w, x \in \Sigma^{+}\right\}$

Solution: Denote the language in the problem 1(c) as L_{c}. We prove that L_{c} is regular by constructing an NFA recognizing L_{c}, which is equivalent to the following language:

$$
L_{c}^{\prime}:=\left\{\sigma x^{\prime} \sigma: x^{\prime} \in \Sigma^{+}, \sigma \in \Sigma\right\} .
$$

For $L_{c}^{\prime} \subseteq L_{c}$, take $w=\sigma$ and $x=x^{\prime}$; for $L_{c} \subseteq L_{c}^{\prime}$, take σ to be the first symbol in w and x^{\prime} to be whatever is left.

The constructed NFA reads the first and the last symbol, and accepts if they match; therefore the NFA correctly recognizes language L_{c}^{\prime}. More formally, create one state q_{σ} for each symbol
$\sigma \in \Sigma$; and add two extra states s and t. Let s be the only starting state and t be the only accepting state. For each symbol σ, add transitions s to q_{σ} and q_{σ} to t on reading σ, and self-loop transition at q_{σ} on reading all symbols.
(d) $\left\{w w^{R} x: w, x \in \Sigma^{+}\right\}$

Solution: Denote the language in the problem 1 (d) as L_{d}. We prove that L_{d} is not regular by constructing a fooling set for L_{d} of infinite size. Without loss of generality we assume that 0 and 1 are in Σ.

Let $F=\left\{01^{i} 0: i\right.$ is an odd integer $\}$. For two distinct prefixes $u=01^{i} 0$ and $v=01^{j} 0$ in F (without loss of generality assuming $i<j$), consider the suffix $z=01^{i} 00$.

- $u z=01^{i} 001^{i} 00$; by taking $w=01^{i} 0$ and $x=0$, this shows that $u z$ is in F.
- $v z=01^{j} 001^{i} 00$. Because j is odd, $w w^{R}$ cannot be of the form $01^{j} 0$; which means the first run of 1 s must lie in w completely. But then there are not enough 1 s in the rest of the word to form w^{R}. Therefore, not matter what x is, word $v z$ cannot be of the form $w w^{R} x$. This shows that $v z$ is not in F.
This implies that F is a fooling set of infinite size, and thus L_{d} is not regular.

[^0]
2. Telling DFAs apart.

Let M_{1} and M_{2} be two DFAs, each with exactly n states. Assume that the languages associated with the two machines are different (that is, $L\left(M_{1}\right) \neq L\left(M_{2}\right)$), there is always some string in the symmetric difference of the two languages.
Prove that there is a string w of length polynomial in n in the symmetric difference of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. What is the best upper bound you can get on the length of w ?

Solution: First we construct a DFA M^{\prime}, described by ($Q^{\prime}, s^{\prime}, A^{\prime}, \Sigma^{\prime}, \delta^{\prime}$), that recognizes the symmetric difference of the two languages $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$, using the product construction. Denote M_{i} by the tuple ($Q_{i}, s_{i}, A_{i}, \Sigma_{i}, \delta_{i}$) for $i \in\{1,2\}$.

- States $Q^{\prime}: Q_{1} \times Q_{2}$ - pairs of states, one from each M_{i}
- Starting state $s^{\prime}:\left(s_{1}, s_{2}\right)$
- Accepting states $A^{\prime}:\left\{\left(r_{1}, r_{2}\right) \in Q^{\prime}:\right.$ either $r_{1} \in A_{1}$ and $r_{2} \notin A_{2}$, or $r_{1} \notin A_{1}$ and $\left.r_{2} \in A_{2}\right\}$
- Alphabet $\Sigma^{\prime}: \Sigma_{1} \cup \Sigma_{2}$
- Transition function $\delta^{\prime}: \delta_{1} \times \delta_{2}$, mapping $\delta^{\prime}\left(\left(q_{1}, q_{2}\right)\right.$, a) to $\left(\delta_{1}\left(q_{1}\right.\right.$, a $), \delta\left(q_{2}\right.$, a $)$ on reading any symbol a $\in \Sigma^{\prime}$

DFA M^{\prime} recognizes the symmetric difference of the two languages $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ and has n^{2} states. Now by problem statement M^{\prime} accepts at least one word. Now any walk from the starting state s^{\prime} to an accepting state in M^{\prime} can be turned into a simple path between the same two endpoints, without ever visiting the same state twice. This shows that there is a word of length at most n^{2} that is accepted by M^{\prime}, and thus in the symmetric difference of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$.

[^1]
[^0]: Rubric: Standard 5-point grading scale (plus deadly-sins and sudden-death rules) for each subproblem, scaled to 2.5 points. (Thus 10 points in total for problem 1.) Maximum 0.5 points if one tries to prove a regular language to be non-regular, or vice versa. Maximum 0.5 points if the fooling set is in fact not fooling.

 Full credit for subproblem (d) if one correctly proves the language to be regular when Σ is unary. This was an oversight.

[^1]: Rubric: Any complete solution with a (justified) polynomial bound receives full credit. Any subquadratic bound receives extra credit.

 Standard 5-point grading scale plus deadly-sins and sudden-death rules.

