- 1. **Regular or not?** Prove or disprove that each of the languages below is regular (or not). Let Σ^+ denote the set of all *nonempty* strings over alphabet Σ ; in other words, $\Sigma^+ = \Sigma \cdot \Sigma^*$. Denote n(w) the integer corresponding to the binary string *w*.
 - (a) $\{3x=y: x, y \in \{0, 1\}^*, n(y) = 3n(x)\}$

Solution: Denote the language in the problem 1(a) as L_a . We prove that L_a is not regular by constructing a fooling set for L_a of infinite size.

Let $F = \{310^i : i \ge 0\}$. For two distinct prefixes $x = 310^i$ and $y = 310^j$ in F, let z be $=110^i$.

- $xz = 310^{i} = 110^{i}$; because $n(110^{i}) = 3n(10^{i})$, we have xz in *F*.
- $yz = 310^j = 110^i$; because $n(110^i) \neq 3n(10^j)$ if $i \neq j$, we have yz not in *F*.

This implies that *F* is a fooling set of infinite size, and thus L_a is not regular.

(b)
$$\left\{ \frac{3x}{-y} : \frac{x}{y} \in \left\{ \frac{0}{0}, \frac{0}{1}, \frac{1}{0}, \frac{1}{1} \right\}^*, n(y) = 3n(x) \right\}$$

Solution: Denote the language in the problem 1(b) as L_b . We prove that L_b is regular by constructing an NFA recognizing L_b .

We construct NFA recognizing the reverse of the language, L_b^R ; by the exercise problems, L_b is regular if and only if L_b^R is regular.

The NFA reads the input from the least significant bits of x and y, and records the amount of carry at any moment. The transitions are implemented so that the machine only continues if the current digit of y equals to (the least significant bit of) three times the corresponding digit in the x plus the carry. After reading the full strings x and y, if there is any carry left then we reject; otherwise the NFA finishes off by reading the leading $\frac{3}{4}$ and accepts.

(c) $\{wxw^R : w, x \in \Sigma^+\}$

Solution: Denote the language in the problem 1(c) as L_c . We prove that L_c is regular by constructing an NFA recognizing L_c , which is equivalent to the following language:

$$L'_{c} \coloneqq \{\sigma x' \sigma : x' \in \Sigma^{+}, \sigma \in \Sigma\}.$$

For $L'_c \subseteq L_c$, take $w = \sigma$ and x = x'; for $L_c \subseteq L'_c$, take σ to be the first symbol in w and x' to be whatever is left.

The constructed NFA reads the first and the last symbol, and accepts if they match; therefore the NFA correctly recognizes language L'_c . More formally, create one state q_σ for each symbol

 $\sigma \in \Sigma$; and add two extra states *s* and *t*. Let *s* be the only starting state and *t* be the only accepting state. For each symbol σ , add transitions *s* to q_{σ} and q_{σ} to *t* on reading σ , and self-loop transition at q_{σ} on reading all symbols.

(d) $\{ww^R x : w, x \in \Sigma^+\}$

Solution: Denote the language in the problem 1(d) as L_d . We prove that L_d is not regular by constructing a fooling set for L_d of infinite size. Without loss of generality we assume that 0 and 1 are in Σ .

Let $F = \{01^i 0 : i \text{ is an odd integer}\}$. For two distinct prefixes $u = 01^i 0$ and $v = 01^j 0$ in F (without loss of generality assuming i < j), consider the suffix $z = 01^i 00$.

- $uz = 01^i 001^i 00$; by taking $w = 01^i 0$ and x = 0, this shows that uz is in F.
- $vz = 01^{j}001^{i}00$. Because *j* is odd, ww^{R} cannot be of the form $01^{j}0$; which means the first run of 1s must lie in *w* completely. But then there are not enough 1s in the rest of the word to form w^{R} . Therefore, not matter what *x* is, word *vz* cannot be of the form $ww^{R}x$. This shows that *vz* is not in *F*.

This implies that *F* is a fooling set of infinite size, and thus L_d is not regular.

Rubric: Standard 5-point grading scale (plus deadly-sins and sudden-death rules) for each subproblem, scaled to 2.5 points. (Thus 10 points in total for problem 1.) Maximum 0.5 points if one tries to prove a regular language to be non-regular, or vice versa. Maximum 0.5 points if the fooling set is in fact not fooling.

Full credit for subproblem (d) if one correctly proves the language to be regular when Σ is unary. This was an oversight.

2. Telling DFAs apart.

Let M_1 and M_2 be two DFAs, each with exactly *n* states. Assume that the languages associated with the two machines are different (that is, $L(M_1) \neq L(M_2)$), there is always some string in the symmetric difference of the two languages.

Prove that there is a string *w* of length polynomial in *n* in the symmetric difference of $L(M_1)$ and $L(M_2)$. What is the best upper bound you can get on the length of *w*?

Solution: First we construct a DFA M', described by $(Q', s', A', \Sigma', \delta')$, that recognizes the symmetric difference of the two languages $L(M_1)$ and $L(M_2)$, using the product construction. Denote M_i by the tuple $(Q_i, s_i, A_i, \Sigma_i, \delta_i)$ for $i \in \{1, 2\}$.

- States $Q': Q_1 \times Q_2$ pairs of states, one from each M_i
- Starting state *s*': (*s*₁,*s*₂)
- Accepting states A': $\{(r_1, r_2) \in Q' : \text{either } r_1 \in A_1 \text{ and } r_2 \notin A_2, \text{ or } r_1 \notin A_1 \text{ and } r_2 \in A_2\}$
- Alphabet Σ' : $\Sigma_1 \cup \Sigma_2$
- Transition function $\delta': \delta_1 \times \delta_2$, mapping $\delta'((q_1, q_2), \mathbf{a})$ to $(\delta_1(q_1, \mathbf{a}), \delta(q_2, \mathbf{a}))$ on reading any symbol $\mathbf{a} \in \Sigma'$

DFA M' recognizes the symmetric difference of the two languages $L(M_1)$ and $L(M_2)$ and has n^2 states. Now by problem statement M' accepts at least one word. Now any walk from the starting state s' to an accepting state in M' can be turned into a simple path between the same two endpoints, without ever visiting the same state twice. This shows that there is a word of length at most n^2 that is accepted by M', and thus in the symmetric difference of $L(M_1)$ and $L(M_2)$.

Rubric: Any complete solution with a (justified) polynomial bound receives full credit. Any *subquadratic* bound receives extra credit.

Standard 5-point grading scale plus deadly-sins and sudden-death rules.