
COSC 39 Homework 1 solutions Winter 2021

1. Really!? Prove (formally) that the language of the regular expression 0∗1(10∗1 + 01∗0)∗10∗

corresponding precisely to the set of positive integers divisible by 3, represented in binary (potentially
with leading 0s).

Solution: Let L denote the language containing all binary integers divisible by 3. Construct the
following DFA M that recognizes language L, as illustrated in the figure: Denote the states of M
be {q0, q1, q2} as labelled, define δ(q j ,0) = q2 j mod 3 and δ(q j ,1) = q(2 j+1)mod 3 for any j ∈ {0,1,2}
Denote δ∗ as the extended transition function of M . State q0 is both the starting and (the only)
accepting state of M .

To prove that DFA M indeed recognizes L, we will show the following statement by induction on
the length of the strings:

An arbitrary binary string w satisfies δ∗(q0, w) = qi if and only if n(w) equals i modulo 3,
where n(w) is the integer represented by w.

Let w be an arbitrary binary string.

• If w= ε, n(w) = 0 and the machine M correctly halts at q0 after reading w.

• If w = x · 0 for some string x shorter than w, by induction δ∗(q0, x) = q j if and only if n(x)
equals j modulo 3. Now n(w) is equal to 2n(x); one can readily verify that δ∗(q0, w) ends at
qn(w)mod 3 because reading a 0 from state q j results in

δ(q j ,0) = q2 j mod 3 = q2n(x)mod 3 = qn(w)mod 3.

• If w = x · 1 for some string x shorter than w, by induction δ∗(q0, x) = q j if and only if n(x)
equals j modulo 3. Now n(w) is equal to 2n(x) + 1; one can readily verify that δ∗(q0, w) ends
at qn(w)mod 3 because reading a 1 from state q j results in

δ(q j ,1) = q(2 j+1)mod 3 = q(2n(x)+1)mod 3 = qn(w)mod 3.

Now we prove the following statements by induction on the length of the strings:

• Every positive binary integer equals to 0 mod 3 has the expression 0∗1(10∗1+ 01∗0)∗10∗

• Every positive binary integer equals to 1 mod 3 has the expression 0∗1(10∗1+ 01∗0)∗

• Every positive binary integer equals to 2 mod 3 has the expression 0∗1(10∗1+ 01∗0)∗01∗

Let w be an arbitrary binary string, representing a binary positive integer (possibly with leading 0s);
in particular, w must be nonempty and contains at least a 1.

• Case n(w) = 0 mod 3: By the DFA M constructed, δ∗(q0, w) = q0 holds.

– If w = x ·0, string x must be associated with another positive integer. Also, δ∗(q0, x) = q0
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗10∗. Appending 0,
string w has the expression

0∗1(10∗1+ 01∗0)∗10∗0 ⊆ 0∗1(10∗1+ 01∗0)∗10∗

so the induction statement holds for w.

COSC 39 Homework 1 solutions Winter 2021

– If w= x · 1, if x contains only 0s then w has the expression 0∗1 and the statement holds.
Otherwise, string x must be associated with another positive integer. Also, δ∗(q0, x) = q1
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗. Appending 1,
string w has the expression

0∗1(10∗1+ 01∗0)∗1 ⊆ 0∗1(10∗1+ 01∗0)∗10∗

so the induction statement holds for w.

• Case n(w) = 1 mod 3: By the DFA M constructed, δ∗(q0, w) = q1 holds.

– If w = x · 0, string x must be associated with another positive integer. Also, δ∗(q0, x) = q2
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗01∗. Appending 0,
string w has the expression

0∗1(10∗1+ 01∗0)∗01∗0 ⊆ 0∗1(10∗1+ 01∗0)∗

so the induction statement holds for w.
– If w= x · 1, if x contains only 0s then w has the expression 0∗1 and the statement holds.

Otherwise, string x must be associated with another positive integer. Also, δ∗(q0, x) = q0
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗10∗. Appending 1,
string w has the expression

0∗1(10∗1+ 01∗0)∗10∗1 ⊆ 0∗1(10∗1+ 01∗0)∗

so the induction statement holds for w.

• Case n(w) = 2 mod 3: By the DFA M constructed, δ∗(q0, w) = q2 holds.

– If w = x · 0, string x must be associated with another positive integer. Also, δ∗(q0, x) = q1
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗. Appending 0,
string w has the expression

0∗1(10∗1+ 01∗0)∗0 ⊆ 0∗1(10∗1+ 01∗0)∗01∗

so the induction statement holds for w.
– If w= x · 1, if x contains only 0s then w has the expression 0∗1 and the statement holds.

Otherwise, string x must be associated with another positive integer. Also, δ∗(q0, x) = q2
holds. By induction statements, x has the expression 0∗1(10∗1+ 01∗0)∗01∗. Appending 1,
string w has the expression

0∗1(10∗1+ 01∗0)∗01∗1 ⊆ 0∗1(10∗1+ 01∗0)∗01∗

so the induction statement holds for w.

In all six cases, the induction statements hold for any arbitrary binary string w; this concludes
the induction proof. As a direct consequence, the set of positive binary integers divisible by 3
corresponds exactly to the regular expression 0∗1(10∗1+ 01∗0)∗10∗. (The forward inclusion is
proved by the above induction, and the backward inclusion can be readily verified by running
the machine on an arbitrary string of the said expression: the 0∗1 part takes us to state q1, any
string in (10∗1+ 01∗0)∗ makes the DFA stays at q1, and the final 10∗ takes us back to state q0
and thus the DFA accepts.) �

COSC 39 Homework 1 solutions Winter 2021

Rubric: Some of you might attempt to prove the equivalence directly between positive binary
integers and the (strengthened) regular expressions, which is also valid. The difficult direction is
always to prove that the strings can be represented by the said regular expressions. Because we
did the proof that the language DFA M is precisely the set of all binary integers divisible by 3
during the string induction lecture, you can use the fact directly in your answer and no points will
be taken from your proof attempt (if you included one).

Standard 5-point grading scale. Maximum 3 point if no justification whatsoever for the “regular
expression→ multiples of 3” direction.

• 5 means the answer is perfect — the solution is correct, concise, and convincing.
• 4 means the answer is basically correct, modulo some small minor issues.
• 3 means the answer is mostly correct, but there are some missing details or errors that

does not affect the overall argument.
• 2 means the answer is heading in the right direction, but there are major gaps in the

presentation before making the solution rigorous.
• 1 means the answer is incorrect, despite an honest attempt. The solution successfully

convey the (while incorrect) ideas to the reader/grader.
• 0 means the answer is either missing, for the wrong question, or not readable/parsable.

Proofs using backward induction and proof by examples will receive an automatic zero. Proofs
containing undefined variables, unparsable sentences and proof sketches will trigger sudden-
death; you will receive a zero unless the proof is otherwise perfect. It is up to the graders to
decide if they can understand your proof or not.

COSC 39 Homework 1 solutions Winter 2021

2. Erasing digit sequence. Let the input be a string of digits from 0 to 9 (in other words, the alphabet
set Σ is {0, . . . ,9}). The ERASE function is defined as follows:

ERASE(w):
input: digit string w
digit string r ← ε
while w is not empty:

d ← first digit of w
remove the first digit of w
r ← r · d 〈〈append d after r〉〉
if there are at least d digits left in w:

remove d digits from w
else:

return fail
return r

A digit string w is erasable if ERASE(w) successfully returns another digit string. For example, string
w= 314159265358979323846264338327950288419 is erasable because

ERASE(w) = 314159265358979323846264338327950288419= 355243251.

Construct DFAs that recognize the following languages.

(a)
�

w ∈ Σ∗ : w is erasable
	

Solution: First let’s construct an eraser gadget recognizing the language

L0 =
�

d ·Σd ∈ Σ∗ : d is a digit from 0 to 9
	

.

Define a fuse of length d to be a directed path containing nodes qd , . . . , q0 and d edges qi → qi−1
for each i ∈ 1, . . . , d. We say the fuse starts from state qd and ends at q0. One should think of
the nodes as states and directed edges as transitions. We associate each transition with all the
digits in Σ; in other words, δ(qi , a) = qi−1 for any digits i and a.

Construct the eraser gadget G(s , t) by taking a fuse of length d for each digit d, and merge
all the ends together into a single state t. Add an extra starting state s and create transitions
from s to the head of length-d fuse on reading digit d for any digit d.

The gadget G(s, t) can be viewed as a DFA if we set t to be an accepting state and add a
failed state f and the corresponding transitions δ(t, a) = f and δ(f , a) = f for any digit a.
Such DFA recognize the language L0: Let w be an arbitrary digit sequence. On reading the
first digit d, G(s, t) moves to the head of the length-d fuse. The machine reads d more digits
using the length-d fuse and accepts if we are at the end of the string. If there are more or less
than d digits in w following the initial digit then the machine correctly rejects.

Now we use the eraser gadget G(s, t) to build DFA M1 recognizing the language in the
statement: merge the two states s and t into a single state. DFA M1 iteratively reads chunk
of digits in L0 (each of the form d ·Σd for some digit d); M1 accepts w if and only if string w
can be decomposed into (possibly zero) concatenation of such chunks, which is equivalent to
saying that w is erasable. �

(b)
�

w ∈ Σ∗ : both w and ERASE(w) are erasable
	

Solution: We use the fuses, the eraser gadget, and DFA M1 from the previous question to
build DFA M2 that recognizes the language in the statement.

Let M1 be the DFA constructed in problem 2(a). For each digit d, replace the transition
(directed edge) from s to the head of the length-d fuse hd by inserting another length-d fuse,
identifying the end of the inserted fuse with hd , and adding a transition from s to the head of

COSC 39 Homework 1 solutions Winter 2021

the inserted fuse with edge label d. Replace each of the transitions in the original length-d
fuse with an eraser gadget. The newly constructed machine M2 is a DFA with the same starting
and ending state s as M1, and each state has exactly 10 outgoing transitions, each corresponds
to a different digit in Σ.

DFA M2 iteratively reads chunk of digits of the form d ·Σd · Ld
0 . DFA M2 accepts w if and

only if string w can be decomposed into (possibly zero) concatenation of chunks of strings
in d ·Σd · Ld

0 (corresponding to ERASE(w) being erasable), where each chunk can be further
decomposed into (possibly zero) concatenation of chunks of the form d ·Σd (corresponding to
w being erasable). �

Note. There are more efficient ways to construct DFAs recognizing the same languages, with
much fewer states (like many of you did in your submissions). However, I hope you see the
benefit in designing modules/gadgets separately and reusing them again and again throughout
the construction. This is equivalent to using functions and libraries in your program. While we
are now working with extremely low-level programming languages, it is important to remember
that our eventual goal is to model arbitrary computation using one universal model; trusting
that basic functions can be implemented and thus using them freely in your high-level algorithm
design is something we want you to be comfortable with.

Rubric: No formal proofs for the correctness are required, but your must include a brief
explanation of why your DFA works. Maximum 3 points if the machine constructed is an NFA
instead (say with multiple transitions from a state with the same digit label).

Standard 5-point grading scale for each subproblem plus deadly-sins and sudden-death
rules. Constructions without English explanations receive an automatic zero.

