
COSC 39 Homework 0 solutions Winter 2021

1. Grading homework problems. One of the homework problems asks:

A complete binary tree is a rooted binary tree where every node is either a leaf (with no
children), or an internal node where both its children are presented.

Prove that any complete binary tree has more leaves than the internal nodes.

Give feedback to all the answers from the students by pointing out any false statements, logic
flaws (where a true statement does not follow immediately from the previous true statement), and
sentences that are not even wrong / not parsable.

(a) Ananya: Let’s prove the statement by induction on the number of nodes in the tree. Given
a complete binary tree T with n nodes, consider all the possible ways to add nodes to the
tree. If we add two leaves to the same leaf node x in T , x becomes an internal node. By
induction hypothesis T has more leaves than the internal nodes, and while we turn leaf x into
an internal node, we also added two new leaves and thus the difference between number of
leaves and internal nodes remains unchanged. Thus there are more leaves than the internals
nodes.

Solution: The obvious problem that the base case is missing. More problematically, Ananya
attempts to prove induction backwards by adding things onto the existing structure.

It is not true that any complete binary tree with n+ 2 nodes can be obtained from adding
two leaves to a given n-node complete binary tree T . One might say, “Oh, in that case we
should choose another tree T .” Unfortunately, tree T is given to us, and we have no control in
what it looks like. It is a better (and less confusing) idea to prove an induction statement by
starting with an arbitrary object from the statement (say, an arbitrary complete binary tree T).

Better answer from Ananya: Let’s prove the original statement by induction on the number of
nodes in the tree. Let T be an arbitrary complete binary tree with n nodes. If T has exactly
one leaf and no internal nodes, then the statement holds true. Otherwise, suppose T has at
least one internal node. Pick an internal node x that is farthest away from the root of T . In
this case, both children of x must be leaves, otherwise we should have chosen one of the
children of x as x itself instead.
Now remove the two children of x and call the new tree T ′. Since T ′ has fewer nodes than
T , by induction hypothesis T ′ has more leaves than its internal nodes. By the above claim
both children of x are leaves in T , and by removing them we turn x into a leaf (in T ′); the
difference between number of leaves and internal nodes remains unchanged from T to T ′.
This proves the statement.

�

(b) Brittany: T has n nodes. If r is a leaf then we are done. If r is an internal node, remove r from
T and now we have T1 and T2. Let `i be the number of leaves and mi be the number of internal
nodes in Ti . By induction, we have `i > mi and `i +mi = ni for each i, and n1 + n2 = n− 1.
Now adding r back, the leaves in Ti are still leaves and the internal nodes in Ti are still internal
nodes, thus `= `1 + `2 ≥ (m1 + 1) + (m2 + 1) by the inequalities above. Because r itself is an
internal node, one has m= m1 +m2 + 1, and thus ` > m.

Solution: The major mistake from Brittany’s answer is that some variables are undefined.
This ranges from variable r, whose meaning (the root of T) is central to the correctness of

the proof, to variables like T1, T2, n1, n2, `, and m; we can mostly infer their meanings, but
the proof became difficult to read without defining the variables explicitly.

COSC 39 Homework 0 solutions Winter 2021

Better answer from Brittany: Let’s prove the statement by induction on the number of nodes
in the tree. Let T0 be an arbitrary complete binary tree with n0 nodes. Denote the root
of T0 as r. If r is a leaf then there are no internal nodes in T0 and we are done. If r is an
internal node, remove r from T to obtain two complete binary trees T1 and T2. Let ni be the
number of nodes, `i be the number of leaves, and mi be the number of internal nodes in Ti

respectively, for each i ∈ {0,1, 2}. Observe that ni = `i +mi for each i. Also,

n0 = n1 + n2 + 1, m0 = m1 +m2 + 1, l0 = l1 + l2

hold because T0 has all the nodes in T1 and T2, plus r which is an internal node. By induction
hypothesis we have `i ≥ mi + 1 for each i. Now

`= `1 + `2 ≥ (m1 + 1) + (m2 + 1) = m+ 1,

which proves the statement.

�

(c) Charles: Charge everyone to their parent. Now every leaf will have a −1 and every internal
node will have a +1, except for the root which has +2. This means that there are more leaves
in the tree than the internal nodes.

Solution: The major flaw is that Charles’ proof is sketchy and potentially unparsable.
The charge operation is never formally defined, and it is unclear what “everyone” is referring

to. Because the charge operation was undefined, the meaning of −1, +1, and +2 is completely
unclear, as well as their connection to the main statement about leaves and internal nodes.

Better answer from Charles: Let T be an arbitrary complete binary tree. Set the charge of
each node in T to be zero. Now for each node x (besides the root), subtract one-unit of
charge from x and send it to the parent of x . After the charges are sent, every leaf has a −1
charge because the leaves have no children. Every internal node is left with a +1 charge
because each internal node of a complete binary tree T has exactly two children and one
parent. The root of T has +2 charges.
As the total number of charges in T remain zero, by pigeonhole principle there are more
leaves than the internal nodes in T .

�

(d) Daiwen: Look at the picture. Removing the two red nodes will decrease the number of leaves
by two, but at the same time turning their parent into a leaf, thus keeping the difference
between the counts unchanged. Continue in the same fashion until all the nodes except root
have been removed. Now the root is a leaf and there are no internal nodes, so the statement
is proved.

Solution: Daiwen’s answer suffers from the common mistake to prove by examples.
To provide a formal proof, it is not sufficient to argue that your method works for a specific

example; it must be shown that the method works for an arbitrary example. Also, in general
sentence like “continue in the same fashion...” suggests that there is an induction/recursion
hiding beneath, and one should spell it out explicitly by stating the induction hypothesis.

A better answer from Daiwen looks similar to the one from Ananya.

�

COSC 39 Homework 0 solutions Winter 2021

Note. The mistake made by Ananya is pretty common among students who are still learning
induction. Another common mistake as a beginner is to focus on the format of an induction
proof, by transcribing the text “n = 1”, “n = k” and “n = k + 1” mindlessly onto the paper. It
is more important to master the essence of induction proof: to reduce the current problem to
the exact same problem one-size (or a-few-sizes) smaller. (Not to mention that the standard
frameworks taught in many textbooks are confusing at best, and cultivate misleading intuition
about inductions (or sometimes being outright wrong) at worst. The induction note by Erickson
is a good resource to learn about better habits in writing induction proofs.

Undefined variables are the enemy of proof writers. Never, never, never write down a
symbol/object without definition. On the other extreme, some people never use a symbol in
their proofs; instead, they use pronoun when referring to an object. Using pronouns is an art
that students need to pay extra caution to; improper uses of pronouns lead to ambiguity that
sometimes changes the meaning of the sentence. We will point them out when we see one.

Charles’s answer (and to some extent, Daiwen’s) is what we called a proof sketch. You might
hear from time to time that experts talk with each other in such fashion. Proof sketch provides a
guideline for the experience readers to construct a proof on their own; however, proof sketches
are not replacements for proofs. If you write proof sketches as answers, you are risking yourself
to be misunderstood by the reader/grader (and rightfully so). It is crucial to think about the
audience of your writings, oral presentations, and program comments. For example, I might
write the official answers differently for a graduate-level course and consider Charles’ answer to
be correct.

Rubric: -1 point for missing the bold-text error from each student’s answer.
For future homework problems, proofs using backward induction and proof by examples will

receive an automatic zero. Proofs containing undefined variables, unparsable sentences and
proof sketches will trigger sudden-death; you will receive a zero unless the proof is otherwise
perfect. It is up to the graders to decide if they can understand your proof or not.

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf

COSC 39 Homework 0 solutions Winter 2021

2. Neighborhoods in graphs.

(a) Describe an algorithm to decide if the following is true: for any vertex t in V , there is an
integer k such that the k-th neighborhood of s contains t.

Solution: The problem is equivalent to asking whether the input graph is connected: there is
a path from s to any vertex t in G if and only if the distance from s to t is finite, and thus t is
contained in some k-th neighborhood of s.

Run an arbitrary graph traversal algorithm (say DFS) starting from s, and return yes if the
graph is connected. �

?(b) Describe an algorithm to decide if the following is true: there is an integer k, such that for any
vertex t in V the k-th neighborhood of s contains t.

Solution: Construct a (directed) supergraph H where the nodes of H are all possible vertex
subsets of G. Create a directed edge from node S to node N(S) in H for any vertex subset S.
Now a directed path from {s} to V exists in H if and only if there is a k-th neighborhood of s
containing every single vertex in G.

Run an arbitrary graph traversal algorithm (say DFS) in H and check if node V is reachable
from {s}. Return yes if so and no otherwise. �

Solution (alternative): The problem is equivalent to asking whether the input graph is not
bipartite.

First, check if the graph contains exactly one single vertex s; if so, return yes. Second, check
if the graph is connected as in (a); if not, return no. Run the two-coloring algorithm starting
from s and check if the graph is two-colorable. Return no if so and yes otherwise.

Proof sketch: To prove that the algorithm is correct, one has to argue that (1) if there is an
odd cycle in G then eventually all vertices in the odd cycle will be in some k-th neighborhood
of s simultaneously; from there all vertices will be in the (k+n)-th neighborhood after another
n steps, where n is the number of vertices; and (2) if there are no odd cycles then the graph is
bipartite (two-colorable), and any two vertices with different colors cannot show up in the
same k-th neighborhood for any k (unless G has exactly one single vertex, in which case the
answer is trivially yes). �

Rubric: Standard 5-point grading scale. It is not required to prove the algorithms are correct.
• 5 means the answer is perfect — the solution is correct, concise, and convincing.
• 4 means the answer is basically correct, modulo some small minor issues.
• 3 means the answer is mostly correct, but there are some missing details or errors that

does not affect the overall argument.
• 2 means the answer is heading in the right direction, but there are major gaps in the

presentation before making the solution rigorous.
• 1 means the answer is incorrect, despite an honest attempt. The solution successfully

convey the (while incorrect) ideas to the reader/grader.
• 0 means the answer is either missing, for the wrong question, or not readable/parsable.

COSC 39 Homework 0 solutions Winter 2021

3. Balanced parentheses.

(a) Prove by induction that removing any pair of consecutive symbols [] (if exists) from any
balanced parentheses results in another balanced parentheses.

Solution: We prove the statement by induction on the length of the strings. Let z be an
arbitrary balanced parentheses. We separate into three possibilities based on the recursive
definition of balanced parentheses.

• If z = ε, there are no pairs [] in z and thus the statement is vacuously true.
• If z = [w] for some balanced parenthesis w, either [] is chosen completely from w, or

[] uses the leftmost [in z. In the first case, because w is shorter than z, the induction
hypothesis impiles that one can remove the pair [] safely from w. In the second case, w
must be ε because no nonempty balanced parentheses has its leftmost symbol to be] by
the recursive construction. This implies that z = [], and we can safely remove the only
pair [] and the result is another balanced parentheses.

• If z = x y for some nonempty balanced parentheses x and y , there are two possible cases:
either (1) [] lies completely inside x or y , or (2) [] uses symbols from both x and y . In
the first case, because both x and y are shorter than z, the induction hypothesis applies
and one can safely remove the pair [] from either x or y . The second case cannot happen
because in such case the leftmost symbol in y must be], which is impossible by the
recursive construction. �

?(b) Prove by induction that removing any pair of consecutive symbols][(if exists) from any
balanced parentheses results in another balanced parentheses.

Solution: We prove the statement by induction on the length of the strings. Let z be an
arbitrary balanced parentheses. We separate into three possibilities based on the recursive
definition of balanced parentheses.

• If z = ε, there are no consecutive symbols][in z and thus the statement is vacuously
true.

• If z = [w] for some balanced parenthesis w, the symbols][must be chosen completely
from w. Because w is shorter than z, the induction hypothesis implies that one can remove
][safely from w.

• If z = x y for some nonempty balanced parentheses x and y , there are two possible cases:
either (1)][lies completely inside x or y , or (2)][uses symbols from both x and y . In
the first case, because both x and y are shorter than z, the induction hypothesis applies
and one can safely remove the pair][from either x or y . To prove the second case, one
has to prove one additional claim:

Any nonempty balanced parentheses can be represented as either u[v] (or [u]v)
for some balanced parentheses u and v.

Assuming the claim is true, we can finish the proof like this: since][uses symbols from
both x and y, the rightmost symbol of x is] and the leftmost symbol of y is [. Write
x = u[v] and y = [u′]v′ for some balanced parentheses u, v, u′ and v′ using the claim,
we have z = u[v][u′]v′. Removing the pair][gives us another balanced parentheses
u[vu′]v′. This concludes the proof to the main statement.

To prove the claim, it is sufficient for us to prove the case for u[v]; the case for [u]v can
be proved similarly. We again use induction on the length of the strings. Let z be an arbitrary
nonempty balanced parentheses (and thus z 6= ε). Again we consider the two possible cases.

• If z = [w] for some balanced parenthesis w, set u= ε and v = w turns z into u[v].
• If z = x y for some nonempty balanced parentheses x and y, by induction hypothesis

y = u′[v′] for some balanced parentheses u′ and v′; setting u= xu′ and v = v′ turns z
into u[v] and thus proving the claim. �

COSC 39 Homework 0 solutions Winter 2021

Note. The claim in last sentence in the proof to Problem 3a (that no balanced parentheses has
its leftmost symbol to be]), if being completely rigorous, requires yet another induction proof.
The graders reserve the right to decide what facts about strings are basic and requires no proofs.

Rubric: Standard 5-point grading scale.

