1. True, false, or nonsense. For each of the subproblem below, read the statement very carefully, and decide if the statement is true, false, or nonsense. A statement is nonsense if the sentence cannot be parsed, either because there is a type mismatch, or the objects are not well-defined. You don't need to justify your answers.
Each correct answer gets 1 point; each incorrect answer gets -0.5 points; not answering the subproblem and leaving it blank gets 0 points. (Which means, guessing the answers uniformly at random receives 0 points on average. Yes, the total score can be negative.)

Let L and L^{\prime} be two arbitrary languages.
(1) Every regular language has infinite size.

Solution: False. The empty language \varnothing is regular and has size 0 .
(2) Every string in a regular language has finite length.

Solution: True. By definition, every string in every language has finite length.
(3) If every string in L is accepted by some DFA M, then L is regular.

Solution: False. Any single string is accepted by some DFA. But the union of such strings might not be accepted by the same DFA.
(4) If every string in L is regular, then some DFA M exists that accepts L.

Solution: Nonsense. Strings cannot be regular.
(5) If some DFA M exists that rejects all strings in L, then L is regular.

Solution: False. There is a single-state DFA that rejects all strings, and thus rejecting all strings in any language L.
(6) If L is regular, then some DFA M exists that rejects all strings in L.

Solution: True. Consider the one-state DFA that rejects all strings.
(7) If $L \cup L^{\prime}$ is regular, then both L and L^{\prime} are regular.

Solution: False. Consider a non-regular language L and its complement $\Sigma^{*} \backslash L$. Their union Σ^{*} is regular.
(8) If L^{*} is regular, then L is also regular.

Solution: False. Consider any non-regular language over $\{0,1\}$ together with two extra strings 0 and 1 . L^{*} is equal to Σ^{*} thus regular.
(9) If both L and L^{\prime} are regular, then $L \backslash L^{\prime}$ is also regular.

Solution: True. Regular languages are closed under complement and intersection, and $L \backslash L^{\prime}=$ $L \cap\left(\Sigma^{*} \backslash L^{\prime}\right)$.
(10) If $L \subseteq L^{\prime}$ and L is not regular, then L^{\prime} is also not regular.

Solution: False. Take $L^{\prime}=\Sigma^{*}$.
(11) Any language accepted by an NFA has a regular expression.

Solution: True. First turn the NFA into an DFA using subset construction, then into a regular expression through the state-elimination algorithm.
(12) Regular expressions are regular.

Solution: Nonsense. A regular expression is not a language, thus cannot be regular. It is true that regular expression themselves are strings over alphabet $\Sigma \cup\{(),,+, *\}$; but then it is the set of regular expressions that is a language, which is not regular (because checking if the parentheses are balanced is not).
(13) Any NFA can be turned into an equivalent DFA recognizing L.

Solution: False. Not any NFA, unless its language is L.
(14) Any regular expression of L can be turned into an equivalent NFA.

Solution: True. Union, concatenation, and Kleene star are all regular-preserving operations and thus can be implemented using NFAs.
(15) Any language has a fooling set.

Solution: True. Not necessarily infinite in size.
(16) If L has a finite fooling set, then L is regular.

Solution: False. Any finite subset of a fooling set is also a fooling set.
(17) $\left\{0^{i} 1^{j}:|i-j| \leq 39\right\}$ is regular.

Solution: False. $\left\{0^{40 i}: i \geq 0\right\}$ is an infinite-size fooling set for the language.
(18) $\left\{0^{i} 1^{j}:|i-j| \geq 39\right\}$ is regular.

Solution: False. $\left\{0^{40 i}: i \geq 0\right\}$ is an infinite-size fooling set for the language.
(19) If L is recognized by an n-state DFA, then L^{*} is recognized by an $(n+2)$-state NFA.

Solution: True. Standard construction.
(20) If L is recognized by an n-state NFA, then $\Sigma^{*} \backslash L$ is recognized by an n-state NFA.

Solution: False. Exchanging accepting and non-accepting states does not always alter the language recognized by an NFA to its complement.

Rubric: Each correct answer gets 1 point; each incorrect answer gets -0.5 points; leaving the answer blank gets 0 points. The total score can be negative.
2. Decide if the following languages are regular or not, and justify your answers. Assume that $\Sigma=\{0,1\}$.
(a) $\left\{x w w y: w, x, y \in \Sigma^{+}\right\}$

Solution: The language is regular. There are only finitely many strings not in the language; by the fact that any language of finite size is regular and regularity is preserved under complement, the result follows.

We claim that any string of length at least 6 is in the language. For an arbitrary string z of length at least 6 , write z as $a z^{\prime} b$ where both a and b are a single symbol in Σ. Now z^{\prime} has length at least 4.

- First, there are no consecutive 00 or 11 in z^{\prime}; otherwise we can take $w w$ to be the pair of consecutive symbols and $x(y)$ to be the prefix (suffix) left in z, respectively.
- Now z^{\prime} must be altered between 0 s and 1 s . However, since z^{\prime} has length at least 4, there must be an occurrence of 0101 or 1010 . In this case we can take w to be 01 or 10 and x, y to be the rest.
(b) $\left\{w x y w: w, x, y \in \Sigma^{+}\right\}$

Solution: The language is not regular. We construct a fooling set of infinite size for the language. Let $F=\left\{10^{i}: i \geq 0\right\}$. For an arbitrary pair of distinct prefixes in F, say $u=10^{i}$ and $v=10^{j}$ ($j<i$ without loss of generality), consider the suffix $z=1110^{i}$.

- $u z=10^{i} 1110^{i}$; by taking $w=10^{i}, x=1$ and $y=1$, this shows that $u z$ is in F.
- $v z=10^{j} 1110^{i}$. Because $v z$ starts with 1 , any choice of w must start with 1 as well. Now because $j<i$, any w starting with 1 as the suffix must contain the whole 0^{i} in the end, which there are no matching prefixes with the same number of 0 s . This shows that $v z$ is not in F.

This implies that F is a fooling set of infinite size.

Rubric: Standard 5-point grading scale for each subproblem. Maximum 1 point if one tries to prove a regular language to be non-regular, or vice versa. Maximum 1 point if the fooling set is in fact not fooling.
3. Let L be a regular language. Define the stutter function on any string as follows:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon ; \\ \operatorname{aa} \cdot \operatorname{stutter}(x) & \text { if } w=\mathrm{a} \cdot x \text { for some } \mathrm{a} \in \Sigma \text { and } x \in \Sigma^{*} .\end{cases}
$$

Construct an NFA recognizing the following language.

$$
\operatorname{destutter}(L):=\left\{w \in \Sigma^{*}: \operatorname{stutter}(w) \in L\right\} .
$$

Solution: Let M be a DFA recognizing L, described by the tuple (Σ, Q, s, A, δ). Construct an NFA $N=\left(\Sigma, Q, s, A, \delta^{\prime}\right)$ recognizing destutter (L) by modifying M as follows:

- Alphabet Σ, set of states Q, starting state s, accepting states A all stay the same.
- Define new transition function δ^{\prime} as

$$
\delta^{\prime}(q, a):=\delta(\delta(q, a), a)
$$

We prove that $\delta^{*}(q, \operatorname{stutter}(w))=\left(\delta^{\prime}\right)^{*}(q, w)$ for any state q and any string w by induction of the length of w. Let w be an arbitrary string in Σ^{*}.

- If $w=\varepsilon$,

$$
\delta^{*}(q, \operatorname{stutter}(w))=\delta^{*}(q, \varepsilon)=q=\left(\delta^{\prime}\right)^{*}(q, w)
$$

- If $w=\mathrm{ax}$ for some symbol a and string x, by induction and the recursive definition of the stutter function,

$$
\begin{aligned}
& \delta^{*}(q, \operatorname{stutter}(w)) \\
= & \delta^{*}(q, \text { aa } \cdot \operatorname{stutter}(x)) \\
= & \delta^{*}(\delta(\delta(q, \mathrm{a}), \mathrm{a}), \operatorname{stutter}(x)) \\
= & \delta^{*}\left(\delta^{\prime}(q, \mathrm{a}), \operatorname{stutter}(x)\right) \\
= & \left(\delta^{\prime}\right)^{*}\left(\delta^{\prime}(q, \mathrm{a}), x\right) \\
= & \left(\delta^{\prime}\right)^{*}(q, w) .
\end{aligned}
$$

Now the statement is proved by induction, which implies w is accepted by N if and only if $\operatorname{stutter}(w)$ is accepted by M. Therefore NFA N correctly recognizes destutter (L).

> Rubric: Standard 5-point grading scale, scaled to 10 points. Maximum 4 points if the NFA constructed does not actually recognize destutter (L).
4. Let N be an NFA with n states. Assume that N does not accept every string (that is, $L(N) \neq \Sigma^{*}$). Prove that there is a string rejected by N of length at most 2^{n}.

Solution: Construct an equivalent DFA M accepting the same language as the given NFA N by the subset construction. DFA M has 2^{n} states.

By assumption, there is a string w rejected by N and thus by M. Because M is deterministic, there is a unique walk in M from the starting state s to a rejecting state q associated with w. This implies that q is reachable from s in M, which implies there is a path from s to q in M of length at most the number of states in M, which is 2^{n}. The concatenation of symbols associated with the transition edges on such path is another word w^{\prime} rejected by M (and thus by N as well).

Rubric: Standard 5-point grading scale, scaled to 10 points. Maximum 2 points if the idea of subset construction is missing. Maximum 4 points if the idea of finding a simple path between the two endpoints of the walk in the DFA is missing.

