
COSC 30 (Spring 2025) Worksheet Apr 28

• You know the drill now: Find students around you to form a small group; use all resources
to help to solve the problems; discuss your idea with other group member and write down
your own solutions; raise your hand and pull the course staffs to help; submit your writeup
through Gradescope in 24 hours.

Our topic for this working session is undecidable problems.

Unlike the fooling set construction for regular languages, our strategy to show that certain
problems cannot be computed by any Turing machines is by proof of contradiction: Assume
that such magical machine exists (along with rainbows and unicorns), we use such machine to
either derive a contradiction by feeding its source code back to itself (maybe with some slight
modifications), or to solve other existing problems that we already know are undecidable. (The
second approach is called a reduction, which we will study more in depth in the coming weeks.)

One consequence of the existence of undecidable problems is that it is not always safe to
write “if some program exhibits a specific behavior, then ...” in your pseudocode, because you
might not have a Turing machine checking that behavior.

Small tip: A Turing machine M decides a language L if M halts and always output the right
answer. (We say L is decided by the machine M . A language is undecidable if there are no
Turing machine that computes that language.) It is important to demostrate that your machine
halts on every input possible if you claim the machine solves a problem.

Example. Prove that there is no Turing machine that decides the language

HALTITSELF :=
¦

〈M〉 | M is a Turing machine that halts on input 〈M〉
©

.

Solution: Assume for contradiction that some Turing machine MH decides HALTITSELF. Construct
a wrapper function INFLOOP around MH : Given an input 〈M〉, INFLOOP feed the input to MH .

• If MH accepts, then INFLOOP goes into an infinite loop.

• If MH rejects, then INFLOOP accepts.

To derive a contradiction, we feed the source code 〈INFLOOP〉 as an input to INFLOOP itself.
We consider the following two cases.

• If INFLOOP accepts 〈INFLOOP〉, then MH must have rejected 〈INFLOOP〉, which implies that
INFLOOP does not halt on input 〈INFLOOP〉 by definition that MH decides HALTITSELF. This
is a contradiction.

• If INFLOOP does not halt on input 〈INFLOOP〉, then MH must have accepted 〈INFLOOP〉,
which implies that INFLOOP halts on input 〈INFLOOP〉 by definition that MH decides HALTIT-
SELF. This is also a contradiction.

Consequently, no MH can exist that decides HALTITSELF.



COSC 30 (Spring 2025) Worksheet Apr 28

Prove that all following languages are undecidable.

1. Prove that there is no Turing machine that decides the language

NOTACCEPTITSELF :=
¦

〈M〉 | M is a Turing machine which does not accept 〈M〉
©

.

2. Prove that there is no Turing machine that decides the language

ACCEPT :=
¦

〈M , w〉 | M is a Turing machine and w ∈ L(M)
©

.

To think about later: (No submissions needed)

3. Prove that there is no Turing machine that decides the language

ACCEPTITSELF :=
¦

〈M〉 | M is a Turing machine which accepts 〈M〉
©

.

4. Prove that there is no Turing machine that decides the language

NEVERACCEPT :=
¦

〈M〉 | Turing machine M never accepts any w
©

.

Conceptual question: Wait. Assuming we are Turing machines, trying to write a proof for the
above practice problems. By the Curry–Howard correspondence, proofs are programs. As we
write the solution, we are writing a program checking the correctness of the problem statement.
But didn’t we write the sentence “if machine M rejects input 〈M〉 ...” several times?

https://en.wikipedia.org/wiki/Curry-Howard_correspondence

