
U.C. Berkeley — CS174: Randomized Algorithms Lecture Note 12
Professor Luca Trevisan April 29, 2003

Fingerprints, Polynomials, and Pattern Matching

Notes by Alistair Sinclair

1 Example 1: Checking Matrix Multiplication

Somebody gives you some code that purports to multiply matrices. You want to check it
on some sample inputs. So you need an algorithm that solves the following problem:

Input : three n × n real matrices A,B,C.

Question : is C = A × B ?

Of course, you could just multiply A and B and compare the answer with C; this would take
O(n2.81) time in practice, and O(n2.38) time even in theory. You’d like to do the checking
in much less time than matrix multiplication itself.
Here’s a very simple randomized algorithm, due to Freivalds, that runs in only O(n2) time:

pick a vector r ∈ {0, 1}n u.a.r.
if A(Br) = Cr then output “yes” else output “no”

The algorithm runs in O(n2) time since it does only 3 matrix-vector multiplications. (Check
this.)
Why does it work? Well, if AB = C then the output will always be “yes”. (Why?) But
if AB �= C then the algorithm will make a mistake if it happens to choose an r for which
ABr = Cr. This, however, is unlikely:

Claim: If AB �= C then Pr[ABr = Cr] ≤ 1
2 .

We’ll prove the claim in a moment. First, note that it implies:

• If AB = C then the algorithm is always correct.

• If AB �= C then the algorithm makes an error with probability ≤ 1
2 .

To make the error probability in the second case very small (say, less than ε, the probability
that an earthquake will strike while we are running the computation), we just run t =
log2(1/ε) trials and output “yes” unless some trial says “no”. (Check this.)

Proof of Claim: Define D = AB − C. Our assumption is that D �= 0. We want to show
that Pr[Dr = 0] ≤ 1

2 for randomly chosen r.
Since D �= 0, it has a non-zero entry, say dij . Now the ith entry of Dr is

∑
k dikrk. And if

Dr = 0 then this entry must certainly be zero. But this happens iff rj = −(
∑

k �=j dikrk)/dij ;
i.e., once the values rk for k �= j have been chosen, there is only one value for rj that would
give us zero.
But rj itself is being chosen from the two possible values {0, 1}, so at least one of these
choices must fail to give us zero. (Note that the numerical values here are unimportant —
it matters only that there are two different choices.)

1

Hence Pr[Dr = 0] ≤ 1
2 , as claimed.

Ex: In the above proof, where did we use the fact that dij �= 0?
Ex: Suppose that, instead of picking the entries of r from the set {0, 1}, we picked them
from a larger set S. Show that the failure probability of a single run of the algorithm would
then be at most 1

|S| . By making S larger, we can thus reduce the error probability. Comment
on the relative merits in practice of this scheme and the method based on repeated trials
mentioned above.

2 Example 2: Checking Polynomial Identities

A very frequently used operation in computer algebra systems is the following: given
two polynomials, Q1, Q2, with multiple variables x1, . . . , xn, are Q1, Q2 identical, i.e., is
Q1(x1, . . . , xn) = Q2(x1, . . . , xn) at all points (x1, . . . , xn)? How does the system answer
such a question?
Obviously, if Q1, Q2 are written out explicitly, the question is trivially answered in linear
time just by comparing their coefficients. But in practice they are usually given in very
compact form (e.g., as products of factors, or as determinants of matrices), so that we can
evaluate them efficiently, but expanding them out and looking at their coefficients is out of
the question.

Ex: Consider the polynomial

Q(x1, x2, . . . , xn) =
∏

i<j:i,j �=1

(xi−xj)−
∏

i<j:i,j �=2

(xi−xj)+
∏

i<j:i,j �=3

(xi−xj)−· · ·± ∏

i<j:i,j �=n

(xi−xj).

Show that evaluating Q at any given point can be done efficiently, but that expanding out Q
to find all its coefficients is computationally infeasible even for moderate values of n.

Here is a very simple randomized algorithm, due to Schwartz and Zippel. Testing Q1 ≡ Q2

is equivalent to testing Q ≡ 0, where Q = Q1 − Q2. So we focus on this problem.

Algorithm

pick r1, . . . , rn independently and u.a.r. from a set S
if Q(r1, . . . , rn) = 0 then output “yes” else output “no”

This algorithm is clearly efficient, requiring only the evaluation of Q at a single point.
Moreover, if Q ≡ 0 then it is always correct. (Why?)
In the Theorem below, we’ll see that if Q �≡ 0 then the algorithm is incorrect with probability
at most 1

2 , provided the set S is large enough. We can then reduce this error probability to
ε by repeated trials as in the previous example.

Theorem: Suppose Q(x1, . . . , xn) has degree at most d.1 Then if Q �≡ 0 we have

Pr[Q(r1, . . . , rn) = 0] ≤ d
|S| .

1The degree of a polynomial is the maximum degree of any of its terms. The degree of a term is the sum

of the exponents of its variables. E.g., the degree of Q(x1, x2) = 2x3
1x2 + 17x1x

2
2 − 7x2

1 + x1x2 − 1 is 4.

2

With this theorem, to get the error probability ≤ 1
2 we just take |S| = 2d. Thus we could

take, e.g., S = {1, 2, . . . , 2d}.
Proof of Theorem: Note that the theorem is immediate for polynomials in just one
variable (i.e., n = 1); this follows from the well-known fact that such a polynomial of
degree d can have at most d zeros.
To prove the theorem for n variables, we use induction on n. We have just proved the base
case, n = 1, so we now assume n > 1.
We can write Q as

Q(x1, . . . , xn) =
∑k

i=0 xi
1Qi(x2, . . . , xn),

where k is the largest exponent of x1 in Q.
So Qk(x2, . . . , xn) �≡ 0 by our definition of k, and its degree is at most d − k. (Why?)
Thus by the induction hypothesis we have that Pr[Qk(r2, . . . , rn) = 0] ≤ d−k

|S| .
We now consider two cases, depending on the random values r2, . . . , rn chosen by the algo-
rithm.

Case 1: Qk(r2, . . . , rn) �= 0. In this case the polynomial Q′(x1) =
∑k

i=0 Qi(r2, . . . , rn)xi
1

in the single variable x1 has degree k and is not identically zero, so it has at most k zeros.
I.e., Q′(r1) = 0 for at most k values r1. But this means that Pr[Q(r1, . . . , rn) = 0] ≤ k

|S| .
(Why?)
Case 2: Qk(r2, . . . , rn) = 0. In this case we can’t say anything useful about Pr[Q(r1, r2, . . . , rn) = 0].
However, we know from the above discussion that this case only happens with probabil-
ity ≤ d−k

|S| .

Now let E denote the event that Qk(r2, . . . , rn) �= 0. Putting together cases 1 and 2 we get:

Pr[Q(r1, . . . , rn) = 0] = Pr[Q(r1, . . . , rn) = 0 | E] Pr[E] + Pr[Q(r1, . . . , rn) = 0 | E] Pr[E]

≤ Pr[Q(r1, . . . , rn) = 0 | E] + Pr[E]

≤ k
|S| + d−k

|S| = d
|S| .

This completes the proof by induction.

3 Fingerprinting

Both of the above are examples of fingerprinting. Suppose we want to compare two
items, Z1 and Z2. Instead of comparing them directly, we compute random fingerprints
fing(Z1), fing(Z2) and compare these. The fingerprint function fing has the following
properties:

• If Z1 �= Z2 then Pr[fing(Z1) = fing(Z2)] is small.

• It is much more efficient to compute and compare fingerprints than to compare Z1, Z2

directly.

For Freivalds’ algorithm, if A is a n × n matrix then fing(A) = Ar, for r a random vector
in {0, 1}n.
For the Schwartz-Zippel algorithm, if Q is a polynomial in n variables then fing(Q) =
Q(r1, . . . , rn), for ri chosen randomly from a set S of size 2d.
We give two further applications of this idea.

3

4 Example 3: Comparing Databases

Alice and Bob are far apart. Each has a copy of a database (of n bits), a and b respectively.
They want to check consistency of their copies.
Obviously Alice could send a to Bob, and he could compare it to b. But this requires
transmission of n bits, which for realistic values of n is costly and error-prone. Instead,
suppose Alice first computes a much smaller fingerprint fing(a) and sends this to Bob.
He then computes fing(b) and compares it with fing(a). If the fingerprints are equal, he
announces that the copies are identical.
What kind of fingerprint function should we use here?
Let’s view a copy of the database as an n-bit binary number, i.e., a =

∑n−1
i=0 ai2i and

b =
∑n−1

i=0 bi2i.
Now define fing(a) = a mod p, where p is a prime number chosen at random from the
range {1, . . . , k}, for some suitable k. We want Pr[fing(a) = fing(b)] to be small if a �= b.
Suppose a �= b. When is fing(a) = fing(b)? Well, for this to happen, we need that
a mod p = b mod p, i.e., that p divides d = a − b �= 0. But d is an (at most) n-bit number,
so the size of d is less than 2n. This means that at most n different primes can divide d.
(Why?)
So: as long as we make k large enough so that the number of primes in the range {1, . . . , k}
is much larger than n we will be in good shape. To ensure this, we need a standard fact
from Number Theory:
Prime Number Theorem: Let π(k) denote the number of primes less than k. Then
π(k) ∼ k

ln k as k → ∞.
Now all we need to do is set k = cn ln(cn) for any c we like. By the Prime Number Theorem,
with this choice of k,

Pr[fing(a) = fing(b)|a �= b] ≤ n
π(k) ∼ 1

c .

So, if we take c = 1
ε we will achieve an error probability less than ε.

Finally, note that Alice only needs to send to Bob the numbers a mod p and p (so that Bob
knows which fingerprint to compute), both of which are at most k. So the number of bits
sent by Alice is at most 2 log2 k = O(log n).

Ex: We did not explain how Alice selects a random prime p ∈ {1, . . . , k}. What she does,
in fact, is to generate a random number in {1, . . . , k}, test if it is prime, and if not throw
it away and try again. (The test for primality can be done efficiently in time polynomial
in log n using a randomized algorithm which you may have seen in CS170.) Use the Prime
Number Theorem to show that the expected number of trials Alice has to perform before
she hits a prime is ∼ ln k = O(log n).

5 Example 4: Randomized Pattern Matching

Consider the classical problem of searching for a pattern Y in a string X. I.e., we want to
know whether the string Y = y1y2 . . . ym occurs as a contiguous substring of X = x1x2 . . . xn.
The näıve approach of trying every possible match takes O(nm) time. (Why?) There is
a rather complicated deterministic algorithm that runs in O(n + m) time (which is clearly

4

best possible). A beautifully simple randomized algorithm, due to Karp and Rabin, also
runs in O(n + m) time and is based on the same idea as in the above example.
Assume for simplicity that the alphabet is binary. Let X(j) = xjxj+1 . . . xj+m−1 denote
the substring of X of length m starting at position j.
Algorithm

pick a random prime p in the range {1, . . . , k}
for j = 1 to n − m + 1 do

if X(j) = Y mod p then report match and stop

The test in the if-statement here is just fing(X(j)) = fing(Y) for the same fingerprint
function fing as in the Alice and Bob problem.
If the algorithm runs to completion without reporting a match, then Y definitely does not
occur in X. (Why?) So the only error the algorithm can make is to report a false match.
What is the probability that this happens? By the same analysis as above, for each j if
X(j) �= Y then Pr[fing(X(j)) = fing(Y)] ≤ m

π(k) . Therefore, if Y �= X(j) for all j, we
have

Pr[algorithm reports a match] ≤ nm
π(k) ∼ 1

c

if we choose k = cnm ln(cnm) (exactly as before).
What about the running time? Well, in a näıve implementation each iteration of the loop
requires the computation of a fingerprint of an m-bit number, which takes O(m) time,
giving a total running time of O(nm). However, this can be improved by noticing that

fing(X(j + 1)) = 2(fing(X(j)) − 2m−1xj) + xj+m mod p.

(Check this.) Hence, under the realistic assumption that arithmetic operations on finger-
prints — which are small — can be done in constant time, each iteration actually takes
only constant time (except the first, which takes O(m) time to compute fing(X(1)) and
fing(Y)).
The overall running time of the algorithm is therefore O(n + m) as claimed earlier.

Ex: In practice, we would want to eliminate the possibility of false matches entirely. To do
this, we could make the algorithm test any match before reporting it. If it is found to be a
false match, the algorithm could simply restart with a new random prime p. The resulting
algorithm never makes an error. Show that its expected running time is at most c

c−1T ≈ T ,
where T is the running time of the original algorithm, and that the probability it runs for
at least (� + 1)T time is at most c−�.

5

