
COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

1. 1d-Clickomania. Consider the following game on a sequence of black-white tiles: In
each step, you are allowed to choose any maximal run of at least two single-colored tiles,
and remove them from the sequence. The rest of the tiles on the two sides will rejoin into
a single sequence. If there is a way to remove all the tiles from the sequence, then we say
that the sequence is winnable. For example,

■■□□□■■□→ ■■□□□□→ ■■→ ϵ

is winnable, while ■■□□□□■□ is not.

Prove that the following language is not regular:

L =
�

w ∈ {■,□}∗ : w is winnable
	

.

Solution: We prove that L is not regular by describing a fooling set for L of infinite size.
Let

F :=
�

(■□)i : for all integer i
	

.

Take two arbitrary elements in F , say without loss of generality x := (■□)i and
y := (■□) j for i < j. Let z := (□■)i .

• On one hand, we have xz = (■□)i(□■)i = ϵ based on the rule. This shows that xz is
winnable.

• On the other hand, we have yz = (■□) j(□■)i. As we attempt to simplify the tile
sequence, at any moment there is only one monochromatic run with exactly two
tiles. This implies the simplification process is unique and yz = (■□) j−i, which is
not winnable because there are no further tiles can be removed.

This implies that F is a fooling set for L of infinite size. ■

Rubric: Standard 5-point grading scaled to 10 points. 6 points if the fooling set is
correct.

COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

2. Fault-tolerant computing. Imagine you are given a good-old Turing machine with a
single-tape and a single-head, but there is one catch: exactly one of the cells on the tape is
faulty. Any symbol written on that cell might turn into other symbols unexpectedly, while
the reading head is away. Worst of all, there are no ways to tell if the cell is faulty by
examination, even after the cell has turned a symbol into another. (We assume that the
faulty cell is not within the input.)

Prove that the faulty Turing machine can still simulate a standard Turing machine.

Solution: We describe how to emulate a standard Turing machine using a faulty Turing
machine. The idea is to duplicate each symbol three times and read three consecutive cells
at a time; now a majority vote always returns the correct symbol.

More precisely, we encode the symbol of the standard TM M by a duplicating the
symbol three times in the faulty TM M ′. (〈0〉 = 000, 〈1〉 = 111, and 〈□〉 = □□□). The
input of M ′ is also encoded in the same fashion from the input of M . For each transition of
M (that is, read a symbol, write a symbol, and move the head to an adjacent cell), the new
machine M ′ read the corresponding three symbols, and treat the majority of the symbols
as the symbol read. Then M ′ writes down three identical copies of the same symbol as
required, and move the head three steps to the left or right.

To see the correctness of the emulation, because there is at most one faulty cell across
the tape, the majority vote within the three cells will always return the correct symbol and
thus M ′ correctly simulates the computation of M . ■

Rubric: Standard 5-point grading scaled to 10 points. Maximum 2 points if the majority
vote idea is missing.

COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

3. Regular language equivalence. Let L0 be an arbitrary regular language over alphabet
Σ. Let D0 be a DFA deciding L0, given by some encoding 〈D0〉. Prove that the following
language can be decidable by a Turing machine in polynomial time:

L1 :=
�

〈D〉 : L(D) = L(D0)
	

,

where L(D) denote the language recognized by DFA D.

Solution: To show that L1 can be solved in polynomial time, we prove that one can test
whether the exclusive-or between L(D) and L(D0) is empty on a given encoding of some
DFA 〈D〉.

Testing if 〈D〉 encodes a valid DFA can be done in linear time. We construct DFA D′

recognizing the language L(D)⊕ L(D0) — the exclusive-or between L(D) and L(D0) —
using product construction.

• For each state q in D and q′ in D0, construct a state (q,q′) in D′.

• The alphabet of D′ is the union of the alphabet sets of D and D0.

• For each transition q
a
→ r in D and q′

a
→ r ′ in D0 for some identical symbol a, add a

transition (q, q′)
a
→ (r, r ′) in D′.

• The starting state in D′ is (s, s′) where s/s′ is the starting state of D/D0, respectively.

• The accepting states of D′ are the exclusive-or of those in D and D0; in notation,

�

(q,q′) :
q is accepting in D but q′ is not accepting in D0

or q is not accepting in D but q′ is accepting in D0

�

.

To decide if L(D′) is empty, we can perform a graph-traversal from the starting state of
D′ and see if any accepting state can be reached. We accept 〈D〉 if the language L(D′) is
empty. Overall the running time is proportional to the size of D′ which is polynomial in
|〈D〉| because for a fixed machine D0, DFA D′ has size linear in the size of D. ■

Rubric: Standard 5-point grading scaled to 10 points. Maximum 6 points if the con-
struction of exclusive-or DFA is missing. Maximum 4 points if the algorithm is testing
whether the two DFAs are equivalent.

COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

4. Inception. Let M1 be a TM deciding the language L1 from the previous problem (given
as some encoding 〈M1〉). Prove that the following language is undecidable:

L2 :=
�

〈M〉 : L(M) = L(M1)
	

,

where L(M) denote the language accepted by TM M .

Solution: We prove that L2 is undecidable by reduction from the HALTING problem:

HALTING

• Input: An encoding of a Turing machine 〈M〉, and a string w.
• Output: Does M run on input w halt?

Assume for contradiction that L2 can be decided by some TM M2. We now construction
another Turing machine H that decides HALTING, thus deriving a contradiction.

H(〈M〉, w):
construct Turing machine M ′1 based on M and w
return M2(〈M ′1〉)

M ′1(x):
run M on w
return M1(x)

To prove that H decides the HALTING problem,

• If (〈M〉, w) is a yes-instance of HALTING, the constructed machine M ′1 always termi-
nates when running M(w) and then mimics the behavior of M1 on the same input
x , which implies that L(M ′1) = L(M1). Therefore M2 on input 〈M ′1〉 will answer yes,
implies that H accepts (〈M〉, w).

• If (〈M〉, w) is a no-instance of HALTING, inside machine M ′1 the simultation M(w) runs
forever, which implies that L(M ′1) = ∅ ≠ L(M1) because L(M1) is not empty (〈D0〉
must be in L(M1) from Q3). Therefore M2 on input 〈M ′1〉 will answer no, implies that
H rejects (〈M〉, w).

Notice that we never really execute M ′1 as a program but only as input to M2, so H always
terminates. ■

Rubric: Standard 5-point grading scaled to 10 points. Maximum 4 points if the reduc-
tion is incorrect or works for the wrong problem.

COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

5. Consider the following problem:

ZEROSUMSET

• Input: A set X of n integers in [−N .. N] := {−N , . . . , 0, 1, . . . , N}.
• Output: Is there a nonempty subset S of X such that numbers in S sum

up to 0?

Prove that ZEROSUMSET is NP-complete.

Solution: We prove that ZEROSUMSET is NP-hard by reduction from the NP-hard problem
SUBSETSUM. Given a set of positive integers Y in [1 .. N] and a target t, the SUBSETSUM

problem asks if there is a subset R of Y such that the numbers in R sum up to t.

We first construct an instance X of ZEROSUMSET as follows. We set X := Y ∪{−t} , that
is, adding −t as another integer into Y to form X . The construction can clearly be done in
polynomial time.

To prove that the reduction is correct:

• If (Y, t) is a yes-instance for SUBSETSUM, we know there is a subset R of Y such that
the numbers in R sum up to t. Now the subset S := R∪ {−t} of X is nonempty and
must sum up to zero, and thus X is a yes-instance for ZEROSUMSET.

• If (Y, t) is a no-instance for SUBSETSUM, assume for contradiction that there is a
subset S of X such that the numbers in S sum up to zero. Because every integer other
than −t in X came from Y which is positive, set S must contain −t to sum up to zero.
Now removing −t from S to form subset R of Y ; the numbers in R sum up to t. Thus
(Y, t) is a yes-instance for ZEROSUMSET, a contradiction. ■

Rubric: Standard 5-point grading scaled to 10 points. Maximum 4 points if instance
construction does not work.

Watch out if you are reducing from a version of subset sum where negative integers
are allowed; in such case simply setting S := R∪ {−t} is insufficient (the no-instance
fails). One has to offset every integer in Y by a large number K , and pair it with a copy
of K; then change the new integer added to −(t + |Y | · K).

COSC 39 (Spring 2025) Practice Final Solutions from Winter 2021

Solution: (Alternative solution.) We prove that ZEROSUMSET is NP-hard by reduction from
the standard NP-hard problem 3SAT.

Given a 3CNF-formula φ for 3SAT, we construct an instance X of ZEROSUMSET as
follows. Let x1, . . . , xn be variables of φ and C1, . . . , Cm be clauses of φ. We add integers
of the form

∑

1≤i≤n

αi · 10i+m +
∑

1≤ j≤m

β j · 10 j

to X , represented as a vector (α1, . . . ,αn,β1, . . . ,βm). Based on the following construction
no sum of digits will ever overflow to other digits, and thus we can safely treat each base-10
integer as a vector.

• For each variable x i , add integers ai and ai to X , corresponding to literals x i and x i:

– αi = 1 and αi′ = 0 for every other i′.
– β j = 1 if clause C j contains literal x i/x i and 0 otherwise, respectively.

• For each clause C j, add two identical integers c j whose only nonzero digit is at
β j = −1.

• Add the integer −T = (−1, . . . ,−1,−3, . . . ,−3) to X .

This finishes the description of the (multi-)set X . To turn X into an actual set (without
duplicate elements), it is sufficient to add different infinitesimals to each element and also
include the negative of all the infinitesimals. The construction can be carried out in time
polynomial to the size of the formula φ.

To prove that the reduction is correct:

• If φ is a yes-instance, we pick the numbers in X that correspond to the literals set to
true in a fixed satisfying assignment of φ, together with −T and enough c js equal to
one less than the number of true literals in each clause C j, so that the total sum is
zero. Exactly one literal per variable is picked, so each αi digit sums to zero. Because
the assignment is satisfying, at least one literal in each clause is true, and thus we
have enough c js so that the β j digit sums up to 3, which is than cancelled by the −3
at the same digit in −T ; thus each β j also sums to zero.

• If φ is a no-instance, any assignment of φ has at least one clause with all literals
being false. Any zero-sumset S of X we choose must contain −T as it is the only
number with negative values at digit αis. Because each αi sums to zero, exactly one
ai or ai is chosen. Such choice give rise to an assignment of φ; let C j denote the
unsatisfied clause. Because −T is chosen, the sum of digit β j of the rest of S \ {−T}
has to be 3, which is impossible as no chosen numbers ai have positive β j and there
are only two c js.

This shows that an instance φ is satisfiable if and only if there is a non-empty subset of X
summing up to zero. ■

