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How to simplify a doodle?

Draft of “Fluorescephant”, Mick Burton, 1973
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How to simplify a doodle?

“Lion” in Continuous Line and Colour Sequence, Mick Burton, 2012
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Homotopy moves

1�0 2�0 3�3
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How many?
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Previous bounds

I O(n2) moves are always enough
I regular homotopy (no 1��0 moves) [Francis 1969]
I electrical transformations

[Steinitz 1916, Feo and Provan 1993]

(close reading to [Truemper 1989, Noble and Welsh 2000])

I Ω(n) moves are required
I at most two vertices removed at each step
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Which one?

Θ(n)? Θ(n2)?
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Our Result

Θ(n3/2)

8



Ω(n3/2) homotopy moves
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Defect
[Arnold 1994, Aicardi 1994]

δ(γ) := −2
∑
xGy

sgn(x) · sgn(y) [Polyak 1998]

I x G y means x and y are interleaved — x , y , x , y

I sgn(·) follows Gauss convention
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Defect
[Arnold 1994, Aicardi 1994]

δ(γ) := −2
∑
xGy

sgn(x) · sgn(y) [Polyak 1998]
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Defect
[Arnold 1994, Aicardi 1994]

defect changes by at most 2 under any homotopy moves
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Flat torus knots T (p, q)

(p− 1)q intersection points
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Flat torus knots T (p, q)

T (7, 8) T (8, 7)

δ(T(p, p+ 1)) = 2
(
p+1
3

)
δ(T(q+ 1, q)) = −2

(
q
3

)
[Even-Zohar et al. 2014] [Hayashi et al. 2012]
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O(n3/2) homotopy moves
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Loop reductions
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Loop reductions
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I at most O(A) moves, where A is number of interior faces

I face-depth potential Φ decreases by at least A
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Loop reductions
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I O(Φ) = O(n2) homotopy moves

I Why does the depth matter?
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Useful cycle technique

From “Choking Loops on Surfaces”, Feng and Tong, 2013
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Tangle
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Tangle
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Tangle

m vertices, s strands, max-depth d
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Tangle reductions

I First, remove all the self-loops in O(md) moves
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Tangle reductions

I Second, straighten all strand in O(ms) moves
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Tangle reductions

I Second, straighten all strand in O(ms) moves
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Useful tangle

I A tangle is useful if s ≤ m1/2 and d = O(m1/2)

I At least Ω(m) vertices removed

I Tightening one useful tangle:
O(md+ms) = O(m3/2) moves
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Amortized analysis

I Algorithm: Tighten any useful tangle until
the curve is simple

I In total O(n3/2) homotopy moves

I How do we know that there is always a useful tangle?
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Finding useful tangle

z

I Either one of them is useful, or the max-depth is O(n1/2)

27



Future work & open questions

28



Electrical transformations
[Kennelly 1899]

degree-1 series-parallel ∆Y transformation
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Steinitz’s theorem
[Steinitz 1916, Steinitz and Rademacher 1934]

From page “Steinitz’s theorem” in Wikipedia, David Eppstein
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Many more applications

I Shortest paths and maximum flows [Akers, Jr. 1960]

I Estimating network reliability [Lehman 1963];
I Multicommodity flows [Feo 1985]

I Kernel on surfaces [Schrijver 1992]

I Construct link invariants [Goldman and Kauffman 1993]

I Counting spanning trees, perfect matchings, and cuts
[Colbourn et al. 1995]

I Evaluation of spin models in statistical mechanics [Jaeger 1995]

I Solving generalized Laplacian linear systems
[Gremban 1996, Nakahara and Takahashi 1996]

I Kinematic analysis of robot manipulators
[Staffelli and Thomas 2002]

I Flow estimation from noisy measurements
[Zohar and Gieger 2007]
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Previous bounds on electrical transformations

I Finite [Epifanov 1966, Feo 1985]

I A simple O(n3) algorithm
I grid embedding [Truemper 1989]

I O(n2) steps are always enough
I bigon reduction [Steinitz 1916]
I depth-sum potential [Feo and Provan 1993]
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Feo and Provan Conjecture

Θ(n3/2)
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Higher genus surfaces

I How many homotopy moves needed to reduce curves on
surfaces?

I homotopic to simple curve: O(n2) moves
[Hass and Scott 1985]

I Ω(n2) moves for non-contractible curves
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Higher genus surfaces

I How many homotopy moves needed to reduce curves on
surfaces?

I homotopic to simple curve: O(n2) moves
[Hass and Scott 1985]

I Ω(n2) moves for non-contractible curves

I no polynomial bound in general
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Higher genus surfaces

I How many homotopy moves needed to reduce curves on
surfaces?

I Conjecture.
I contractible: O(n3/2) moves
I general: O(n2) moves
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Questions?
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Thank you!
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