Untangling Planar Curves

Hsien-Chih Chang & Jeff Erickson University of Illinois at Urbana-Champaign

SoCG 2016, Boston

How to simplify a doodle?

Draft of "Fluorescephant", Mick Burton, 1973

How to simplify a doodle?

"Lion" in Continuous Line and Colour Sequence, Mick Burton, 2012

Homotopy moves

How many?

Previous bounds

► O(n²) moves are always enough

- ► regular homotopy (no 1↔0 moves) [Francis 1969]
- electrical transformations
 [Steinitz 1916, Feo and Provan 1993]
 (close reading to [Truemper 1989, Noble and Welsh 2000])

Ω(n) moves are required

at most two vertices removed at each step

Previous bounds

► O(n²) moves are always enough

- ► regular homotopy (no 1↔0 moves) [Francis 1969]
- electrical transformations
 [Steinitz 1916, Feo and Provan 1993]
 (close reading to [Truemper 1989, Noble and Welsh 2000])

Ω(n) moves are required

at most two vertices removed at each step

Previous bounds

► O(n²) moves are always enough

- ► regular homotopy (no 1↔0 moves) [Francis 1969]
- electrical transformations
 [Steinitz 1916, Feo and Provan 1993]
 (close reading to [Truemper 1989, Noble and Welsh 2000])

• $\Omega(n)$ moves are required

at most two vertices removed at each step

Which one?

$\Theta(n)$? $\Theta(n^2)$?

Our Result

$\Theta(n^{3/2})$

$\Omega(n^{3/2})$ homotopy moves

Defect

[Arnold 1994, Aicardi 1994]

$$\delta(\gamma) \coloneqq -2\sum_{x \not i y} \operatorname{sgn}(x) \cdot \operatorname{sgn}(y) \quad [\operatorname{Polyak} 1998]$$

- $x \neq y$ means x and y are *interleaved* x, y, x, y
- ▶ sgn(\cdot) follows Gauss convention

Defect

[Arnold 1994, Aicardi 1994]

$$\delta(\gamma) \coloneqq -2\sum_{x \not \wr y} \operatorname{sgn}(x) \cdot \operatorname{sgn}(y) \quad [\operatorname{Polyak} 1998]$$

Defect [Arnold 1994, Aicardi 1994]

defect changes by at most 2 under any homotopy moves

Flat torus knots T(p, q)

 $(\mathbf{p} - \mathbf{1})\mathbf{q}$ intersection points

Flat torus knots T(p, q)

T(7,8)

T(8,7)

 $\delta(\mathsf{T}(\mathsf{p},\mathsf{p}+1)) = 2\binom{\mathsf{p}+1}{3}$ [Even-Zohar et al. 2014] $\delta(\mathsf{T}(\mathsf{q}+\mathsf{1},\mathsf{q})) = -2\binom{\mathsf{q}}{\mathsf{3}}$ [Hayashi et al. 2012]

Flat torus knots T(p, q)

T(7,8)

 $\delta(\mathsf{T}(\mathsf{p},\mathsf{p}+1)) = 2\binom{\mathsf{p}+1}{3}$ [Even-Zohar et al. 2014]

[Hayashi et al. 2012]

$O(n^{3/2})$ homotopy moves

at most O(A) moves, where **A** is number of interior faces face-depth potential Φ decreases by at least A

► at most O(A) moves, where A is number of interior faces
Face-depth potential Φ decreases by at least A

- at most O(A) moves, where **A** is number of interior faces
- face-depth potential Φ decreases by at least A

► $O(\Phi) = O(n^2)$ homotopy moves

Why does the depth matter?

- ► $O(\Phi) = O(n^2)$ homotopy moves
- ► Why does the depth matter?

Useful cycle technique

Tangle

Tangle

Tangle

m vertices, s strands, max-depth d

Tangle reductions

► First, remove all the self-loops in O(md) moves

Tangle reductions

► Second, straighten all strand in **O**(**ms**) moves

Tangle reductions

► Second, straighten all strand in **O**(**ms**) moves

Useful tangle

\blacktriangleright A tangle is useful if $s \leq m^{1/2}$ and $d = O(m^{1/2})$

 At least Ω(m) vertices removed
 Tightening one useful tangle: O(md + ms) = O(m^{3/2}) moves

Useful tangle

- A tangle is useful if $s \le m^{1/2}$ and $d = O(m^{1/2})$
- At least Ω(m) vertices removed
 Tightening one useful tangle: O(md + ms) = O(m^{3/2}) moves

Useful tangle

- A tangle is *useful* if $s \le m^{1/2}$ and $d = O(m^{1/2})$
- At least $\Omega(m)$ vertices removed
- ► Tightening one useful tangle: O(md + ms) = O(m^{3/2}) moves

Amortized analysis

- Algorithm: Tighten any useful tangle until the curve is simple
- ► In total O(n^{3/2}) homotopy moves

▶ How do we know that there is always a useful tangle?

Amortized analysis

- Algorithm: Tighten any useful tangle until the curve is simple
- In total $O(n^{3/2})$ homotopy moves

▶ How do we know that there is always a useful tangle?

Amortized analysis

- Algorithm: Tighten any useful tangle until the curve is simple
- In total $O(n^{3/2})$ homotopy moves

► How do we know that there is always a useful tangle?

Finding useful tangle

• Either one of them is useful, or the max-depth is $O(n^{1/2})$

Future work & open questions

Electrical transformations

[Kennelly 1899]

Steinitz's theorem

[Steinitz 1916, Steinitz and Rademacher 1934]

From page "Steinitz's theorem" in Wikipedia, David Eppstein

Many more applications

- ► Shortest paths and maximum flows [Akers, Jr. 1960]
- Estimating network reliability [Lehman 1963];
- ► Multicommodity flows [Feo 1985]
- ► Kernel on surfaces [Schrijver 1992]
- Construct link invariants [Goldman and Kauffman 1993]
- Counting spanning trees, perfect matchings, and cuts [Colbourn et al. 1995]
- ► Evaluation of spin models in statistical mechanics [Jaeger 1995]
- Solving generalized Laplacian linear systems [Gremban 1996, Nakahara and Takahashi 1996]
- Kinematic analysis of robot manipulators [Staffelli and Thomas 2002]
- Flow estimation from noisy measurements [Zohar and Gieger 2007]

Previous bounds on electrical transformations

- ► Finite [Epifanov 1966, Feo 1985]
- ► A simple **O**(**n**³) algorithm
 - ▶ grid embedding [Truemper 1989]
- $O(n^2)$ steps are always enough
 - bigon reduction [Steinitz 1916]
 - depth-sum potential [Feo and Provan 1993]

Feo and Provan Conjecture

$\Theta(n^{3/2})$

- How many homotopy moves needed to reduce curves on surfaces?
 - homotopic to simple curve: O(n²) moves [Hass and Scott 1985]
 - $\Omega(n^2)$ moves for non-contractible curves

- How many homotopy moves needed to reduce curves on surfaces?
 - homotopic to simple curve: O(n²) moves [Hass and Scott 1985]
 - $\Omega(n^2)$ moves for non-contractible curves

- How many homotopy moves needed to reduce curves on surfaces?
 - homotopic to simple curve: O(n²) moves [Hass and Scott 1985]
 - $\Omega(n^2)$ moves for non-contractible curves

- How many homotopy moves needed to reduce curves on surfaces?
 - homotopic to simple curve: O(n²) moves [Hass and Scott 1985]
 - $\Omega(n^2)$ moves for non-contractible curves
 - ► no polynomial bound in general

How many homotopy moves needed to reduce curves on surfaces?

- ► Conjecture.
 - ► contractible: **O**(**n**^{3/2}) moves
 - ► general: **O**(**n**²) moves

Questions?

Thank you!

