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Abstract5

A closed curve in the plane is weakly simple if it is the limit (in the Fréchet metric)6

of a sequence of simple closed curves. We describe an algorithm to determine whether7

a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time,8

improving an earlier O(n3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As9

an immediate corollary, we obtain the first efficient algorithm to determine whether an10

arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n2 log n) time. We also11

describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes12

of polygons. Finally, we discuss subtle errors in several previously published definitions of13

weak simplicity.14

∗Work on this paper was partially supported by NSF grant CCF-0915519. See http://www.cs.illinois.edu/~jeffe/pubs/weak.
html for the most recent version of this paper.
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1 Introduction1

Simple polygons in the plane have been standard objects of study in computational geometry for2

decades, and in the broader mathematical community for centuries. Many algorithms designed for3

simple polygons continue to work with little or no modification in degenerate cases, where intuitively4

the polygon overlaps itself but does not cross itself. We offer the first complete and efficient algorithm to5

detect such degenerate polygons.6
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Figure 1.1. Top row: Two weakly simple polygons from Meis-
ter’s seminal 1770 treatise on polygons [36]. Bottom row:
The polygon (a, x , b, x , c, x) is weakly simple; the polygon
(a, x , b, x , c, x , a, x , b, x , c, x) is not.

Formally, a closed curve in the plane is a con-7

tinuous function P : S1 → R2. A closed curve is8

simple if it is injective, and weakly simple if for9

any ε > 0, there is a simple closed curve whose10

Fréchet distance from P is at most ε. A recent11

nontrivial result of Ribó Mor [39] implies that a12

polygon P with at least three vertices is weakly13

simple if and only if, for any ε > 0, we can obtain14

a simple polygon by perturbing each vertex of P15

within a ball of radius ε. See Figure 1.1 for some16

small examples.17

Unfortunately, neither of these definitions im-18

ply efficient algorithms to determine whether19

a given polygon is weakly simple. Several au-20

thors have offered alternative characterizations of21

weakly simple polygons, all building on the intuition that that a weakly simple polygon does not “cross22

itself”. Unfortunately, none of these characterizations is entirely consistent with the formal definition,23

especially when the algorithm contains spurs—vertices whose two incident edges overlap. We discuss24

these earlier definitions in detail in Section 2.5 and Appendix A.25

We describe an algorithm to determine whether a closed walk of length n in a planar straight-line26

graph is weakly simple in O(n log n) time. Our algorithm is essentially a more efficient implementation27

of an earlier O(n3)-time algorithm of Cortese et al. [17] for the same problem. Since any n-vertex28

polygon can be decomposed into a walk of length O(n2) in union of the polygon’s vertices and edges, we29

immediately obtain an algorithm to decide whether a polygon is weakly simple in O(n2 log n) time. The30

quadratic blowup is caused by forks in the polygon: vertices that lie in the interior of many overlapping31

collinear edges. For polygons without forks, the running time is simply O(n log n). We also describe a32

simpler O(n log n)-time algorithm for polygons without spurs (but possibly with forks).33

Our paper is organized as follows. We review standard terminology, formally define weak simplicity,34

and discuss connections to other published definitions in Section 2. In Section 3, as a warm-up to our35

later results, we describe a simple algorithm to determine whether a polygon without spurs or forks is36

weakly simple in O(n log n) time. Section 4 describes our O(n log n)-time algorithm for polygons without37

spurs, but possibly with forks. We give a complete description of the algorithm of Cortese et al. for closed38

walks in planar graphs, reformulated using our terminology, in Section 5 and then describe and analyze39

our faster implementation in Section 6. Due to space constraints, many details and proofs are deferred40

to the appendix. In particular, we relate weak simplicity to related notions of compound planarity and41

self-touching linkage configurations in Appendix B; we provide implementation details and proofs of42

correctness for an important expansion operation in Appendix C; and we describe several extensions and43

open problems in Appendix D.44
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2 Background1

2.1 Curves and Polygons2

A path in the plane is a continuous function P : [0, 1]→ R2. A closed curve in the plane is a continuous3

function P : S1→ R2. A path or closed curve is simple if it is injective.4

A polygon is a piecewise-linear closed curve; every polygon is defined by a cyclic sequence of points,5

called vertices, connected by line segments, called edges. We often describe polygons by listing their6

vertices in parentheses; for example, (p0, p1, . . . , pn−1) denotes the polygon with vertices pi and edges7

pi pi+1 mod n for every index i. A polygon is simple if and only if its vertices are distinct and its edges8

intersect only at common endpoints. We emphasize that the vertices of a non-simple polygon need not9

be distinct, and two edges of a non-simple polygon may overlap or even coincide [26,36]. However, we10

do assume without (significant) loss of generality that every edge of a polygon has positive length.11

Similarly, a polygonal chain is a piecewise-linear path, which consists of a linear sequence of points12

(vertices) connected by line segments (edges). We often describe polygonal paths by listing their vertices13

in square brackets, like [p0, p1, . . . , pn−1], to distinguish them from polygons. A corner of a polygon or14

polygonal chain P is a subpath [pi−1, pi , pi+1] consisting of two consecutive edges of P.15

Three local features of polygons play important roles in our results. A spur of a polygon P is a vertex16

of P whose two incident edges overlap. A fork of a polygon P is a vertex of P that lies in the interior of17

an edge of P. Finally, a simple crossing between two paths is a point of transverse intersection; if the18

paths are polygonal chains, this intersection point could be a vertex of one or both paths.19

2.2 Distances20

Let d(p, q) denote the Euclidean distance between two points p and q in the plane. The Fréchet distance21

dF(P, Q) between two closed curves P and Q is defined as22

dF(P,Q) := inf
ρ : S1→S1

max
t∈S1

d(P(ρ(t)),Q(t)),23

where the infimum is taken over all orientation-preserving homeomorphisms of S1. The function ρ24

is often called a reparametrization of S1. Fréchet distance is a complete metric over the space of all25

(unparametrized) closed curves in the plane. The Fréchet distance between paths is defined similarly.26

For any two polygons P = (p0, p1, . . . , pn−1) and Q = (q0, q1, . . . , qn−1) with the same number of27

vertices, the vertex distance between P and Q is defined as28

dV (P,Q) :=min
s

max
i

d(pi , qi+s mod n).29

For each integer n, vertex distance is a complete metric over the space of all n-vertex polygons (where30

two polygons that differ only by a cyclic shift of indices are identified).31

2.3 Planar Graphs32

A planar embedding of a graph represents the vertices by distinct points in the plane, and the edges by33

interior-disjoint simple paths between their endpoints. A planar straight-line graph is a planar graph34

embedding in which every edge is represented by a single line segment. We refer to the vertices of a35

planar straight-line graph as nodes and the edges as segments, to distinguish them from the vertices36

and edges of polygons. Any planar graph embedding partitions the plane into several regions, call the37

faces of the embedding. Euler’s formula states that any planar embedding of a connected graph with V38

vertices and E edges has exactly 2− V + E faces.39

Any planar graph embedding can be represented abstractly by a rotation system, which records for40

each node the cyclic sequence of incident segments [37]. Planar straight-line graphs can be represented41

by several data structures, each of which allows fast access to the abstract graph, the coordinates of its42

nodes, and the rotation system; one popular example is the doubly-connected edge list [5].43
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2.4 Weak Simplicity1

Intuitively, a closed curve or polygon is weakly simple if it can be made simple by an arbitrarily small2

perturbation, or equivalently, if it is the limit of a sequence of simple closed curves or polygons. Our two3

different metrics for curve similarity give us two different formal definitions:4

• A closed curve P is weakly simple if, for any ε > 0, there is a simple closed curve Q such that5

dF(P,Q) < ε. In other words, a closed curve is weakly simple if it can be made simple by an6

arbitrarily small perturbation of the entire curve.7

• A polygon P is rigidly weakly simple if, for any ε > 0, there is a simple polygon Q with the same8

number of vertices such that dV (P,Q)< ε. In other words, a polygon is rigidly weakly simple if it9

can be made simple by an arbitrarily small perturbation of its vertices.10

For any two polygons P and Q with the same number of vertices, we have dF(P,Q)≤ dV (P,Q); thus,11

every rigidly weakly simple polygon is also weakly simple. The following theorem, whose proof we defer12

to Appendix B, implies that the two definitions are almost equivalent for polygons.13

Theorem 2.1. Every weakly simple polygon with more than two vertices is rigidly weakly simple.14

Our proof relies on a nontrivial result of Ribó Mor [39, Theorem 3.1] (previously conjectured by15

Connelly et al. [16, Conjecture 4.1]) about “self-touching” linkage configurations. The restriction to16

polygons with more than two vertices is necessary; every polygon with at most two vertices is weakly17

simple, because it is a degenerate ellipse, but not rigidly weakly simple, because every simple polygon18

has at least three vertices.19

2.5 Earlier Definitions of Weak Simplicity20 a

bc

x

y z

Figure 2.1. A polygon that many published definitions
incorrectly classify as weakly simple.

Several authors have offered combinatorial defini-21

tions of weakly simple polygons based on the in-22

tuitive notation that a weakly simple polygon can-23

not cross itself; however, every such definition we24

have found in the literature is either imprecise, in-25

complete, or incorrect. For example, a common26

definition of “weakly simple”, originally due to Tou-27

ssaint [10, 44, 47, 48], requires that the rotation28

number (the sum of signed external angles divided29

by 2π) is either +1 or −1; however, rotation numbers are not well-defined for polygons with spurs. Every30

combinatorial definition of “(self-)crossing” we have found in the literature [10,19,22,34,44,47,50]31

is incorrect for polygons with spurs; many of these definitions are incorrect even for polygons without32

spurs. Figure 2.1 shows a spur-free polygon with 14 vertices that is not weakly simple but satisfies33

several published definitions of weak simplicity, including Toussaint’s. We offer further details, examples,34

and discussion in Appendix A.35

We emphasize that the algorithms in all these papers appear to be correct. Given simple polygons36

as input, these algorithms construct weakly simple polygons as intermediate results, with additional37

structure that is consistent with the papers’ definitions. More importantly, in each case, the perturbations38

required to make those polygons simple are implicit in their construction. Despite occasional claims to39

the contrary (based on overly restrictive definitions) [1], we are unaware of any previous algorithm to40

determine whether a polygon is weakly simple.41
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3 No Spurs or Forks1

In this section, we describe an algorithm to determine whether a polygon without spurs or forks is2

weakly simple in O(n log n) time. Although we have not seen a complete description of this algorithm3

in the literature, it is essentially folklore. Similar techniques were previously used by Reinhart [38],4

Zieschang [51], and Chillingworth [14] to determine whether a given closed curve in an arbitrary5

2-manifold with boundary is homotopic to a simple closed curve, and more recently by Cortese et al. [17]6

to determine clustered planarity of closed walks in plane graphs.7

Let P = (p0, . . . , pn−1) be an arbitrary polygon without spurs or forks. The algorithm consists of three8

phases. First, we construct the image of P, to identify all coincident vertices and edges, and to rule out9

simple crossings between edges of P. Second, we look for simple crossings at the vertices of P. Finally, if10

there are no simple crossings, we expand P into a nearby 2-regular plane graph in the only way possible,11

and then check whether the expansion is consistent with P.12

The description and analysis of our algorithm use the following multiplicity functions: n(u) denotes13

the number of times the point u occurs as a vertex of P; n(uv) denotes the number of times the line14

segment uv occurs (in either orientation) as an edge of P; and n(uv w ) denote the number of times the15

corner [u, v, w] or its reversal [w, v, u] occurs in P.16

3.1 Constructing the Image Graph17

In the first phase, we determine in O(n log n) time whether any two edges of P cross, using the classical18

sweep-line algorithm of Shamos and Hoey [43]; if so, we immediately halt and report that P is not19

weakly simple. Otherwise, the image of P is a planar straight-line graph G, whose vertices we call nodes20

and whose edges we call segments, to distinguish them from the vertices and edges of P. Specifically,21

the nodes of G are obtained from the vertices of P by removing duplicates, and the segments of G22

are obtained from the edges of P by removing duplicates. The image graph G can be constructed in23

O(n log n) time using, for example, a straightforward modification of Shamos and Hoey’s sweep-line24

algorithm. This is the most time-consuming portion of our algorithm; the other two phases require only25

O(n) time.126

3.2 Node Expansion27
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[ua]

[ub]
[uc]
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[uy]
[uz]

G̃

Q Q̃
Figure 3.1. Node expansion. Compare with Figure C.1.

In the second phase, since we have already ruled out28

simple crossings in the interiors of edges, any simple29

crossing in P must consist of two corners [u, v, w]30

and [x , v, y] whose endpoints have the cyclic or-31

der u, x , w, y around their common middle vertex v.32

We can detect all such crossings in O(n) time using33

an operation we call node expansion, defined geo-34

metrically as follows. (Cortese et al. [17] call this35

operation a cluster expansion.)36

Let u be an arbitrary node in G. Consider a37

disk Du of radius δ centered at u, with δ chosen suf-38

ficiently small that Du intersects only the segments39

of G incident to u. Because edges of G are straight line segments, the circle ∂Du intersects each edge at40

most once. On each segment ux incident to u, we introduce a new node [ux] at the intersection point41

ux ∩ ∂Du. Then we modify P by replacing each maximal subwalk in Du with a straight line segment.42

1We conjecture that the image graph of a weakly simple polygon can actually be constructed in O(n log∗ n) or even O(n)
time, by a suitable modification of algorithms for triangulating simple polygons [2,13,15,20,42].
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Thus, if P contains the subpath [x , u, y], the modified polygon contain the edge [ux][uy]. Let P̃ denote1

the modified polygon, and let G̃ denote the image of P̃ in the plane; see the top row of Figure 3.1.2

Lemmas C.1 and C.2 (in the appendix) imply that the original polygon P is weakly simple if and only3

if the expanded polygon P̃ is weakly simple. If P has a simple crossing at u, then some pair of edges of P̃4

cross inside Du. We describe how to check for such crossings in Section C.2.5

Altogether, expanding node u and checking for simple crossings requires O(n(u)) time; thus, we can6

expand every node of G in O(n) time overall. If any node expansion creates a simple crossing, we halt7

immediately and report that P is not weakly simple. Otherwise, let P̃ denote the polygon after all node8

expansions, and let G̃ denote its image graph. By induction, G̃ is a plane graph, and P is weakly simple9

if and only if P̃ is weakly simple.10

3.3 Global Inflation11

In the final phase of the algorithm, we “inflate” the image graph G̃ into a 2-regular plane graph Q̃ by12

replacing each segment s of G̃ with several parallel segments, one for each edge of P̃ that traverses s; see13

the right column of Figure 3.1. Then P̃ (and therefore P) is weakly simple if and only if Q̃ is connected14

and consistent with P̃.15

Fix an arbitrarily small positive real number ε� δ. To construct Q̃ from G̃, we replace each node16

[uv] with n(uv) closely spaced points on ∂Du, all within ε of [uv]. Then we replace each segment17

[uv][vu] of G̃ outside the disks with n(uv) parallel segments. Finally, within each disk Du, we replace18

each corner segment [uv][uw] with n(uvw) parallel segments, so that all resulting segments in Du are19

disjoint. Crucially, there is exactly one way to perform this final replacement within each disk Du once20

the boundary points are fixed; see [6,11,12] for related constructions.21

The uniqueness of Q̃ implies P̃ is weakly simple if and only if (1) the resulting 2-regular graph Q̃22

is connected and thus a simple polygon, and (2) we have dV (P̃, Q̃) < ε. We can check whether Q̃ is23

connected in O(n) time by depth-first search. Finally, if Q̃ is a simple polygon, we can determine whether24

dV (P̃, Q̃)< ε in O(n) time using any fast string-matching algorithm.25

One final detail remains to complete the proof of Theorem 3.1: How do we choose appropriate26

parameters δ and ε in the second and third phases? In fact, there is no need to choose specific values at27

all! The combinatorial embedding of the expanded image graph G̃ is identical for all sufficiently small28

positive δ; similarly, the combinatorial embedding of the 2-regular graph Q̃ is identical for all sufficiently29

small positive ε� δ. Thus, the entire algorithm can be performed by modifying abstract graphs and30

their rotation systems, without choosing explicit values of δ or ε at all! See Section C.2 for details.31

Theorem 3.1. Given an arbitrary n-vertex polygon P without spurs or forks, we can determine in32

O(n log n) time whether P is weakly simple.33

4 Forks But No Spurs34

Recall that a fork in a polygon is a vertex that lies in the interior of an edge. With only minor35

modifications, the algorithm in the previous section can also be applied to polygons with forks, but still36

without spurs. Specifically, in the preprocessing phase, we locate all forks in O((n+ k) log n) time using37

a standard sweep-line algorithm [4], where k = O(n2) is the number of forks, and then subdivide each38

edge into smaller edges at the forks on that edge. The remainder of the algorithm is unchanged. In the39

worst case, subdividing the polygon to eliminate forks increases its complexity from n to Θ(n2), which40

in turn increases the overall running time of the algorithm from O(n log n) to O(n2 log n). With more41

care, however, we can avoid this quadratic blowup.42

We define a coarser decomposition of the image of P into points and line segments called a bar43

decomposition, as follows. A bar of P is a component of the union of the interiors of all edges of P that44

lie on a common line. Every fork lies in exactly one bar; we call any vertex that is not in a bar sober.45
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Figure 4.1. A bar decomposition of a weakly simple
polygon without spurs, and a nearby simple polygon.

The bar decomposition consists of all bars of P and1

all distinct sober vertices of P; the image of P is equal2

to the union of these bars and points. If P has no3

forks, the bar decomposition consists of the nodes and4

segments of the image graph G.5

We can compute the bar decomposition of P in6

O(n log n) time as follows. First, cluster the edges of P7

into collinear subsets, by sorting them by the slopes8

and y-intercepts of their supporting lines. Then for9

each collinear subset, sort the endpoints by x-coordinate, breaking ties by sorting all right endpoints10

before all left endpoints. Finally, a linear-time scan along each sorted collinear subset of edges yields all11

bars that lie on that line. We also identify all distinct sober vertices, compute (the indices of) all vertices12

and edges of P that lie in each bar, and compute the bars incident to each fork in cyclic order. Finally,13

we verify that no pair of bars crosses, using a standard sweep-line algorithm [43].14

Next we perform a node expansion at each sober node, as described in the previous section. We also15

perform a bar expansion around each bar, defined as follows. For any bar b, let b◦ denote the subset16

of b obtained by removing all points within distance 2δ of endpoints of b, and let Db denote an elliptical17

disk whose major axis is b◦ and whose minor axis has length 2δ, where the parameter δ is chosen so18

that Db intersects only the edges of P that also intersect the bar. Then bar expansion is identical to node19

expansion: we subdivide P at the intersection points im P ∩ ∂Db, replace each maximal subpath of P20

that lies in Db with a line segment, and finally verify that the new segments do not cross, as described in21

Section C.2.22

Again, there is no need to choose a specific value of δ; each bar expansion is performed entirely23

combinatorially. Since every edge of P touches at most three bars or sober nodes, we can expand every24

bar and every sober node in O(n) time. The resulting polygon P̃ has no simple crossings, no forks, and25

no spurs. Lemmas C.1, C.2, and C.3 imply inductively that P̃ is weakly simple if and only if the original26

polygon P is weakly simple. Finally, we can determine whether P̃ is weakly simple in O(n) time using27

the global inflation algorithm described in Section 3.3. We conclude:28

Theorem 4.1. Given an arbitrary n-vertex polygon P without spurs, but possibly with forks, we can29

determine in O(n log n) time whether P is weakly simple.30

5 Polygons with Spurs31

Neither of the previous algorithms is correct when the input polygon has spurs. To handle these32

polygons, we apply a recent algorithm of Cortese et al. [17] to determine whether a walk in a plane33

graph is weakly simple (in their terminology, whether a rigid clustered cycle is c-planar). We include a34

complete description of the algorithm here, reformulated in our terminology, not only to keep this paper35

self-contained, but also so that we can improve its running time in Section 6.36

At a high level, the algorithm proceeds as follows. In an initial preprocessing phase, we construct the37

image graph G of the input polygon P and then expand P at every node in G. Then, following Cortese38

et al. [17], we repeatedly modify the polygon using an operation we call segment expansion, defined in39

Section 5.1, until either we detect a simple crossing (in which case P is not weakly simple), the image40

graph is reduced to a single line segment (in which case P is weakly simple), or there are no more41

“useful” segments to expand.42

If the input polygon has no forks, the image graph G has complexity O(n), we construct it in43

O(n log n) time, and we expand every node in O(n) time, exactly as described in Section 3. A simple44

potential argument implies that the main loop terminates after at most O(n) segment expansions.45

(Cortese et al. [17] prove an upper bound of O(n2) expansions using a different potential function.)46
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A naïve implementation executes each segment expansion in O(n) time, giving us an overall running1

time of O(n2). The O(n log n) time bound follows from a more careful implementation and analysis,2

which we describe in Section 6.3

Theorem 5.1. Given an arbitrary n-vertex polygon P without forks but possibly with spurs, we can4

determine in O(n log n) time whether P is weakly simple.5

Any polygon can be subdivided into a polygon without forks in O(n2 log n) time using a standard6

sweep-line algorithm, similar to the algorithm described in Section 4. Thus, Theorem 5.1 has the7

following immediate corollary.8

Corollary 5.2. Given an arbitrary n-vertex polygon P, we can determine in O(n2 log n) time whether P9

is weakly simple.10

For the remainder of the paper, we assume that the input polygon P has no forks.11

5.1 Segment Expansion12

We now describe the main loop of our algorithm in more detail. The main operation, segment expansion,13

is nearly identical to our earlier expansion operations. Let s be an arbitrary segment of the current image14

graph G. Let Ds be an elliptical disk whose boundary intersects precisely the segments that share one15

endpoint with s. To expand segment s, we subdivide P at its intersection with ∂Ds, replace each maximal16

subpath of P that lies in Ds with a line segment, and verify that the new segments do not cross.17

Unfortunately, expanding an arbitrary segment could change a polygon that is not weakly simple18

into a polygon that is weakly simple. Our algorithm expands only segments with the following property.19

A segment uv in the image graph is a base of one of its endpoints u if every occurrence of u in the20

polygon P is immediately preceded or followed by the other endpoint v. A segment is safe if it is a21

base of both of its endpoints. Cortese et al. prove that a polygon P is weakly simple if and only if the22

polygon P̃ that results from expanding a safe segment is also weakly simple [17, Lemma 3]. We provide23

a new proof of this key lemma in the appendix (Section C.5).24

After a node expansion around any node u, each new node [ux] on the boundary of Du has a base,25

namely the segment [ux]x [17, Property 5]. Thus, expanding every node in the original image graph26

guarantees that every node in the image graph has a base. Similarly, after any segment expansion, every27

newly created node has a base. Thus, our algorithm inductively maintains the invariant that every node28

in the image graph has a base. It follows that at every iteration of our algorithm, the image graph has at29

least one safe segment, so our algorithm never gets stuck.30

5.2 Useful Segments31

However, under some circumstances, expanding a safe segment does not actually make progress.32

Specifically, if both endpoints of the segment have degree 2 in G, and no spur in P includes that segment,33

the segment expansion does not change the combinatorial structure of P or G at all. We call any such34

segment useless. Equivalently, a safe edge is useful if it is the only base of one of its endpoints, and35

useless otherwise. Our algorithm repeatedly expands only useful segments until either the image graph36

consists of a single segment (in which case P is weakly simple) or there are no more useful segments to37

expand.38

Lemma 5.3. Let G be the image graph of a polygon P without simple crossings. If every node of G has39

a base but G has no useful segments, then G is a simple polygon and P has no spurs.40

Proof: Let H be the subgraph of all safe segments of G. The degree of any node in H is at most the41

number of bases of that node in G. Since no node in G can have more than two bases, H is the union of42



8 Hsien-Chih Chang, Jeff Erickson, and Chao Xu

disjoint paths and cycles. If some component of H is a path, the first (or last) segment in that path is1

useful. Otherwise, every node in G has two bases, and therefore has degree 2; because G is a connected2

planar straight line graph, it must be a simple polygon. Moreover, because every node in G has two3

bases, P has no spurs. �4

Lemma 5.3 implies that when our main loop ends, we can invoke our algorithm for spur-free polygons5

in Section 3. But this is overkill. Because P has no spurs, P must traverse every segment of G the same6

number of times. It follows that the 2-regular plane graph Q̃ constructed in the inflation phase of the7

algorithm in Section 3 will consist of n(uv) parallel copies of G. Thus, when the main loop ends, P is8

weakly simple if and only if n(uv) = 1, for any single segment uv.9

5.3 Termination and Analysis10

Like Cortese et al., we prove that our algorithm halts using a potential argument. Let |P| and |G|11

respectively denote the number of vertices in polygon P and the number of nodes in its image graph G;12

our potential function is Φ(P, G) := 2|P| − |G|. Clearly Φ(P, G) is always non-negative. Our preprocessing13

phase at most doubles |P|, so at the beginning of the main loop we have Φ(P, G) ≤ 4n. (Cortese et al.14

used the potential
∑

e n(e)2 = O(n2), where the sum is over all segments of G; otherwise, our analysis is15

nearly identical.)16

Lemma 5.4. Let P be any polygon whose image graph G has more than one segment, let P̃ be the result17

of expanding a useful segment of G, and let G̃ be the image graph of P̃. Then Φ(P̃, G̃)< Φ(P, G).18

Proof: Let uv be a useful segment of G, where without loss of generality we have deg(u) ≤ deg(v).19

Because uv is safe, every maximal subpath of P that lies in the ellipse Duv contains at least 2 vertices, so20

|P̃| ≤ |P|. We easily observe that |G̃| = |G|+ deg(u) + deg(v)− 4, so if deg(u) + deg(v)> 4, the proof is21

complete. There are three other cases to consider:22

• If deg(u) = deg(v) = 1, then uv is the only segment of G, which is impossible.23

• Otherwise, if deg(u) = 1, then P must contain the spur [v, u, v], which implies |P̃| ≤ |P| − 1 and24

therefore Φ(P̃, G̃)≤ Φ(P, G)− (deg(v)− 1)≤ Φ(P, G)− 1.25

• Finally, suppose deg(u) = deg(v) = 2. Because uv is useful, P must contain one of the spurs26

[v, u, v] or [u, v, u], which implies |P̃| ≤ |P| − 1 and therefore Φ(P̃, G̃)≤ Φ(P, G)− 2. �27

Lemma 5.4 immediately implies the main loop of the algorithm ends after at most 4n segment expansions.28

Because the potential Φ decreases at every iteration, the polygon never has more than 4n vertices. We29

can find a useful segment in the image graph (if one exists) and perform a segment expansion in O(n)30

time by brute force. Thus, a naïve implementation of our algorithm runs in O(n2) time.31

6 Fast Implementation32

Finally, we describe a more careful implementation of the previous algorithm that runs in O(n log n)33

time. We build the image graph G and perform the initial node expansions in O(n log n) time, just as34

in the previous sections. After building some necessary data structures, we repeatedly expand useful35

segments until we either find a local crossing or there are no more useful segments.36

6.1 Data Structures37

Our algorithm uses the following data structures. We maintain the image graph G in a standard data38

structure for planar straight-line graphs, such as a doubly-connected edge list [5]. The polygon P is39
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represented by a circular doubly-linked list that alternates between vertex records and edge records;1

each vertex in P points to the corresponding node in G.2

Call an edge of P simple if neither endpoint is a spur and complex otherwise. For each segment uv,3

we separately maintain a doubly-linked list Simple(uv) of all simple edges of P that coincide with uv,4

and a doubly-linked list Complex(uv) of all complex edges of P that coincide with uv. Every record in5

these lists has pointers both to and from the corresponding edge record in the circular list representing P.6

Each of these lists also maintains its size.7

Each node u in G also maintains a pointer to its base (or bases). Finally, we maintain a global8

queue of all useful segments in G. All of these data structures can be constructed in O(n) time after the9

preprocessing phase.10

6.2 Segment Expansion11

Our algorithm divides each segment expansion into the following four phases: (1) remove all spurs at12

the endpoints u and v; (2) compute the nodes [ua] and [vz] in cyclic order around the ellipse ∂Duv;13

(3) straighten the remaining paths through u and through v; (4) build the graph GD, check for simple14

crossings, and update the image graph G. Our analysis uses the following functions of u (and similar15

functions of v), all defined just before the segment expansion begins:16

• deg(u) is the number of segments incident to u, including uv.17

• n(u) is the number of vertices of P that coincide with u.18

• σ(u) is the number of spurs of P that coincide with u.19

Phase 1: Remove spurs. We remove all spurs at u and v by brute force, by traversing uv’s list of20

complex edges. Each time we remove a spur s, we check the edges of P immediately before and after s,21

and if necessary, move them from Simple(s) to Complex(s) or vice versa. We also update the count n(u)22

and n(v). After this phase, every maximal subpath of P inside the disk Duv has length at most 3. The23

total time for this phase is O(σ(u) +σ(v) + 1).24

Phase 2: Compute sequence of new nodes. Next, we compute the intersection points G ∩ ∂D in25

cyclic order by considering the segments incident to u in cyclic order, starting just after uv, and then the26

segments incident to v in cyclic order, starting just after uv. These two cyclic orders are accessible in the27

doubly-connected edge list representing G. For each intersection point [ua] or [vz], we initialize a new28

node record with a pointer to its base [ua]a or [vz]z. At this point, we can update the queue of useful29

segments.30

Finally, we find a segment ua∗ with maximum weight n([ua∗]) and a segment vz∗ with maximum31

weight n([vz∗]), such that a∗ 6= v and z∗ 6= u. To simplify notation, let u′ denote the point [ua∗] =32

ua∗∩∂D and let v′ denote the point [vz∗] = vz∗∩∂D. The total time for this phase is O(deg(u)+deg(v)).33

Phase 3: Expansion. The third phase straightens the remaining constant-length paths through u and v34

except for subpaths [a∗, u, v, z∗] or [a∗, u, a∗] or [z∗, v, z∗]. Specifically, for each segment ua with a 6= a∗,35

we replace subpaths of P containing segment ua with corresponding paths through the new node [ua].36

Specifically:37

• [a, u, v] becomes [a, [ua], v]38

• [a, u, a] becomes [a, [ua], a]39

• [a, u, b] becomes [a, [ua], [ub], b]40

Then for each segment vz with z 6= z∗, we similarly replace subpaths of P that contain vz with paths41

through the new node [vz]. Each path replacement takes O(1) time, including the time to update the42

relevant simple- and complex-edge lists.43
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At the end of these two loops, the only remaining subpaths through u and v have the forms1

[a∗, u, v, z∗] or [a∗, u, a∗] or [z∗, v, z∗]. To update these subpaths, we intuitively move node u to u′ and2

move node v to v′. But in fact, “moving” these two nodes has no effect on our data structures at all; we3

only change their names for purposes of analysis.4

The total time for this phase is at most O(n(u)− n(u′) + n(v)− n(v′) + 1), where n(u′) and n(v′)5

denote the number of vertices at u′ and v′ after the segment expansion.6

Phase 4: Check planarity and update G. We discover all the segments in the graph GD in the previous7

phase. If there are more than 2(deg(u) + deg(v)) such segments, then GD cannot be planar, so we8

immediately halt and report that P is not weakly simple. Otherwise, we compute the rotation system9

of GD and check its planarity in O(deg(u) + deg(v)) time, as described in Section C.2. If GD is a plane10

graph, we splice it into the image graph G, again in O(deg(u) + deg(v)) time.11

This completes our implementation of segment expansion.12

6.3 Time Analysis and Heavy-Path Decomposition13

The total running time of a single edge expansion is at most14

O(σ(u) +σ(v) + 1) + O(deg(u) + deg(v)) + O(n(u)− n(u′) + n(v)− n(v′) + 1).15

We can charge the +1s in the first and third terms to the second term. Expanding any segment uv16

decreases the number of vertices of P by at least σ(u) +σ(v). It follows that
∑

uv(σ(u) +σ(v)) = O(n),17

where the sum is taken over all expanded segments uv.18

For any segment uv, we have deg(u)≤ 2(n(u)−n(u′))+2 and deg(v)≤ 2(n(v)−n(v′))+2. Moreover,19

if uv is a useful segment, we also have n(u) + n(v) > n(u′) + n(v′), which implies deg(u) + deg(v) ≤20

6(n(u)− n(u′) + n(v)− n(v′)). Thus, to bound the overall running time of our algorithm, it remains21

only to bound the sum
∑

uv(n(u)− n(u′) + n(v)− n(v′)).22

For purposes of analysis, we define a family tree T of all nodes that our algorithm ever creates.23

The root of T is a special node r, whose children are the nodes in the initial image graph (after node24

expansion). The children in T of any other node u are the new nodes [ua] created during the segment25

expansion that destroys u. (Likewise, the children of v are the new nodes [vz].) Each node u in T26

has weight n(u), which is the number of vertices located at u just before the segment expansion that27

destroys u, or equivalently, just after the segment expansion that creates u. To simplify analysis, we set28

n(r) = n, the initial number of vertices in P. Let C(u) denote the children of node u in T , and let u′29

denote the maximum-weight child of u. Finally, let N denote the set of all nodes in T , and let N ′ denote30

the set of all maximum-weight children of nodes in T .31

Expanding segment uv moves every vertex at u to one of the children of u, and then merges pairs of32

coincident vertices to form spurs; thus,33

n(u) = σ(u) +
∑

x∈C(u)

(n(x) +σ(x)).34

It follows that35

n(u)− n(u′) =
∑

x∈C(u)\{u′}
n(x) +

∑
x∈C(u)∪{u}

σ(x),36

and therefore,37

∑
u∈N

(n(u)− n(u′)) ≤
∑

x∈N\N ′
n(x) + 2

∑
x∈N

σ(x) =
∑

x∈N\N ′
n(x) +O(n).38

The following standard heavy-path decomposition argument [27,46] implies that
∑

x∈N\N ′ n(x) =39

O(n log n). If we remove the vertices in N ′ from T by contracting each node in N ′ to its parent, the40
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resulting tree has height O(log n), and the total weight of the nodes at each level is O(n). We conclude1

that the total time spent expanding segments is O(n log n), which completes the proof of Theorem 5.1.2

Acknowledgments. We thank to Sergio Cabello for pointing out the paper by Cortese et al. [17]. We3

are also grateful to Günter Rote, who spotted several small errors in an earlier version of the paper.4
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Appendix1

A Problems with Previous Definitions2

A.1 Crossing and Self-Crossing3

Many authors have offered the intuition that a polygon is weakly simple if and only if it is not “self-4

crossing”; indeed, this is the complete definition offered by some authors [1,30]. However, a proper5

definition of “self-crossing” is quite subtle; we believe the most natural and general definition is the6

following. Two paths P and Q are weakly disjoint if, for all sufficiently small ε > 0, there are disjoint7

paths P̃ and Q̃ such that dF(P, P̃)< ε and dF(Q, Q̃)< ε. Two paths cross if they are not weakly disjoint.8

Finally, a closed curve is self-crossing if it contains two crossing subpaths.9

However, this is not the definition of “crossing” that most often appears in the computational geometry10

literature; variants on the following combinatorial definition are much more common [10,19,34,47].11

Two polygonal chains P = [p0, p1, . . . , p`] and Q = [q0, q1, . . . , q`] with length ` ≥ 3 have a forward12

crossing if they satisfy two conditions:13

• pi = qi for all 1≤ i ≤ `− 1, and14

• the cyclic order of p0, q0, p2 around p1 is equal to the cyclic order of p`, q`, p`−2 around p`−1.15

Polygonal chains P and Q have a backward crossing if P and the reversal of Q have a forward crossing.16

(See Figure A.1.) Finally, two polygonal chains P and Q cross if some subpaths of P and Q have a simple17

crossing, a forward crossing, or a backward crossing.18

Figure A.1. A forward crossing and a backward crossing. The paths coincide within the cloud.

These two definitions appear to be equivalent for polygonal chains without spurs, but they are not19

equivalent in general; Figure A.2 shows two simple examples where the definitions differ. In fact, we20

know of no combinatorial definition of “crossing” that agrees with our topological definition for arbitrary21

polygonal chains with spurs.22

x y z
a

bc

d

a

p q r

zy

Figure A.2. Two pairs of crossing paths that do not satisfy the combinatorial definition. Vertices in each small circle coincide.

Several other authors (including the second author of this paper) have proposed the following more23

intuitive definition [22,44,50]: Two paths P and Q “cross” if, for arbitrarily small neighborhoods U of24

some common subpath, path P contains a point in more than one component of ∂U \Q; see Figure A.3(a).25

This definition is correct when P and Q are simple, but it yields both false positives and false negatives26

for non-simple paths, even without spurs. For example, the paths [w, x , y, z, x , y] and [z, x , y, z, x , w] in27
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Figure A.3(b) cross but do not satisfy this definition (because P has no points in ∂U \Q), and the paths1

[a, x , y, z, b] and [c, x , y, z, d] in Figure A.3(b) do not cross but satisfy this definition (because small2

neighborhoods of the common subpath are not simply connected).3

U

wx

y

z

x

y

z

a
b

cd

(a) (b) (c)

Figure A.3. (a) A common intuitive definition of “crossing”. (b) Crossing paths that do not satisfy this definition. (c) Non-
crossing paths that do satisfy this definition. Vertices in each small circle coincide.

A.2 Weak Simplicity4

Figure A.4. Meister’s enneagon
[a, b, c,α,β ,κ, A, B, C] is neither
weakly simple nor self-crossing.

Avoiding self-crossings is a necessary condition for a polygon to be weakly5

simple, but it is not sufficient. For example, a polygon that wraps 36

times around triangle (as considered by Meister [36]) and the polygon7

(a, x , b, x , c, x , a, x , b, x , c, x) in Figure 1.1 are neither self-crossing nor8

weakly simple.9

Toussaint [10,44,47,48] defines a polygon to be weakly simple if its10

rotation number is either+1 or−1 and any pair of points splits the polygon11

into two paths that cross. Here, the rotation number of a polygon is the12

sum of the signed external angles at the vertices of the polygon, divided13

by 2π, where each external angle is normalized to the interval (−π,π).14

Unfortunately, the rotation number of a polygon with spurs is undefined,15

since there is no way to determine locally whether the external angle at a spur should be π or −π. As a16

result, Toussaint’s definition can only be applied to polygons without spurs.17

Even for polygons without spurs, there is a more subtle problem with Toussaint’s definition. Consider18

the 14-vertex polygon (a, b, c, a, b, c, a, x ,y, z, x ,y, z, x) shown in Figures 2.1 and A.5. This polygon19

contains exactly two crossings: one between subpaths [x , a, b, c, a, b] and [c, a, b, c, a, x], and the other20

between subpaths [a, x ,y, z, x ,y] and [z, x ,y, z, x , a]. However, both pairs of crossing subpaths overlap21

not just geometrically, but combinatorially, as substrings of the polygon’s vertex sequence. In short, a22

polygon (or polygonal chain) can cross itself without being divisible into two paths that cross each other!23

Demaine and O’Rourke’s definition of a self-crossing linkage configuration [19] has the same problem.24

(Their definition also does not consider the possibility of backward crossings.)25

a

bc

x

y z

Figure A.5. A polygon (a, b, c, a, b, c, a, x , y, z, x , y, z, x) that is not weakly simple, even though its rotation number is 1 and
every pair of vertices splits the polygon into two paths that do not cross.



16 Hsien-Chih Chang, Jeff Erickson, and Chao Xu

Finally, it is unclear how we could use the combinatorial definitions of “crossing” and “self-crossing”1

that correctly handle these subtleties to quickly determine whether a polygon is weakly simple. Given a2

polygon P without spurs, there is a natural algorithm to determine whether P is self-crossing in O(n3)3

time—Find all maximal coincident subpaths via dynamic programming, and check whether each one is4

a forward or backward crossing—but this is considerably slower than the algorithms we derive from the5

topological definition of “weakly simple”.6

Several other papers offer definitions of “weakly simple” that are overly restrictive [7,8,28,35,41].7

For example, the LEDA software library [35] defines a polygon to be weakly simple it it has coincident8

vertices but otherwise disjoint edges; Bose and Morin [7,8] define a polygon to be weakly simple if the9

graph G defined by its vertices and edges is plane, the outer face of G is a cycle, and one bounded face10

of G is adjacent to all vertices. It is straightforward to construct weakly simple polygons that contradict11

these definitions.12

Finally, several recent papers define weak simplicity directly in terms of vertex perturbation, what13

we are calling rigid weak simplicity [18,21,29,32], without mentioning any connection to the more14

general (and arguably more natural) definition in terms of Fréchet distance.215

Again, we emphasize that the algorithms in all the papers we discuss in this section appear to be16

correct, and the simple polygons they construct are consistent with the corresponding papers’ definitions.17

B Proof of Theorem 2.118

In this section, we prove Theorem 2.1: Every weakly simple polygon with more than two vertices is19

rigidly weakly simple. In fact we will prove a stronger result; as explained in Sections 2.5 and A, most of20

the definitions of “weakly simple” in the past are either incorrect or restricted. However, several related21

notions turn out to be equivalent to our formal definition of weak simplicity. Here is the statement of22

the full theorem we are about to prove; we defer the definitions of the bold terms to later subsections.23

Theorem B.1. Let P be a polygon with more than two vertices. The following statements are equivalent:24

(a) P is weakly simple.25

(b) P is a compound-planar rigid clustered cycle [17].26

(c) P is strip-weakly simple.27

(d) P has a self-touching configuration [16].28

(e) P is rigidly weakly simple.29

These terms are roughly ordered from least restrictive to most restrictive. The backward implications30

(e)⇒(d)⇒(c)⇒(b) and (c)⇒(a) all follow immediately from the definitions. Most of the forward31

implications also follow directly from the definitions and the classical Jordan-Schönflies theorem: Every32

simple closed curve is isotopic to a circle. The only exceptions are (a)⇒(c), which requires a more careful33

topological argument, and (d)⇒(e), which relies on a nontrivial result of Ribó Mor [39, Theorem 3.1].34

B.1 Strip system35

Let G be the graph formed by the image of polygon P in the plane, whose vertices we call nodes and36

whose edges we call segments. For any real number ε > 0, the ε-strip system of P is a decomposition of37

a neighborhood of G into the following disks and strips.38

• For each node u of G, let Du denote the disk of radius ε centered at u.39

• For each segment uv of G, let Suv denote the strip of points with distance at most ε2 from uv that40

do not lie in the interior of Du or Dv .41

2As of June 2014, Wikipedia [49] offers two definitions of “weakly simple polygon”, both of which are completely wrong.
In particular, every planar straight-line graph is the limit, in the Hausdorff metric, of a sequence of simple polygons with a fixed
number of vertices.
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The circular arcs Au,v = Suv∩Du and Av,u = Suv∩Dv are called the ends of Suv . We assume ε is sufficiently1

small that these disks and strips are pairwise disjoint except that each strip intersects exactly two disks2

at its ends. Finally, let Uε denote the union of all these disks and strips.3

We say that a polygon P is strip-weakly simple if, for every sufficiently small ε > 0, there is a simple4

closed curve Q′ inside the neighborhood Uε that crosses the disks and strips of the strip system in the5

same order that P traverses the nodes and segments of G. Formally, if P = (p0, p1, . . . , pn−1), then the6

curve Q′ intersects ends only transversely, in the cyclic order7

Ap0,p1
, Ap1,p0

, Ap1,p2
, Ap2,p1

, . . . , Apn−1,p0
, Ap0,pn−1

.8

In particular, Q′ never intersects the same end consecutively more than once. Informally, we say that9

such a curve respects the strip system of P.10

Any closed curve Q that respects the ε-strip system of P satisfies the inequality dF(P,Q)< ε. It follows11

immediately that if P is strip-weakly simple, then P is also weakly simple. The converse implication12

requires a more careful topological argument.13

Lemma B.2. A polygon P is weakly simple if and only if P strip-weakly simple.14

Proof: Let P = (p0, p1, . . . , pn−1) be a weakly simple polygon. By breaking the edges if necessary, we15

assume that P has no forks. Fix a sufficiently small real number ε > 0, and let Q be a simple closed curve16

such that dF(P,Q)< ε2. This closed curve lies within the neighborhood Uε but does not necessarily have17

the correct crossing pattern with the arcs of the strip system. To complete the proof, we show how to18

locally modify Q into a simple closed curve Q′ that respects the strip system of P.19

We call a subpath of Q good if it lies entirely within a strip and has one endpoint on each end of20

that strip. If ε is sufficiently small, Q has exactly n good subpaths. We call the endpoints of the good21

subpaths good points. Removing the good subpaths of Q leaves exactly n bad subpaths; each bad22

subpath intersects only one disk Du, but may intersect any end on ∂Du an arbitrary (or even uncountably23

many!) number of times.24

For each node u, let bDu denote the complement of the unbounded component of the complement25

the union of Du with all bad subpaths with endpoints in Du. The subspace bDu is a closed topological26

disk, and for any two nodes u and v, the disks bDu and bDv are disjoint. The Jordan-Schönflies theorem27

implies that there is a homeomorphism hu : bDu → Du for each node u; without loss of generality, this28

homeomorphism fixes every good point on ∂Du.29

Let D−u denote the disk of radius ε− ε2 centered at u, and let h−u : bDu→ D−u be the homeomorphism30

obtained by applying hu and then scaling around u. Then, we compose the homeomorphism h−u into a31

single homeomorphism h− :
⊔

u
bDu→

⊔
u D−u .32

bDu D�u

Figure B.1. Subpaths of Q and Q′ within the strip system of node u.

Finally, let Q′ be the closed curve obtained from Q by replacing each bad subpath with its image33

under the homeomorphism h− and then, for each node u, connecting each good point on ∂Du with34

the corresponding point on ∂D−u with a line segment; see Figure B.1. Q′ is a simple closed curve that35

respects the strip system of P. It follows that P is strip-weakly simple. �36
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B.2 Compound-Planarity and Self-Touching Configurations1

It remains to define the terms in statements (b) and (d) in Theorem B.1. Both of these terms were2

previously defined using different and somewhat more cumbersome language. However, both definitions3

turn out to be almost equivalent to our definition of strip-weakly simple. We describe here only the4

relevant differences; we refer the reader to the original papers [16,17] for the original definitions.5

Following Cortese et al. [17,23,24], a polygon P can be represented as a compound-planar rigid6

clustered cycle if it respects an arbitrary topological strip system. In a topological strip system, the7

regions Du and strips Suv are arbitrary closed topological disks that contain the corresponding nodes8

and segments of G, where for any segment uv, the intersection Suv ∩ Du is a simple path, and otherwise9

all the disks are disjoint. The Jordan-Schönflies theorem implies that there is a homeomorphism of the10

plane to itself that maps any topological strip system of P to the ε-strip system of P, for any ε > 0. This11

gives us the equivalent (b)⇔(c).12

Following Connelly, Demaine and Rote [16], a polygon P can be represented as a self-touching13

configuration if, for any ε > 0, there is a simple closed curve Q that respects the ε-strip system of P,14

with the additional requirement that for each segment uv, the intersection Q ∩ Suv is a set of disjoint15

line segments from one end of Suv to the other. Given any closed curve Q′ that respects the ε-strip16

system of P, the Jordan-Schönflies theorem implies there there is a homeomorphism huv : Suv → Suv that17

straightens the good subpaths Q ∩ Suv . This gives us the implication (c)⇔(d).18

B.3 Rigidification Lemma19

Finally, a self-touching configuration has a δ-perturbation if there is a planar configuration of the same20

linkage such that corresponding joints (vertices of the linkage) in the two configurations have distance21

at most δ [16]. Equivalently, a δ-perturbation of P is a simple polygon at vertex distance at most δ22

from P. Ribó Mor [39, Theorem 3.1] proved that every self-touching configuration of a linkage with at23

least three vertices has a δ-perturbation, for any δ > 0. This theorem provides the final link (d)⇒(e),24

completing the proof of Theorem B.1.25

C Expansion26

The node expansion, bar expansion, and segment expansion operations used by the algorithms in27

Sections 3, 4, and 5 are all special cases of a more general operation, defined as follows. Let P =28

(p0, p1, . . . , pn−1) be an arbitrary polygon, and let D be an elliptical disk that intersects P transversely;29

that is, the boundary ellipse ∂D intersects at least one edge of P, is not tangent to any edge of P, and30

does not contain any vertex of P. To expand P inside D, we subdivide the edges of P that intersect ∂D31

by introducing new vertices at the intersection points, and then replace each maximal subpath of P32

inside D with a straight line segment between its endpoints on ∂D. In the rest of this section, we provide33

missing proofs and implementation details for the expansion operations in our earlier algorithms.34

C.1 Preserving Weak Simplicity35

Lemma C.1. Let P be a weakly simple polygon, and let D be an elliptical disk whose boundary inter-36

sects P transversely. The polygon P̃ obtained by expanding P inside D is weakly simple.37

Proof: Suppose P = (p0, p1, . . . , pn−1) is a weakly simple polygon. By Theorem 2.1, for any real number38

ε > 0, there is a simple polygon Q = (q0, q1, . . . , qn−1) such that dV (P,Q) < ε. If ε is sufficiently small,39

∂D also intersects Q transversely; moreover, ∂D intersects an edge of Q if and only if it intersects the40

corresponding edge of P in the same number of points. Let Q̃ be the polygon obtained by expanding Q41

inside D. See Figure C.1.42
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G
D

G̃

Q

Q̃

Figure C.1. Expansion in an ellipse. Left column: Expanding the image graph G. Top row: If P is weakly simple, there is a
nearby simple polygon Q. Right column: Expanding Q in the same ellipse yields a simple polygon Q̃. Bottom row: Q̃ is close
to P̃. (Some edges of Q̃ are curved in the figure to make them visible.) Compare with Figure 3.1.

Because Q is simple, the intersection Q ∩ D consists of disjoint simple subpaths. For any two such1

subpaths α and β , the endpoints of α must lie in one component of ∂D \ β , and thus the corresponding2

line segments α̃ and β̃ of Q̃ are also disjoint. It follows that Q̃ is also simple.3

Consider a vertex p̃ of P̃, located at the intersection of an edge pi pi+1 of P and the ellipse ∂D.4

Let θ denote the angle between pi pi+1 and (the line tangent to) ∂D at p̃. If ε is sufficiently small, the5

corresponding edge qiqi+1 of Q intersects ∂D at a point q̃ such that d(p̃, q̃)< 2ε/ sinθ . It follows that6

dV (P̃, Q̃)< 2ε/ sinθ ∗, where θ ∗ is the minimum angle of intersection between P and ∂D.7

Thus, for any δ > 0, we obtain a simple polygon Q̃ such that dF(P̃, Q̃)< δ by setting ε < (δ/2) sinθ ∗.8

We conclude that P̃ is weakly simple. �9

The converse of this lemma is not true in general; Figure C.2 shows a simple counterexample. However,10

as we argue below, the converse of this lemma is true for the specific expansions performed by our11

algorithms.12

Figure C.2. Careless expansion can make non-weakly simple polygons simple.

C.2 Implementation and Planarity Checking13

Given the polygon P and ellipse D, it is straightforward to compute the polygon P̃ resulting from14

expanding P inside D in O(n) time by brute force. For arbitrary expansions, computing and sorting15

the coordinates of the intersection points with the ellipse ∂D requires some care. In our algorithms,16

however, all expansion operations can be performed combinatorially, with no numerical computation17

whatsoever. The actual size and shape of the disk D is completely immaterial to our algorithms; our18

geometric description in terms of ellipses is intended to provide intuition and simplify our proofs.19

Our algorithms maintain a representation of the polygon P that allows us to compute the sequence of20

points where P crosses ∂D, in cyclic order around D, in constant time per intersection point. Specifically,21

for the node and segment expansions in Sections 3 and 5, this sequence of points can be extracted from22

the rotation system of the image graph G. For the bar expansions in Section 4, this sequence can be23



20 Hsien-Chih Chang, Jeff Erickson, and Chao Xu

extracted from the order of forks along each bar, and cyclic order of bars ending at each fork; both1

of these orders are computed as part of the bar decomposition. Given this sequence of points, which2

become the new vertices of P̃, we can perform the rest of the expansion in O(m) time, where m is the3

number of edges of P that intersect D.4

If P is not weakly simple, the expanded polygon P̃ may include pairs of edges that cross transversely.5

Let GD denote the graph whose vertices are the intersection points im P ∩ ∂D and whose edges are6

distinct edges of P̃ inside D and arcs of ∂D between vertices in cyclic order. P̃ contains crossing edges if7

and only if GD is not a plane graph.8

We can determine the planarity of GD as follows. First, add a new “apex” vertex a and connect it9

by edges to each of the vertices of GD. The resulting abstract graph G+D is 3-connected, and therefore10

has at most one planar embedding. Moreover, G+D is planar if and only if there is a planar embedding11

of GD with all vertices on a single face (which we take to be the outer face) in the correct cyclic order.12

Thus, GD is a plane graph if and only if G+D is a planar graph; there are several linear-time algorithms to13

determine whether a graph is planar [9,25,31,45]. Crudely, GD has at most O(m) vertices and edges, so14

the planarity check takes at most O(m) time.15

C.3 Node Expansion16

In Section 3, we define node expansion as expansion inside a circular disk Du of radius δ centered at17

some vertex u of P, where the radius δ is sufficiently small that Du intersects only edges incident to u.18

Lemma C.2 (Cortese et al. [17, Lemma 2]). Let P be an arbitrary polygon, and let P̃ be the result of19

a single node expansion. P is weakly simple if and only if P̃ is weakly simple.20

Proof: Suppose P̃ is weakly simple. Fix a sufficiently small positive real number ε < δ. By Theorem 2.1,21

there is a simple polygon Q̃ such that dF(P̃, Q̃) ≤ dV (P̃, Q̃) < ε. We easily observe that dF(P, P̃) < δ.22

Thus, the triangle inequality implies dF(P, Q̃)< dF(P, P̃)+dF(P̃, Q̃)< δ+ε < 2δ. Because δ is arbitrarily23

small, we conclude that P is weakly simple. Finally, Lemma C.1 completes the proof. �24

C.4 Bar Expansion25

Recall from Section 4 that a bar of P is a component of the union of all edges of P that lie on some26

line. Bar expansion is defined as expansion inside an ellipse Db defined by a bar b as follows. Fix a27

sufficiently small real number δ > 0. Let b◦ denote the subset of b containing points at distance at least28

2δ from the endpoints of b. Finally, Db is the ellipse whose major axis is b◦ and whose minor axis has29

length 2δ. We emphasize that the endpoints of the bar b are outside Db.

Figure C.3. Bar expansion. Compare with Figure 3.1.

30

Lemma C.3. Let P be a polygon without spurs, and let P̃ be the result of a single bar expansion. P is31

weakly simple if and only if P̃ is weakly simple.32
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Proof: Let b be the bar around which we are expanding, and let θ > 0 denote the minimum positive1

angle between b and any edge incident to but not contained in b. Consider a subpath [u, v, w, x] of P2

such that vw lies in the interior of Db and therefore in the bar b; the vertices u and x must lie outside Db.3

Let ṽ = uv ∩ ∂Db and w̃ = wx ∩ ∂Db; the line segment ṽw̃ is an edge of the expanded polygon P̃.4

We easily observe that d(v, ṽ) ≤ δ/ sin∠uvw ≤ δ/ sinθ and d(w, w̃) ≤ δ/ sin∠vwx ≤ δ/ sinθ , which5

implies that dF([u, v, w, x], [u, ṽ, w̃, x]) ≤ δ/ sinθ . By similar arguments for edges that share one or6

both endpoints of b, we conclude that dF(P, P̃)< δ/ sinθ .7

If P̃ is weakly simple, there is a simple polygon Q̃ such that dF(P̃, Q̃)≤ dV (P̃, Q̃)< δ, which implies8

dF(P, Q̃)< dF(P, P̃) + dF(P̃, Q̃)< δ(1+ 1/ sinθ) by the triangle inequality. Since this Fréchet distance9

can be made arbitrarily small by shrinking δ, we conclude that P is weakly simple. Finally, Lemma C.110

completes the proof. �11

If P has spurs, then bar expansions are no longer safe; the resulting polygon P̃ could be weakly simple12

even though P is not.13

C.5 Segment Expansion14

Recall from Section 5 that segment expansion means expansion around an ellipse that just contains15

one segment of the image graph G. For purposes of proving correctness, we specify this ellipse more16

carefully as follows. Fix a sufficiently small real number δ > 0. For any segment uv of G, let uv+ denote17

the subset of all points on the line through uv that have distance at most δ from uv. Let Duv denote the18

ellipse whose major axis is uv+ and whose minor axis has length 2δ. We emphasize that in contrast to19

bar expansion, the endpoints of segment uv lie inside Duv .20

To simplify the proof, we imagine that each segment expansion is preceded by a spur reduction,21

which replaces any subpath [u, v, . . . , u, v] that alternates between u and v at least twice with the single22

edge [u, v]. For example, the subpath [a, u, v, u, v, u, v, b] would become a single spur [a, u, v, u, b], and23

the subpath [a, u, v, u, v, u, v, u, v, z] would become a simple subpath [a, u, v, z].24

Lemma C.4. Let P be any polygon, and let P̄ be the result of a spur reduction on some segment uv of25

its image graph. If P̄ is weakly simple, then P is weakly simple.26

Proof: It suffices to consider the case where P̄ is obtained from P by replacing exactly one subpath27

[a, u, v, u, v, z] with the simpler subpath [a, u, v, z], for some nodes a 6= v and z 6= u. The argument for28

paths of odd length is similar, and the general case then follows by induction.29

Suppose P̄ is weakly simple. Then by Theorem 2.1 for any ε > 0, there is a polygon Q̄ with30

dV (P̄, Q̄)< ε. Let [a′, u′, v′, z′] be the subpath of Q̄ corresponding to the replacement subpath [a, u, v, z]31

of P̄. If ε is sufficiently small, we can find four points u1, u2, v1, v2 with the following properties:32

• d(u1, u′) = d(u2, u′) = d(v1, v′) = d(v2, v′) = ε,33

• d(u1, u′v′) = d(u2, u′v′) = d(u1, u′v′) = d(u2, u′v′) = ε2, and34

• the path [u′, u1, v1, u2, v2, v′] is simple and intersects Q̄ only at the edge u′v′.35

Let Q be the simple polygon obtained by replacing the edge [u′, v′] with [u′, u1, v1, u2, v2, v′]. Then we36

have dF(P,Q)< 2ε by the triangle inequality, which implies that P is weakly simple. �37

The following lemma was proved by Cortese et al. [17, Lemma 3]; we provide an alternative geometric38

proof here.39

Lemma C.5. Let P be a spur-reduced polygon with more than two distinct vertices, and let P̃ be the40

result of a safe segment expansion. P is weakly simple if and only if P̃ is weakly simple.41
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Proof: Let uv be the safe segment around which we are expanding, and let θ be the smallest positive1

angle between uv and any other segment incident to u or v. By the previous lemma, we can assume2

without loss of generality that P does not contain the subpath [u, v, u, v].3

Suppose P̃ is weakly simple. Fix a real number ε� δ/2n, and let Q̃ be a simple polygon such that4

dV (P̃, Q̃) < ε, guaranteed by Theorem 2.1. If P has no spurs at uv, the proof of Lemma C.3 implies5

that dF(P, Q̃) < δ(1+ 1/ sinθ) and we are done. However, if P has a spur at uv, the Fréchet distance6

between P and Q̃ is approximately the length of uv. In this case, we iteratively modify Q̃ into a new7

simple polygon Q such that dF(P,Q)< δ/ sinθ + ε < δ(1+ 1/ sinθ).8

Suppose P has k distinct spurs at uv. For each integer i from 0 to k, let Di be the elliptical disk9

concentric with Duv but whose axes are shorter by 2(i + 1)ε. For example, the major axis of D0 has10

length |uv|+ 2δ− 2ε and the minor axis has length 2δ− 2ε. Every vertex of Q̃ lies outside each disk Di ,11

and if ε is sufficiently small, every edge of Q̃ that intersects D also intersects each disk Di .12

We iteratively define a sequence of polygons Q̃ =Q0,Q1, . . . ,Qk as follows. Fix an index i ≥ 0. Let Ui13

and Vi denote the subsets of ∂Di within distance δ/ sinθ of u and v, respectively. If δ is sufficiently14

small, the elliptical arcs Ui and Vi are disjoint. Every segment in Q̃ i ∩Di has endpoints in Ui ∪Vi . We call15

a segment in Q̃ i ∩ Di a left segment if both endpoints are in Ui, or a right segment if both endpoints16

are in Vi. Every left segment corresponds to a subpath of P of the form [a, u, v, u, b], and every right17

segment corresponds to a subpath of P of the form [y, v, u, v, z].18

Suppose Q̃ i ∩ Di includes at least one left segment; right segments are handled symmetrically. Then19

some component Ri of Di \ Q̃ i has both a left segment and an arc of Vi on its boundary. Suppose the left20

segment corresponds to the subpath [a, u, v, u, b] of P. Then P̃ contains the subpath [a, [ua], [ub], b],21

where [ua] = ua∩∂Duv and [ub] = ub∩∂Duv , polygon Q̃ contains an edge a′b′ such that d(a′, [ua])< ε22

and d(b′, [ub])< ε, and finally ai bi = a′b′ ∩ Di is the left segment in question. Fix a point zi ∈ R∩ Vi,23

and let Q̃ i+1 be the simple polygon obtained by replacing the line segment ai bi with the path [ai , zi , bi].24

Arguments in the proof of Lemma C.3 imply that d(u, a′)< δ/ sinθ + ε and d(u, b′)< δ/ sinθ + ε,25

which in turn imply that d(u, ai)< δ/ sinθ + ε and d(u, bi)< δ/ sinθ + ε. It now follows that26

dF
�
[[ua], u, v, u, [ub]], [a′, ai , zi , ai , b′]

�
< δ/ sinθ + ε.27

The final polygon Qk has no left or right segments in Dk; thus, every spur in P is within Fréchet28

distance δ/ sinθ + ε of the corresponding path Qk. We conclude that dF(P,Qk) < δ/ sinθ + ε, and29

Lemma C.1 completes the proof. �30

D Generalizations and Open Problems31

D.1 Polygonal Chains32

A straightforward generalization of our algorithm can determine whether a given polygonal chain is33

weakly simple in O(n2 log n) time, by checking a polygon that traverses the chain twice.34

Lemma D.1. The polygonal chain P = [p0, p1, . . . , pn−1, pn] is weakly simple if and only if the polygon35

P̂ = (p0, p1, . . . , pn−1, pn, pn−1, . . . , p1) is weakly simple.36

Proof: Suppose P is weakly simple. Then for any δ > 0, there is a simple curve Q with dF(P,Q) < δ.37

In fact, we can assume Q is a simple polygonal chain, as Ribó Mor’s results [39] extend to polygonal38

chains. Fix a positive real number ε� δ such that the intersection of Q with any closed disk of radius ε39

centered on a point of Q is connected; it suffices for ε be less than the minimum local feature size40

of Q [40]. Let Q̂ denote the boundary of the ε-neighborhood of Q. Then Q̂ is a simple closed curve41

where dF(P̂, Q̂)< δ+ 2ε, which implies that P̂ is weakly simple.42
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On the other hand, suppose the polygon P̂ is a weakly simple. Then for any δ > 0 there is a simple1

polygon Q̂ such that dV (P̂, Q̂)< δ. Let Q be either subpath of Q̂ between the vertex corresponding to p02

to the vertex corresponding to pn. Then Q is a simple polygonal chain with dV (P,Q)< δ, which implies3

that P is weakly simple. �4

D.2 Graph Drawings5

There is a natural generalization of weak simplicity to arbitrary graph drawings. Any graph can be6

regarded as a topological space, specifically, a branched 1-manifold. A planar drawing of a graph H is7

just a continuous map from H to the plane; a drawing is simple or an embedding if it is injective. The8

Fréchet distance between two planar drawings P and Q of the same graph H is naturally defined as9

dF(P,Q) = inf
φ : H→H

max
x∈H

d(P(φ(x)),Q(x))10

where the infimum is taken over all automorphisms of H (homeomorphisms from H to itself). We can11

define a planar drawing P to be weakly simple (or a weak embedding) if, for any ε > 0, there is a12

planar embedding Q of H with dF(P,Q)< ε. This definition is consistent with our existing definitions13

of weakly simple closed curves in the plane. It is a natural open question whether one can decide in14

polynomial time whether a given straight-line drawing of a planar graph is a weak embedding; Cortese15

et al. [17] observe that it is not sufficient to check whether every cycle in the drawing is weakly simple.16

However, a generalization of our algorithm actually solves this problem when the graph H being17

drawn is a disjoint union of cycles. In fact, the algorithm is unchanged except for the termination18

condition; when the main loop terminates, the image graph is the union of disjoint cycles and single19

segments, and P is weakly simple if and only if each component of P either traverses some component20

of the image graph exactly once or maps to an isolated segment. Moreover, using the doubling trick21

described above in Section D.1, our algorithm can also be applied to disjoint unions of cycles and paths.22

Details will appear in the full version of the paper.23

Any algorithm to determine whether a graph drawing is a weak embedding must handle the special24

case where the image of the drawing is a simple path. This special case is equivalent to the strip planarity25

problem recently introduced by Angelini et al. [3] as a variant of clustered planarity [17,23] and level26

planarity [33]. The strip planarity problem is open even when the graph H is a tree.27

D.3 Surface Graphs28

Our algorithm can also be generalized to surfaces of higher genus. A closed curve P in an arbitrary29

surface Σ is weakly simple if for any ε > 0 there is a simple (injective) closed curve Q in the same30

surface, such that dF(P,Q) < ε, where Fréchet distance is defined with respect to an arbitrary metric31

on Σ.32

Theorem D.2. Given a closed walk P of length n in an arbitrary surface-embedded graph, we can33

determine whether P is weakly simple in O(n log n) time.34

Our algorithms for detecting weakly simple polygons use the geometry of the plane only in the35

preprocessing phase, where we apply a sweep-line algorithm to remove forks and to construct the36

image graph. Cortese et al. already describe topological versions of our expansion operations, which use37

topological disks instead of ellipses, as well as their proofs of correctness [17]. The only minor subtlety38

is the termination condition when the underlying surface is non-orientable. For any integer k > 0, let γk
39

be the cycle that wraps around some simple cycle γ exactly k times. Then γk is weakly simple if and40

only if k = 1, or k = 2 and γ is orientation-reversing [14,38,51]. Again, details will appear in the full41

version of the paper.42
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D.4 Faster?1

Finally, perhaps the most immediate open question is how to improve the O(n2 log n) running time of2

our algorithm for arbitrary polygons with both spurs and forks. A direct generalization of bar expansion3

seems unlikely; Lemma C.3 does not generalize to polygons with spurs. Nevertheless, we conjecture that4

the quadratic blowup from subdividing edges at forks can be avoided, and that the running time can be5

improved to O(n log n).6


	Introduction
	Background
	Curves and Polygons
	Distances
	Planar Graphs
	Weak Simplicity
	Earlier Definitions of Weak Simplicity

	No Spurs or Forks
	Constructing the Image Graph
	Node Expansion
	Global Inflation

	Forks But No Spurs
	Polygons with Spurs
	Segment Expansion
	Useful Segments
	Termination and Analysis

	Fast Implementation
	Data Structures
	Segment Expansion
	Time Analysis and Heavy-Path Decomposition

	Problems with Previous Definitions
	Crossing and Self-Crossing
	Weak Simplicity

	Proof of Theorem 2.1
	Strip system
	Compound-Planarity and Self-Touching Configurations
	Rigidification Lemma

	Expansion
	Preserving Weak Simplicity
	Implementation and Planarity Checking
	Node Expansion
	Bar Expansion
	Segment Expansion

	Generalizations and Open Problems
	Polygonal Chains
	Graph Drawings
	Surface Graphs
	Faster?


