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Abstract

We prove new upper and lower bounds on the number of
homotopy moves required to tighten a closed curve on a compact
orientable surface (with or without boundary) as much as possible.
First, we prove that Ω(n2)moves are required in the worst case to
tighten a contractible closed curve on a surface with non-positive
Euler characteristic, where n is the number of self-intersection
points. Results of Hass and Scott imply a matching O(n2) upper
bound for contractible curves on orientable surfaces. Second,
we prove that any closed curve on any orientable surface can
be tightened as much as possible using at most O(n4) homotopy
moves. Except for a few special cases, only naïve exponential
upper bounds were previously known for this problem.

1 Introduction

A closed curve γ on a surface Σ can be tightened via
homotopy to another closed curve γ′ with the minimum
number of self-intersections within its homotopy class.
Classical results in combinatorial topology [1,2,43] imply
that any generic curve γ can be tightened using a finite
sequence of the following local transformations, which we
call homotopy moves:

• 1��0: Remove/add an empty monogon.

• 2��0: Remove/add an empty bigon.

• 3�3: Flip a triangle; equivalently, move a strand
across a self-intersection.

Each homotopy move is performed inside an open disk
embedded in Σ, meeting γ as shown in Figure 1.1. These
moves are analogues of the Reidemeister moves performed
on planar diagrams of knots and links [2,43].
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Figure 1.1. Homotopy moves 1�0, 2�0, and 3�3.

Previous work. A proof that O(n2) moves suffice to
tighten a generic closed curve in the plane, with n self-
intersections, is implicit in Steinitz’s proof that every three-
connected planar graph is the one-skeleton of a convex
polyhedron [45, 46]. Specifically, Steinitz proved that
any non-simple closed curve with no empty monogons
contains a minimal bigon which can be emptied with 3�3
moves and then removed by a 2�0 move. This quadratic
bound has been reproved and generalized by several other
authors [23,24,30,40,48,49]. Chang and Erickson recently
improved the upper bound to O(n3/2) and proved that such
bound is optimal in the worst case [11].

Hass and Scott [32] proved that on any orientable
surface, every non-simple closed curve that is homotopic
to a simple closed curve has either an empty monogon or
a minimal bigon. Thus, any such curve can be simplified
using O(n2) moves following Steinitz’s technique. Chang
and Erickson proved a matching Ω(n2) lower bound for
non-contractible curves on surfaces with positive genus and
no boundary [11]. de Graaf and Schrijver [28] proved that
arbitrary curves on the annulus can be tightened using at
most O(n2) moves.

However, no polynomial upper bound is known in
the most general case when the surface and the curve
are both unrestricted. Hass and Scott [33] proved that
any closed curve on any surface can be simplified using
a finite number of homotopy moves that never increase
the number of self-intersections. The same result was
later extended to multicurves by de Graff and Schrijver
[28], and proven again using a combinatorial algorithm by
Paterson [41]. This monotonicity result, together with
asymptotic bounds by Bender and Canfield [7] on the
number of distinct (rooted) 4-regular maps with n vertices
and genus g, immediately implies an upper bound of the
form nO(g)2O(n); this is the best upper bound previously
known. Chang and Erickson conjectured that an arbitrary



(multi-)curve on any surface can be tightened using at most
a quadratic number of moves [11].

For a more extended survey of the problem and its
close relation to electrical transformations, see Chang and
Erickson [11].

New results. First, we construct an infinite family of
contractible curves on the annulus that require at least
Ω(n2) moves to tighten.

Theorem 1.1. In the annulus, there are contractible curves
with n self-intersections that require Ω(n2) homotopy
moves to tighten.

Our new lower bound generalizes to any surface that
has the annulus as a covering space—that is, any surface
except for the sphere, the disk, or the projective plane;
see Theorem 3.1. Thus, this result extends and gener-
alizes Chang and Erickson’s Ω(n2) lower bound for non-
contractible curves on the torus [11]. This result is also
applied in an upcoming companion paper [10] to derive a
quadratic lower bound on the number of facial electrical
transformations to reduce a 2-terminal plane graph in the
worst case.

Next, we turn our attention to upper bounds. We
separately consider orientable surfaces with and without
boundary.

Theorem 1.2. On an oriented surface of genus g with
b > 0 boundary components, a closed curve with n self-
intersections can be tightened using at most O((g + b)n3)
homotopy moves.

Theorem 1.3. On an oriented surface without boundary,
a closed curve with n self-intersections can be tightened
using at most O(n4) homotopy moves.

The latter result is surprisingly more complex and
subtle, with multiple components and tools drawn from
discrete and computational topology. We consider surfaces
with boundary first, not only because we obtain a stronger
bound (at least when the genus and number of boundary
components are small), but also because the proof is
simpler and provides important intuition for the more
difficult proof of Theorem 1.3. We emphasize that the
bound in Theorem 1.3 is independent of the genus of the
surface.

Our main technical contribution is to extend Steinitz’s
bigon reduction technique to singular bigons—bigons that
wrap around the surface and overlap themselves but
nevertheless have well-defined disjoint bounding paths—
whose existence is guaranteed by a theorem of Hass and
Scott [32, Theorem 2.7]. (A formal definition of the
singular bigon can be found in Section 4.1.) To work with
singular bigons, it is conceptually easier to look at a lift of
the bigon in the universal cover. Unlike the case when the

bigon is embedded, moving the two bounding paths of the
bigon now also moves all their translates in the universal
cover, which potentially changes the structure inside the
lifted bigon. We overcome this difficulty by carefully
subdividing the homotopy into phases, each performed
inside a subset of the universal cover that maps injectively
onto the original surface.

Our proof of Theorem 1.3 also uses a discrete analog of
the classical isoperimetric inequality in the hyperbolic plane
to bound the number of vertices inside the lifted bigon
(area) in terms of the number of vertices on its boundary
(perimeter). To make the presentation self-contained, we
provide an elementary proof of this inequality using the
combinatorial Gauss-Bonnet theorem [6,22,37,42].

Related work. The results of Hass and Scott [33] and
de Graaf and Schrijver [28] both use discrete variants of
curve-shortening flow. Grayson [29] and Angenent [3]
provide similar results using differential curvature flow
when the curves and surfaces are well-behaved. None
of these algorithms provide any bound on the number of
homotopy moves performed as a function of the number
of self-intersections.

The geometric intersection number of a closed curve γ
on a surface is the number of self-intersections of a tighten-
ing of γ. Several methods for characterizing and computing
geometric intersection numbers are known [12,13,14,27,
36]; however, none of these earlier results offers a full
complexity analysis. Arettines [4] described a polynomial-
time algorithm to compute geometric intersection number
of a curve on an orientable surface with boundary, starting
from the reduced crossing sequence of the curve with
a system of arcs (defined in Section 4.2). Despré and
Lazarus [17] described the first fully-analyzed polynomial-
time algorithm to compute the geometric intersection
number of arbitrary closed curves on arbitrary orientable
surfaces. Both of these algorithms follow a high-level
strategy similar to ours, based on Hass and Scott’s results
about singular bigons, but neither algorithm computes an
explicit sequence of homotopy moves. Instead, Arettines
removes singular bigons by permuting their intersections
along each arc, and Despré and Lazarus remove singular
bigons by directly smoothing their endpoints. Further
references can be found in Despré and Lazarus [17].

2 Background

Throughout the paper we assume the reader is familiar with
some of the fundamentals of the combinatorial topology of
surfaces. We refer the readers to Massey [39], Stillwell [47],
and Giblin [26] for comprehensive introductions to the
topic.

Surfaces and curves. A surface Σ is a 2-dimensional
manifold. In this paper, all surfaces are assumed to be
compact, connected, and oriented unless stated otherwise.

The authors have placed this paper in the public domain.



Formally, a closed curve in a surface Σ is a continuous
map γ: S1 → Σ, and a path in Σ is a continuous map
η: [0,1]→ Σ. Depending on the context, we sometimes
abuse the terminology and refer to a continuous map
η: (0,1)→ Σ as a path as well. A curve is either a closed
curve or a path; its parametrization equips the curve with
an orientation. We consider only generic curves, which
are injective except at a finite number of self-intersections,
each of which is a transverse double point; thus the double
points avoid the boundary of Σ. A curve is simple if it is
injective. A subpath of a curve γ is the restriction of γ to
an interval; again, a subpath is simple if the restriction is
injective. Unless specified otherwise, we do not distinguish
between γ and its image.

The image of any non-simple closed curve γ has a
natural structure as a 4-regular map, whose vertices are
the self-intersections of γ, edges are maximal subpaths
between vertices, and faces are components of Σ\γ. Every
vertex x of γ has four corners adjacent to it; these are
the four components of Dx \ γ where Dx is a small disk
neighborhood of x . Two curves γ and γ′ are isomorphic if
their images define combinatorially equivalent maps; we
will not distinguish between isomorphic curves.

Monogons and Bigons. A monogon for a closed
curve γ is a subpath of γ that begins and ends at some
vertex x , intersects itself only at x , and bounds a disk in
Σ containing exactly one of the four corners at x . A bigon
for γ consists of two simple interior-disjoint subpaths of γ,
sharing endpoints x and y, that together bound a disk in
Σ containing exactly one corner at x and one at y. Since
each subpath is simple, the vertices x and y are distinct.
A monogon or bigon is empty if it does not intersect the
rest of γ. Notice that a 1�0 move is applied to an empty
monogon, and a 2�0 move is applied to an empty bigon.
A bigon is minimal if the disk it bounds does not contain
a smaller bigon. Note that a minimal bigon may share
boundary paths with a larger bigon containing it.

Winding numbers. Let γ be a generic closed curve in
the plane, and let p be any point not in the image of γ. Letρ
be any ray from p to infinity that intersects γ transversely.
The winding number wind(γ, p) is the number of times γ
crosses ρ from right to left, minus the number of times
γ crosses ρ from left to right. The winding number does
not depend on the particular choice of ray ρ. All points
in the same face of γ have the same winding number; the
winding numbers of two adjacent faces differ by 1, with the
higher winding number on the left side of the edge. If p
lies on the curve γ, we define wind(γ, p) to be the average
of the winding numbers of the faces incident to p with
appropriate multiplicity—two faces if p lies on an edge,
four if p is a vertex. The winding number of a vertex is
always an integer.

Smoothing. Suppose that γ is a generic closed curve
and x is a vertex of γ. Let Dx be a small disk neighborhood
of x . Then we may smooth the curve γ at x by: removing

γ∩ Dx from γ, adding in two components of ∂Dx \ γ, and
obtaining another 4-regular map. There are two possible
smoothings. One results in another closed curve, with
the orientation of one subpath of γ reversed; the other
breaks γ into a pair of closed curves, each retaining its
original orientation. In the latter smoothing, let γ+x and
γ−x respectively denote the closed curve locally to the left
and to the right of x , as shown in Figure 2.1. For any
vertex x and any other point o, we have wind(γ, o) =
wind(γ+x , o) +wind(γ−x , o).

x

�+
x

��
x

Figure 2.1. Smoothing a vertex. The left smoothing preserves

orientation; the right smoothing preserves connectivity.

Homotopy. A homotopy between two closed curves
γ and γ′ on the same surface Σ is a continuous deformation
from one curve to the other. Formally this is a continuous
map H : S1 × [0,1]→ Σ such that H(·, 0) = γ and H(·, 1) =
γ′. Similarly, a homotopy between two paths η and η′ is
a continuous deformation that keeps the endpoints fixed.
Formally this is a continuous map H : [0, 1]× [0, 1]→ Σ
such that H(·, 0) = γ, and H(·, 1) = γ′, and both H(0, ·) and
H(1, ·) are constant functions. Two curves are homotopic,
or in the same homotopy class, if there is a homotopy
from one to the other. A closed curve γ is contractible if
it is homotopic to a constant curve; intuitively, this says
that γ can be continuously contracted to a single point.
Classical topological arguments [1, 2, 43] imply that two
curves are homotopic if and only if one can be transformed
into the other by a finite sequence of homotopy moves.
As any contractible curve γ can be made simple through
homotopy moves, we sometimes refer to the tightening
process of γ as simplifying γ.

Covering spaces and lifts. A surface Σ̂ is a covering
space of another surface Σ if there is a covering map from
Σ̂ to Σ; that is, a continuous map π: Σ̂→ Σ so that each
point x on Σ has a neighborhood U ⊂ Σ so that π−1(U) is a
union of disjoint open sets U1∪U2∪· · · , and, for any i, the
restriction π|Ui

: Ui → U is a homeomorphism. A lift of a
curve α in Σ to the covering space Σ̂ is a curve α̂ in Σ̂ such
that α = π ◦ α̂. When γ is a closed curve, we sometimes
abuse notation and define a lift of γ to Σ̂ to be an infinite
path γ̂ in Σ̂ such that γ(t mod 1) = π ◦ γ̂(t). A translate
of a lift α̂ is any other lift of α to the same covering space;
equivalently, two paths α̂, β̂ : [0,1]→ Σ̂ are translates of
each other if and only if π ◦ α̂= π ◦ β̂ .

3 Quadratic Lower Bound

We now prove a quadratic lower bound on the worst-case
number of homotopy moves required to tighten closed

The authors have placed this paper in the public domain.



curves in the annulus; we extend this lower bound to more
complex surfaces in Section 3.3.

Rather than considering the standard annulus S1 ×
[0, 1], it will be more convenient to work in the punctured
plane R2\{o}, which is homeomorphic to the open annulus
S1 × (0,1); here o is an arbitrary point, which we call
the origin. Winding numbers for closed curves in the
punctured plane are defined by considering them as curves
in the plane. Two closed curves in the punctured plane
are homotopic if and only if they have the same winding
number around the origin: wind(γ, o) = wind(γ′, o) [34].
We refer to any closed curve in the punctured plane as an
annular curve.

For any homotopy in the punctured plane, homotopy
moves across the face containing o are forbidden. This
make the quadratic lower bound possible; without this
restriction, any planar curve can be simplified using at
most O(n3/2) moves [11].

3.1 Traces and Types

To simplify the presentation, we identify the vertices before
and after a 3�3 move as indicated in Figure 1.1. Each
3�3 move involves three subpaths of γ, which intersect
in three vertices; intuitively, each of these vertices moves
continuously across the opposite subpath. Thus, in any
homotopy from one curve γ to another curve γ′, each
vertex of the evolving curve either starts as a vertex of
γ or is created by a 0�1 or 0�2 move, moves continuously
through a finite sequence of 3�3 moves, and either ends
as a vertex of γ′ or is destroyed by a 1�0 or 2�0 move.

Let H be a homotopy that transforms γ into γ′,
represented as a finite sequence of homotopy moves. We
define a graph T(H), called the trace of H, whose nodes
are the vertices of γ, the vertices of γ′, and the 1��0 and
2��0 moves in H; each edge of T(H) corresponds to the
lifetime of a single vertex of the evolving curve. Every node
of T (H) has degree 1 or 2; thus, T (H) is the disjoint union
of paths and cycles.

We define the type of any vertex x of any annular
curve γ as the winding number of the simpler curve γ+x
around the origin o (not around the vertex x); that is, we
define type(γ, x ) := wind(γ+x , o). Vertex x is irrelevant
if either type(γ, x) = 0 or type(γ, x) = wind(γ, o) and
relevant otherwise. Two vertices x and y have comple-
mentary types if type(γ, x) + type(γ, y) = wind(γ, o), or
equivalently, if wind(γ+x , o) = wind(γ−y , o). If two vertices
have complementary types, then either both are relevant
or both are irrelevant.

Lemma 3.1. The following hold for any annular curve:

(a) Each 1��0 move creates or destroys an irrelevant
vertex.

(b) Each 2��0 move creates or destroys two vertices with
complementary types and identical winding numbers.

(c) Each 3��3 move changes the winding numbers of three
vertices, each by exactly 1.

(d) Except as stated in (a), (b), and (c), homotopy moves
do not change the type or winding number of any
vertex.

Proof: Claim (a) is immediate. Up to symmetry, there are
only two cases to consider to prove claim (b): The two
sides of the empty bigon are oriented in the same direction
or in opposite directions. In both cases, γ+x and γ−y are
homotopic and wind(γ, x) = wind(γ, y), where x and y
are the vertices of the bigon. See Figure 3.1. Claim (c)
follows immediately from the observation that each vertex
involved in a 3�3 move passes over the curve exactly once.
Finally, claim (d) follows from the fact that winding number
is a homotopy invariant; specifically, if there is a homotopy
between two planar curves γ and γ′ whose image does not
include a point p, then wind(γ, p) = wind(γ′, p) [34]. �
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Figure 3.1. The vertices of empty bigons have complementary types

and identical winding numbers.

Lemma 3.1 implies that no homotopy move transforms
a relevant vertex into an irrelevant vertex or vice versa, and
that relevant vertices are neither created by 0�1 moves nor
destroyed by 1�0 moves. Let R(H) denote the subgraph of
edges in the trace T (H) that correspond to relevant vertices
of the evolving curve. Again, R(H) is the disjoint union
of paths and cycles. Each path in R(H) connects either
two vertices of γ with complementary types, two vertices
of γ′ with complementary types, or a vertex of γ and a
vertex of γ′ with identical types. Intuitively, each path in
R(H) is the record of a single relevant vertex alternately
moving forward and backward in time, reversing directions
and types at every 0��2 move.1 We say that the nodes at
the end of each path in R(H) are paired by the homotopy
H. We emphasize that different homotopies may lead to
different pairings.

Between 2��0 moves, a relevant vertex can participate
in any finite number of 3�3 moves. By Lemma 3.1(c),

1Readers familiar with particle physics may recognize R(H) as an
elementary type of Feynmann diagram, where complementary relevant
vertices play the role of particle-antiparticle pairs.

The authors have placed this paper in the public domain.



each 3�3 move changes the winding numbers of each of
the three moving vertices by 1, and Lemma 3.1(d) implies
that the winding number of a vertex changes only when it
participates in a 3�3 move. Thus, the homotopy H must
contain at least

1
3

∑

x∼y

�

�wind(x)−wind(y)
�

�

3�3 moves, where the sum is over all pairs of paired
vertices of R(H), and the winding number of each vertex is
defined with respect to the curve (γ or γ′) that contains it.

3.2 A Bad Contractible Curve

Proof (of Theorem 1.1): For any pair of relatively prime
integers p and q, the flat torus knot T(p,q) is (any curve
isomorphic to) the parametrized curve

((cos(qθ ) + 2) cos(pθ ), (cos(qθ ) + 2) sin(pθ )) ,

which has exactly (|p| − 1) · |q| vertices and winding num-
ber p around the origin.

For any odd integer p, let Πp denote the closed curve
obtained by placing a scaled copy of T(−p, 1) inside the
innermost face of T(p, 2) and attaching the two curves
as shown in Figure 3.2. For purposes of illustration, we
homotope all crossings into a narrow horizontal rectangle
to the right of the origin, which is also where we join the
two curves. The resulting curve Πp has winding number
zero around the origin and thus is contractible, and it has
3(p− 1) vertices. Within the rectangle, the curve consists
of 2p simple paths, which we call strands; the endpoints of
the strands are connected by disjoint parallel paths outside
the rectangle. In the left half of the rectangle, strands are
directed downward; in the right half, strands are directed
upward. All but two strands connect the top and bottom
of the rectangle; the only exceptions are the strands that
connect the two flat torus knots.

We catalog the vertices of Πp as follows. In the left
half of the rectangle, Πp has one vertex ai with type i and
winding number i, for each integer i from 1 to p. In the
right half, Πp has four vertices for each index i between 1
and (p− 1)/2 (see Figure 3.3):

• two vertices x i and x ′i with type −i and winding
number 2i;

• one vertex yi with type i and winding number p− 2i;
and

• one vertex zi with type i − p and winding number
p− 2i.

Every homotopy from Πp to a simple closed curve defines
an essentially unique pairing of the vertices of Πp; without
loss of generality, ai is paired with x ′i , ap−i is paired with zi ,

Figure 3.2. Our bad example curve Π13 in the punctured plane.

and x i is paired with yi , for each integer i between 1 and
(p−1)/2. Thus, the number of 3�3 moves in any homotopy
that contracts Πp is at least

1
3

(p−1)/2
∑

i=1

�|i − 2i|+ |(p− i)− (p− 2i)|+ |2i − (p− 2i)|�

=
1
3

(p−1)/2
∑

i=1

�

2i + |4i − p|�

=
1
3

 

(p−1)/2
∑

i=1

2i +
(p−1)/2
∑

j=1

(2 j + 1)

!

=
p(p− 1)

6
.

This completes the proof. �

3.3 More complicated surfaces

We extend Theorem 1.1 to surfaces with more complex
topology as follows. Recall that a closed curve in any
surface Σ is non-contractible if it is not homotopic to
a constant curve and two-sided if it has a neighborhood
homeomorphic to the annulus. Let Σ be a compact surface,
possibly with boundary or non-orientable, that contains
a simple two-sided non-contractible cycle α; the only
compact surfaces that do not contain such a cycle are the
sphere, the disk, and the projective plane. To create a
bad example curve for Σ, we simply embed our previous
annular curve Πp in an annular neighborhood A of α.
The resulting curves are still contractible in Σ and, as we
will shortly prove, still require Ω(n2) homotopy moves to
simplify.

However, winding numbers are not well-defined in
surfaces of higher genus, so we need a more careful
argument to prove the quadratic lower bound. Instead

The authors have placed this paper in the public domain.
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Figure 3.3. Vertices of Π13 annotated by type (bold red numbers next to each vertex) and winding number (thin blue numbers directly below each

vertex).

of reasoning directly about homotopy moves on Σ, we
lift everything to a certain covering space of Σ previously
considered by several authors [15,18,32,35,44].

Theorem 3.1. Let Σ be a compact connected surface,
possibly with boundary or non-orientable (but not the
sphere, the disk, or the projective plane). For any positive
integer n, there is a contractible curve with n vertices in Σ
that requires Ω(n2) homotopy moves to simplify.

Proof: Let α be a simple two-sided non-contractible closed
curve in Σ, that is, a non-contractible curve that lies in an
open neighborhood A homeomorphic to the open annulus
S1 × (0,1). Every compact connected surface (other than
the sphere, the disk, or the projective plane) contains such
a curve.

The cyclic covering space Σ̂α of Σ with respect to α
is the quotient of the universal covering space of Σ by the
infinite-cyclic subgroup of the fundamental group π1(Σ)
generated by α. Let π: Σ̂α → Σ be the corresponding
covering map. Standard covering space results imply that
α has a lift α̂ in Σ̂α which is a simple closed curve. Also, α̂
has an open annular neighborhood Â with non-contractible
boundary components in Σ̂. (See, for example, Schrijver
[44, Proposition 2].) Moreover, we may assume that the
restriction of the covering map π to Â is a homeomorphism
to A.

Let γ̂ be an arbitrary contractible curve in Â, and let γ
be the projection of γ̂ to A. The two curves γ and γ̂ have
the same number of vertices and edges. Any homotopy
H : S1 × [0,1]→ Σ from γ to a point lifts to a homotopy
Ĥ : S1 × [0,1] → Σ̂α from γ̂ to a point. Each homotopy
move in Ĥ projects to a homotopy move in H, but H may
include additional homotopy moves, where the strands
involved are projected from different parts of the covering
space. It follows that simplifying γ in Σ requires at least as
many homotopy moves as simplifying γ̂ in Σ̂.

The lower bound now follows directly from Theorem
1.1, by setting γ̂ = Πp for some p = Θ(n), as defined in
Section 3.2. �

Theorem 3.1 strengthens an Ω(n2) lower bound of
Chang and Erickson for tightening non-contractible curves
in orientable surfaces [11]. Results of Hass and Scott [32,

Theorem 2.7] imply that our lower bound is tight for
the Möbius band, the Klein bottle, and any orientable
surface except the sphere or the disk; any contractible
curve on these surfaces can be simplified using at most
O(n2) homotopy moves.

4 Upper Bound: Surfaces with Boundary

In this section, we consider the case of surfaces with
boundary. The benefit of working with such surfaces is
that the fundamental group of surface with boundary is
free; intuitively on such surface one can always find a way
to decrease the complexity of the bigon wrapping around
the surface. Later in Section 5 we will describe a similar
algorithm for closed curves on an arbitrary orientable
surface without boundary. The reader is encouraged to
follow the order of the presentation and get an intuitive
sense of how the bigon removal algorithm operates in this
simpler setting.

4.1 Singular Bigons and Singular Monogons

Let γ be a closed curve on a surface Σ. Recall that an
(embedded) bigon in γ consists of two simple interior-
disjoint subpaths of γ in Σ with the same endpoints that
bound a disk and enclose one corner at each of those
endpoints. Following Hass and Scott [32], a singular bigon
in γ consists of two subpaths of γ that are disjoint in the
domain, and the two subpaths are homotopic to each other
in Σ. Similarly, a singular monogon is a subpath of γ
whose two endpoints are identical in Σ, and that forms a
null-homotopic closed curve in Σ.

Figure 4.1. A basic singular bigon and a basic singular monogon in the

annulus.

The authors have placed this paper in the public domain.



Our algorithm relies on the following simple property
of singular monogons and bigons, which follows immedi-
ately from their definition.

Lemma 4.1. The bounding paths of any singular monogon
or bigon in γ cross γ at most 2n times.

An important subtlety of Hass and Scott’s definition is
that a lift of a singular bigon to the universal cover is not
necessarily an embedded bigon. First, the lifted boundary
paths of the bigon need not be simple or disjoint. More
subtly, the endpoints of the lifted bigon might not enclose
single corners: an embedded bigon looks like a lens Ç,
but a lift of a singular bigon might resemble a heart ♥
or a butt C C. Similarly, a lift of a singular monogon is not
necessarily an embedded monogon; the lifted subpath might
self-intersect way from its endpoint, and it may not enclose
a single corner at its endpoint.

We define a singular monogon or singular bigon to be
basic if any of its lifts on the universal cover is an embedded
monogon or bigon, respectively. Hass and Scott proved that
any closed curve with excess intersections on an arbitrary
orientable surface, with or without boundary, must contain
a singular monogon or a singular bigon [32, Theorem 4.2].
However, a close reading of their proof reveals that the
singular monogon or singular bigon they find is in fact
basic. We thus restate their result without repeating the
proof.

Lemma 4.2 (Hass and Scott [32]). Let γ be a closed
curve on an arbitrary orientable surface. If γ has excess
intersections, then there is a basic singular monogon or a
basic singular bigon in γ.

This lemma is the foundation of our upper bound
proofs, both in this section and the next. Given a curve γ
with n vertices that is not already tightened, we decrease
the number of vertices of γ as follows. If γ contains
an embedded monogon or bigon, we delete it, following
Steinitz’s algorithm [45,46], using O(n) homotopy moves.
Otherwise, if γ contains a basic singular bigon, we attempt
to remove it, essentially by swapping the two bounding
curves; however, if at any point γ has only n−2 vertices, we
immediately abort the bigon removal. Finally, if γ contains
no basic singular bigons, Lemma 4.2 implies that γ must
contain a basic singular monogon; we perform a single 0�1
move to transform it into a basic singular bigon (as shown
in Figure 4.2) and then defer to the previous case.

Figure 4.2. A single 0�1 move transforms a basic singular monogon

into a basic singular bigon.

The curve γ is tightened after repeating the previous
reduction process at most n times. Thus, Theorem 1.2
follows immediately from the following lemma, which we
prove in the remainder of this section.

Lemma 4.3. Let Σ be an orientable surface of genus g
with b > 0 boundary components, and let γ be a closed
curve in Σ with n vertices that contains a basic singular
bigon, but no embedded monogons or bigons. The number
of vertices of γ can be decreased by 2 using O((g + b)n2)
homotopy moves.

4.2 Removing a Basic Singular Bigon

Fix a surface Σ and a closed curve γ with n vertices,
satisfying the conditions of Lemma 4.3. A system of arcs∆
on the surface Σ is a collection of simple disjoint boundary-
to-boundary paths that cuts the surface Σ open into one
single polygon. Euler’s formula implies that every system
of arcs contains exactly 2g + b − 1 arcs. Cutting the
surfaceΣ along these arcs leaves a topological disk P whose
boundary alternates between arcs (each arc in∆ appearing
twice) and subpaths of the boundary. We refer to P as the
fundamental polygon of Σ with respect to ∆.

For any closed curve γ on any orientable surface Σ
with boundary, there is a system of arcs ∆ satisfying the
following crossing property: Each arc in ∆ intersects
each edge of γ at most twice, and only transversely. (For
examples of such a construction, see Colin de Verdière and
Erickson [15, Section 6.1] or Erickson and Nayyeri [21,
Section 3].) The fundamental polygon induces a tiling of
the universal cover ofΣ; we call each lift of the fundamental
polygon a tile.

Any basic singular bigon β of γ in Σ lifts to a bigon β̂
in the universal cover of Σ, with two bounding subpaths λ
and ρ that are disjoint in the domain of γ except possibly
at their endpoints. Since β̂ bounds a disk in the universal
cover, any lift of any arc of ∆ intersects β̂ an even number
of times. The intersection of a tile with β̂ may have several
components; we call each component a block. A block is
transverse if it is adjacent to both λ and ρ, and extremal
otherwise. The transverse blocks have a natural linear
ordering B1, . . . , Bk along either λ or ρ.

Our process for removing the bigon β̂ has three stages:
(1) Sweep inward over the extremal blocks, (2) sweep
across the sequence of transverse blocks, and finally (3)
remove one small empty bigon at a corner of β̂ . The first
two stages are illustrated in Figure 4.3. This homotopy
projects to a homotopy on Σ. We will prove that at the end
of this bigon removal process, γ has exactly n− 2 vertices.

To simplify our algorithm, we actually abort the
bigon-removal process immediately as soon as γ has
n − 2 vertices; however, for purposes of analysis, we
conservatively assume that the removal process runs to
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Figure 4.3. Removing a basic singular bigon on a surface with boundary. Top: Sweeping extremal blocks. Bottom: Sweeping transverse blocks.

Figure 4.4. Sweeping a minimal embedded bigon bounded by a subpath of γ (black) and a subpath of ∆ (red). Thin (blue) lines are other subpaths of γ.

completion. We separately analyze stage (1) and stage (2)
next.

Lemma 4.4. All extremal blocks can be removed from β̂
using O((g + b)n2) moves, without changing the number
of vertices of γ.

Proof: We actually describe how to remove every embed-
ded bigon formed by a subpath of γ and a subpath of any
arc in∆ using at most O((g+ b)n2) homotopy moves, each
of which is a 3�3 move. Every extremal block in β̂ projects
to such an embedded bigon, because tiles (and a fortiori
blocks) project injectively into the surface Σ.

We proceed inductively as follows. Suppose γ and ∆
bound an embedded bigon, since otherwise there is nothing
to prove. Let B be a minimal embedded bigon with respect
to containment, bounded by a subpath δ of an arc in∆, and
a subpath α of the curve γ. Because γ has no embedded
monogons or bigons, every subpath of γ inside B is simple,
and every pair of such subpaths intersects at most once.
Moreover, every such subpath has one endpoint on α and
the other endpoint on δ. Thus, the number of intersections
between δ and γ is equal to number of intersections
between α and γ \α.

To remove B, we first sweep the subpath α across B
until the bigon defined by α and δ has no vertices in its
interior, and then sweep α across δ without performing
any additional homotopy moves, as shown in Figure 4.4.
Because the number of intersections between δ and γ is
equal to number of intersections between α and γ \α, this
sweep does not change the number of vertices of γ.

The pattern of subpaths inside B implies that if the
interior of B contains any vertices of γ, then some triangular
face of γ lies inside B and adjacent to an edge of α. Thus,
we can reduce the number of interior vertices of B with a
single 3�3 move. It follows inductively that the number

of moves required to sweep over B is equal to the number
of vertices in the interior of B, which is trivially at most n.

Removing a minimal embedded bigon between γ and
∆ takes at most n moves and decreases the number of
intersections between γ and ∆ by 2. Each of the O(g + b)
arcs in ∆ intersects each of the O(n) edges of γ at most
twice by the crossing property of ∆, so the total number of
such intersections is at most O((g + b)n). Finally, because
every move is a 3�3 move, we never change the number
of vertices of γ. The lemma follows immediately. �

Now let B1, B2, . . . , Bk denote the sequence of trans-
verse blocks of β̂ , and for each index 1 ≤ i < k, let δi
denote the common boundary Bi and Bi+1. Each path δi
is a subpath of a lift of some arc in ∆. For notational
convenience, let x = δ0 and y = δk denote the endpoints
of β̂ , so that each block Bi has paths δi−1 and δi on its
boundary.

Recall that λ and ρ denote the bounding subpaths
of β̂ . To sweep over the transverse blocks, we intuitively
maintain a path φ from a point on λ to a point on ρ, which
we call the frontier. The frontier starts as a trivial path at
the endpoint δ0. Then we repeatedly sweep the frontier
over Bi from δi−1 to δi , as i goes from 1 to k. After these
k iterations, the frontier lies at the endpoint δk.

Our actual homotopy modifies the bounding curves λ
and ρ as shown in the bottom of Figure 4.3. Intuitively, the
prefixes of λ and ρ “behind” φ are swapped; the frontier
itself is actually an arbitrarily close pair of crossing subpaths
connecting the swapped prefixes of λ and ρ with the
unswapped suffixes “ahead” of the frontier. Replacing the
single path φ with a close pair of crossing paths increases
the number of homotopy moves to perform the sweep by
only a constant factor.

Lemma 4.5. Sweeping φ over one transverse block re-
quires at most O(n) homotopy moves.

The authors have placed this paper in the public domain.



Proof: Consider a sweep over Bi , from δi−1 to δi . We start
by moving the frontier just inside Bi , without performing
any homotopy moves. The main sweep passes φ over every
vertex in Bi , including the vertices on the bounding paths
λ and ρ, stopping φ just before it reaches δi . Finally,
we move the frontier onto δi without performing any
homotopy moves. Because the interior of each block
projects injectively onto the surface, no other translate
of φ intersects Bi during the sweep.

Up to constant factors, the number of homotopy moves
required to sweep Bi is bounded by the number of vertices
inside Bi , plus the number of intersections between γ and
the bounding subpaths δi−1 or δi . There are trivially at
most n vertices in Bi , and the crossing property of the
system of arcs ∆ implies that each arc in ∆ intersects γ at
most O(n) times. �

With the two previous lemmas in hand, we are finally
ready to prove Lemma 4.3. Let γ be a closed curve in Σ
with a basic singular bigon β , let β̂ be a lift of β to the
universal cover of Σ, and let λ be one of the bounding
paths of β̂ .

The definition of singular bigon immediately implies
that λ contains at most 2n edges of γ. Each of these edges
crosses each arc of∆ at most twice, and there are O(g + b)
arcs in ∆, so λ crosses ∆ at most O((g + b)n) times. Each
transverse block Bi except the last can be charged to the
unique intersection point δi ∩ λ. We conclude that β̂
contains O((g + b)n) transverse blocks.

Sweeping inward over all extremal blocks in β̂ requires
O((g + b)n2) homotopy moves and does not change the
number of vertices of γ. Sweeping over all O((g + b)n)
transverse blocks requires a total of O((g+ b)n2) homotopy
moves. Sweeping the transverse blocks has the same effect
as smoothing one endpoint of the bigon and doubling the
other endpoint, as shown on the bottom right of Figure 4.3,
which implies that γ still has n vertices. Removing the final
empty bigon with a single 2�0 move reduces the number
of vertices to n− 2.

This completes the proof of Lemma 4.3, and therefore
the proof of Theorem 1.2.

5 Upper Bound: Surfaces Without Boundary

Finally, we prove our upper bound for closed curves on
surfaces without boundary. We follow the same high-level
strategy described in Section 4; consequently, it suffices
to prove that a basic singular bigon can be removed using
O(n3) homotopy moves.

Instead of a system of arcs, we decompose the surface
using a reduced cut graph; this cut graph induces a regular
hyperbolic tiling in the universal cover of the surface. In
Section 5.1 we describe how to compute a cut graph whose
induced tiling intersects the bounding paths of any basic

singular bigon at most O(n) times. In Section 5.2, we
apply Dehn’s isoperimetric inequality for regular hyperbolic
tilings [16] to bound the number of tiles lying in the
interior of the bigon. Then we describe our process for
removing a singular bigon at two levels of detail. First,
in Section 5.3, we provide a coarse description of the
homotopy as a sequence of moves in the bigon graph,
which is the decomposition of the lifted bigon by the
tiling. We process the regions in this decomposition in
a particular order to keep the number of chords created
by translates of the moving path under control. Finally in
Section 5.4 we obtain the actual sequence of homotopy
moves by carefully perturbing the curves in the previous
homotopy into general position; bounding the intersections
between perturbed chords is the most delicate portion of
our analysis.

5.1 Dual Reduced Cut Graphs

A combinatorial surface G decomposes a closed surface Σ
without boundary into vertices, edges, and faces, such that
each vertex is a point, each edge is a simple path, and
each face is an open disk on the surface Σ. The dual of a
combinatorial surface G is another combinatorial surface
G∗ on the same surface Σ as G. The vertices, edges, and
faces of G∗ correspond to faces, edges, and vertices of G,
respectively. The dual combinatorial surface G∗ inherits a
natural embedding from the embedding of G in the surface
Σ. A tree-cotree decomposition of a combinatorial surface
G is a partition (T, L, C) of the edges of G into three pairwise
disjoint subsets, where T induces a spanning tree in G, C
induces a spanning tree of G∗, and L is the set of leftover
edges E(G) \ (T ∪ C). The number of edges in L is twice
the genus of the underlying surface Σ, when Σ has no
boundary.

Let γ be a closed curve on Σ; we temporarily view
γ as a 4-regular graph embedded on the surface. Let G
be a refinement of this graph obtained by triangulating
every face. A dual reduced cut graph X (hereafter, just
cut graph) is a combinatorial surface obtained from a tree-
cotree decomposition (T, L, C) of G as follows: Start with
the subgraph of G∗ induced by the dual spanning tree C∗

and the leftover edges L∗, repeatedly delete vertices with
degree one, and finally perform series reductions on all
vertices with degree two [20]. To be consistent with the
terminology in Section 4.2, we call the edges of X arcs.

Notice that X inherits a natural embedding into Σ from
G∗, which in turn inherits an embedding into Σ from the
embedding of G. Euler’s formula implies that the cut graph
X has 4g − 2 vertices, 6g − 3 arcs, and 1 face. If one cut
opens the surface Σ along X , one obtains a polygon with
12g−6 sides, known as a fundamental polygon of Σ with
respect to X . The fundamental polygon induces a tiling
of the universal cover Σ̂ of Σ; we refer to each copy of
the fundamental polygon as a tile. By construction, the
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cut graph X is a combinatorial surface of Σ that satisfies
the following crossing property: Each edge of γ crosses X
at most once. We emphasize that this crossing property
might no longer hold when we start moving the curve γ.
Compared with the system of arcs we used in Section 4, the
cut graph gives us an improved upper bound on the number
of tiles intersecting the bounding paths of an embedded
bigon in the universal cover of Σ.

5.2 Isoperimetric Inequality

Consider an embedded bigon β̂ in the universal cover of
surface Σ, which is a lift of a basic singular bigon in the
curve γ on Σ. Unlike the case of surface with boundaries in
Section 4, there will be tiles lying completely in the interior
of the bigon β̂ , without intersecting the two bounding paths,
and thus require additional work. We bound the number of
such interior tiles using a discrete isoperimetric inequality,
which is a consequence of Dehn’s seminal observation
that the graph metric defined by a regular tiling of the
hyperbolic plane is a good approximation of the continuous
hyperbolic metric [16]. We provide a self-contained
proof of this inequality, using a combinatorial version of
the Gauss-Bonnet theorem described at varying levels of
generality by Banchoff [6], Lyndon and Schupp [38], and
Gersten and Short [25].

Let G be a combinatorial surface on surface Σ, and let
χ(Σ) be the Euler characteristic ofΣ, defined as the number
of vertices and faces in G minus the number of edges in
G, which is equal to χ(Σ) = 2 − 2g − b, where g is the
genus of Σ and b is the number of boundary components of
Σ. One can view the definition of the Euler characteristic
of Σ through a different lens. Assign an arbitrary real
“interior angle” ∠c (measured in circles2) to each corner
c of Σ. Define the curvature κ(v) of a vertex v in Σ as
1− 1

2 deg v −∑c∈v(
1
2 −∠c), and the curvature κ( f ) of a

face f in Σ as 1−∑c∈ f (
1
2 −∠c). The following equality is

known as the combinatorial Gauss-Bonnet theorem:
∑

v

κ(v) +
∑

f

κ( f ) = χ(Σ).

Now we are ready to bound the number of tiles that lies
completely within a bigon using the combinatorial Gauss-
Bonnet theorem. Let Σ be a surface of genus g without
boundaries, let γ be a closed curve on Σ, and let X be
the cut graph of γ on Σ. Let β̂ be an embedded bigon in
the universal cover of Σ that is a lift of a basic singular
bigon of γ in Σ, intersecting the lift of X transversely. Let
the perimeter LX (β̂) of β̂ be the number of intersections
between β̂ and edges of the tiling induced by X . Let
the area AX (β̂) be the number of components in the

2As opposed to radians or degrees. Why would anyone refer to a right
angle other than one-fourth of a circle?

intersection between all tiles of X and the disk bounded by
β̂ .

Lemma 5.1. Let Σ be a closed surface of genus g > 1, let
γ be a closed curve on Σ, let X be the cut graph of γ on Σ,
and let β̂ be any embedded bigon that intersects the lift of
X transversely. We have AX (β̂) = O(LX (β̂)).

Proof: First we connect the number of tiles that lie
completely in the interior of β̂ with the number vertices
on the boundary of the union of these tiles. Consider a
region R in the universal cover of Σ that is the union of
a subset of tiles. The perimeter L of R is the number
of vertices on the boundary of R, and the area A of R
is the number of tiles that lies in R. Every boundary
vertex is either incident to either one interior face and
has degree 2 (convex) or incident to two interior faces and
has degree 3 (concave). If we assign angle 1/3 (circles)
to each corner, then every interior vertex has curvature
0, every face has curvature 2 − 2g, every convex vertex
has curvature 1/6, and every concave vertex has curvature
−1/6. The combinatorial Gauss-Bonnet theorem implies
that the number of convex vertices minus the number of
concave vertices is (12g − 12)A+ 6. Thus, some face f
must be incident to more than 12g − 12 convex vertices,
which implies that f is incident to at most 4 interior edges.
(Otherwise, because each convex vertex must be incident no
interior edges, a face f incident to at least 5 interior edges
must be incident to at most 12g − 6− (5+ 1) = 12g − 12
convex vertices, a contradiction.) Removing f decreases A
by 1 but decreases L by at least 12g−14. The isoperimetric
inequality A≤ L/(12g − 14) now follows immediately by
induction.

Now consider the embedded bigon β̂ . Since each
vertex in X has degree exactly 3, the perimeter LX (β̂)
is an upper bound on the number of vertices on the
boundary of the union of tiles that lies completely within
the disk bounded by β̂ . The number of components in the
intersection of the interior of β̂ and the tiles of X that do
not completely lie within β̂ is also at most LX (β̂). Therefore
the area AX (β̂) is at most O(LX (β̂)), as claimed. �

5.3 Coarse Homotopy

Let β be a basic singular bigon in γ, let β̂ be its lift to the
universal cover, and let λ and ρ be the bounding paths
of β̂ . Our goal is to remove this bigon by swapping the
bounding paths λ and ρ, which has the same effect as
smoothing the two endpoints of β , reducing the number
of vertices of γ by 2. See Figure 5.1. In this section, we
construct a homotopy from λ to ρ, not as a sequence of
individual homotopy moves, but as a coarser sequence of
moves in a certain planar graph. Applying the reversal of
this sequence of moves to ρmoves it to the original position
of λ, completing the exchange of the two bounding paths.
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Figure 5.1. Swapping the two bounding paths of a bigon.

Bigon graph. The tiling of the universal cover of Σ
induced by the cut graph X decomposes the disk bounded
by β̂ into pieces; we call this decomposition the bigon
graph. More formally, we define the bigon graph G as
follows. The vertices of G are the two endpoints of β̂ , the
intersections of λ and ρ with edges of the tiling, and the
vertices of the tiling in the interior of β̂ . The edges of G
are subpaths of λ∪ρ and subpaths of tiling edges bounded
by these vertices. Finally, the bounded faces of G are the
components of the intersection of each tile with the interior
of β̂ . We emphasize that the intersection of a single tile
with the interior of β̂ may have several components.

Lemma 4.1 and the crossing property of the cut graph
X imply that at most O(n) tiles of Σ intersect the two
bounding paths λ and ρ of β̂ . Thus Lemma 5.1 implies that
the bigon graph G has at most O(n) faces, and therefore
O(n) vertices and edges by Euler’s formula.

Discrete homotopy. We now construct a discrete ho-
motopy [8,9,31] through the bigon graph G that transforms
one bounding path λ of the bigon into the other bounding
path ρ. This discrete homotopy is a sequence of walks
in G—which may traverse the same edge in G more than
once—rather than a sequence of generic curves. In the next
section, we will carefully perturb these walks into generic
curves, and implement each step of the discrete homotopy
as a finite sequence of homotopy moves.

Let W be a walk on the bigon graph G from one
endpoint of the bigon to the other. A spike in W is an
edge of G followed immediately by the same edge in the
opposite direction. We define two local operations for
modifying W ; see Figure 5.2.

• Face move: Replace a single edge e in W with the
complementary boundary walk around some face f
of G that is incident to e.

• Spike move: Delete a spike from W and decrease the
length of W by two.

We emphasize that after a face move across face f , the
frontier walk W may traverse some edges of f more than
once; moreover, these multiple traversals may or may not
be spikes. Because every face f is a disk and the edge
e and its complementary boundary walk share endpoints,
any face move can be implemented by a homotopy across f .

Similarly, a spike move can be implemented by a homotopy
in the edge containing the spike. A discrete homotopy in
G is a finite sequence of face moves and spike moves. We
refer to the current walk W at any stage of this homotopy
as the frontier walk.

Figure 5.2. A face move and a spike move.

We construct our discrete homotopy from λ to ρ as
follows. The initial frontier walk W is equal to λ (viewed
as a walk in G). Let T be an arbitrary spanning tree of
the bigon graph G that includes every edge in ρ, and let C
be the complementary spanning tree of the dual graph G∗.
We first perform a face move within in each face of G,
following a preorder traversal of C; that is, we move W
across a face f only after moving W across the parent of f
in C . (See Figure 5.3.) After all faces have been processed,
we repeatedly remove spikes from W , until no more spikes
remain. It is not hard to see that we require one spike move
for each edge of T that is not an edge of ρ. At the end of
this procedure, the frontier walk W coincides with ρ.

Figure 5.3. The frontier walk after eight face moves, following a

preorder traversal of the dual spanning tree.

This sequence of graph moves guarantees a crucial
multiplicity property: At every stage of the discrete
homotopy, the frontier walk W traverses each edge of G
at most twice. Specifically, W traverses each edge of λ at
most once, and W traverses an edge e that is not in λ only
if a face move has been performed on a face incident to
e. Each edge is incident to at most two faces. It follows
immediately that the length of W (that is, the number of
edges) is always at most twice the number of edges of G.

5.4 Fine Homotopy

Finally, we refine the discrete homotopy in the previous
section, first by perturbing the moving frontier walk so
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that after every graph move, γ is a generic curve, and
then by decomposing the perturbed graph moves into a
finite sequence of homotopy moves. We will denote the
perturbed frontier path by ω, reserving W for the original
frontier walk in G.

Bubble-wrapping. We define a convenient family O

of open sets, which we call bubbles, that covers the bigon
graph G and its bounded faces, following a construction
of Babson and Chan [5]. (See also Erickson [19].) Each
bubble in O is either a vertex bubble, an edge bubble, or
a face bubble. The vertex bubbles are disjoint open balls
around the vertices of G. The edge bubbles are disjoint
open neighborhoods of the portions of the edges of G
outside the vertex bubbles. Finally, the face bubbles are
disjoint open neighborhoods of the portions of the faces of
G outside the vertex and edge bubbles. The intersection
of all pairs of two bubbles of different types is the disjoint
union of open disks, one for each incidence between the
corresponding vertex and edge, vertex and face, or edge
and face of G. Every bubble projects injectively onto the
original surface Σ. We also require the intersection of
all pairs of translates of edge bubbles to be the disjoint
union of open disks, one for each intersection between the
corresponding translates of edges of G. See Figure 5.4.

Figure 5.4. Vertex bubbles, edges bubbles, and face bubbles.

Perturbing the frontier. Interactions between trans-
lates of the moving frontier present a significant subtlety in
our algorithm. To control the complexity of all the curves
inside the bubbles of G, we carefully perturb the frontier
(and therefore its translates) within each bubble.

The augmented bigon graph G̃ is a refinement of the
bigon graph G, defined as the arrangement of the bounding
paths λ and ρ, the portion of the tiling induced by the cut
graph X inside the disk of the bigon, and the portion of all
translates of λ and ρ inside the disk of the bigon. Each
edge of G is a walk in G̃, and each face of G is decomposed
into one or more faces of G̃. The complexity of G̃ within
each face of G is at most the complexity of (the lift of) γ in
the same face, as translates of λ and ρ are still subpaths
of the lift of γ. As the interior of each tile embeds into the
surface Σ, the complexity of G̃ inside each face of G is at
most O(n), where n is the number of vertices in the original
curve γ.

To see why this refinement is necessary, observe that
during the discrete homotopy described in Section 5.3,
translates of the frontier walk W do not necessarily follow
the bigon graph G; however, the intersection of every
translate of W with the bigon does lie in the augmented
bigon graph G̃. In summary, between face or spike moves,
the frontier walk W and all its translates are walks in G̃.

Within any vertex bubble, G and G̃ are identical,
because translates of λ and ρ do not intersect the vertices
of G. Within any face bubble of G, each translate of W
follows only translates of λ or ρ, because face bubbles
do not intersect the tiling. Finally, the intersection of G̃
with any edge bubble of G is homeomorphic a straight line
segment (the edge of G) crossed by multiple disjoint line
segments (translates of λ and ρ).

We model each edge bubble as a Euclidean rectangle
containing several straight segments parallel to the edge,
which we call tracks, arranged so that if an edge e of G
intersects an edge e′ of a translate of G, each track in the
edge bubble of G intersects each track in the translated
edge bubble of e′ transversely. (The metric is merely a
convenience, so that we can write “straight” and “parallel”;
the tracks can be defined purely combinatorially.)

Now consider a walk W in the augmented bigon
graph G̃. This walk traverses a sequence of subpaths of
edges of translates of the original bigon graph G. To define
the perturbed walk ω, we perturb each maximal subpath
along edge e onto a unique track in the edge bubble of e.
Moreover, when W switches from edge e to another edge e′

(including at the tip of a spike, which we view as a zero-
length walk), the perturbed walk ω has a corner at the
intersection of those two tracks. Thus, every subpath of ω
inside the edge bubble of some edge e alternates between
tracks parallel to other translated edges and tracks parallel
to e. Intuitively, we say that the resulting frontier ω sticks
to the original walk W , and in particular, subpaths of ω
within an edge bubble stick to the corresponding edge of G.
See Figure 5.5.

Figure 5.5. Closeup of the augmented bigon graph G̃ near edge e of the
bigon graph G, showing subpaths of γ sticking to subpaths in e, including
the perturbations of two spikes.

Graph moves revisited. In our perturbed homotopy,
we require every face move to be performed entirely within
the corresponding face bubble, and every spike move to be
performed entirely within the corresponding edge bubble,
while maintaining the track structure of the perturbed
frontier ω. To this end, we introduce two additional graph
moves.
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• Edge move: Move a subpath sticking to an edge e of
G into an incident face bubble, within the edge bubble
of e.

• Vertex move: Move the curve across a vertex v of G
within the corresponding vertex bubble.

Figure 5.6. An edge move and a vertex move.

These moves can be seen as preprocessing steps to ensure
that a subpath of ω lies in the proper face or edge bubble
before performing a face or a spike move. Thus, our
perturbed coarse homotopy still follows the outline given
in Section 5.3, but now each face move is prefaced by a
single edge move, and each spike move is prefaced by a
single vertex move, as shown in Figure 5.7.

Figure 5.7. Top: An edge move followed by a face move. Bottom: A

vertex move followed by a spike move.

We emphasize that every face move is performed
entirely within a face bubble, every edge move and spike
move is performed entirely within an edge bubble, and
every vertex move is performed entirely within a vertex
bubble.

The final homotopy. Finally, we construct a sequence
of homotopy moves from one bounding path λ of the
lifted bigon β̂ to (a small open neighborhood of) the other
bounding path ρ, by decomposing the perturbed graph
moves.

Lemma 5.2. LetΣ be an orientable surface without bound-
ary, and let γ be a closed curve with n vertices on Σ
that contains a basic singular bigon, but no embedded
monogons or bigons. A basic singular bigon can be removed
from γ using O(n3) homotopy moves, without changing
the rest of γ.

Proof: Let β be a basic singular bigon in γ; let β̂ be the lift
of β to the universal cover; let λ and ρ be the bounding
curves of β̂; let G be the corresponding bigon graph; and
let G̃ be the augmented bigon graph. Our earlier analysis
implies that G has at most O(n) vertices, edges, and faces.
Thus, moving λ to ρ requires at most O(n) graph moves.

Each of these graph moves is performed within a
bubble in O that embeds inΣ, and therefore can be realized
using O(m) homotopy moves, where m is the number of
vertices of γ within that bubble before the graph move
begins. It remains only to prove the following claim:

At every stage of the algorithm, the number of
vertices of γ inside any bubble is at most O(n2).

The proof of this claim is surprisingly delicate. All the prop-
erties we mentioned in each of the previous subsections
contribute to avoid the danger of increasing the number
of vertices in γ uncontrollably during the process: (a)
Dividing the homotopy into graph moves based on faces
in G (Section 5.1 and Section 5.2), (b) the order of face
moves (Section 5.3), and (c) the way each graph move is
implemented (Section 5.4). For the rest of the proof we
refer to subpaths of translates of the frontier ω within a
bubble simply as chords.

As there are at most O(n) faces in G, the multiplicity
property of the frontier walk W implies that W always has
length at most O(n), and therefore is incident to at most
O(n) faces. This in turn implies that there are at most O(n)
chords inside any bubble.

The maximum number of vertices of curve γ inside a
bubble at any stage of the homotopy is at most the sum
of the number of vertices of γ before the homotopy, the
number of intersections between the original γ and the
chords, and the number of intersections between pairs of
chords. The first term is n by definition; Lemma 4.1 implies
that the second term is also at most O(n). To bound the
last term, we separately consider each type of bubble:

• Face bubbles: Because vertices and edges of the tiling
do not lie inside a face bubble, every chord within a
face bubble sticks to some translates of λ or ρ between
any two graph moves. The multiplicity property of the
frontier (walk) implies that at most two translates of
ω stick to each edge e of translates λ or ρ; these two
translates intersect O(1) times in the neighborhood
of e. Thus, at most O(n) vertices are created by
intersecting chords within any face bubble.

• Edge bubbles: Fix an arbitrary edge e of G. Our
construction ensures that the chords within each the
edge bubble of e are polygonal curves, and the number
of intersections between two such chords does not
exceed the sum of the number of segments in each of
them. The multiplicity property of the frontier walk
W implies that each edge of G is traversed by W at
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most twice, and therefore each chord sticking to e
consists of at most O(1) segments. It follows that any
pair of chords that stick to e intersect O(1) times. We
conclude that at most O(n2) vertices are created by
intersecting chords within any edge bubble.

• Vertex bubbles: Fix an arbitrary vertex v of G. No
translates of λ and ρ intersect the vertex bubble of v.
Thus, each chord in the vertex bubble sticks to a walk
on the edges of the tiling incident to v, which must
have length 2. Our construction ensures that each
pair of these chords intersects at most O(1) times. We
conclude that at most O(n2) vertices are created by
chords intersecting within any vertex bubble.

This concludes the proof. �

Summary. We conclude by summarizing our proof of
Theorem 1.3. Let γ be a closed curve on an orientable
surface without boundary. If γ is not yet tightened,
Lemma 4.2 implies that after at most one 0�1 move (see
Figure 4.2), γ contains at least one basic singular bigon. By
Lemma 5.2, we can decrease the number of vertices of γ
by two by removing one basic singular bigon. After O(n)
such bigon removals, all the excess intersections of γ must
have been removed. We conclude that γ can be tightened
using at most O(n4) homotopy moves.
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