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Abstract4

We prove the first polynomial bound on the number of monotonic homotopy moves required5

to tighten a collection of closed curves on any compact orientable surface, where the number of6

crossings in the curve is not allowed to increase at any time during the process. The best known upper7

bound before was exponential, which can be obtained by combining the algorithm of de Graaf and8

Schrijver [J. Comb. Theory Ser. B, 1997] together with an exponential upper bound on the number of9

possible surface maps. To obtain the new upper bound we apply tools from hyperbolic geometry, as10

well as operations in graph drawing algorithms—the cluster and pipe expansions—to the study of11

curves on surfaces.12

As corollaries, we present two efficient algorithms for curves and graphs on surfaces. First, we13

provide a polynomial-time algorithm to convert any given multicurve on a surface into minimal14

position. Such an algorithm only existed for single closed curves, and it is known that previous15

techniques do not generalize to the multicurve case. Second, we provide a polynomial-time algorithm16

to reduce any k-terminal plane graph (and more generally, surface graph) using degree-1 reductions,17

series-parallel reductions, and ∆Y -transformations for arbitrary integer k. Previous algorithms only18

existed in the planar setting when k ≤ 4, and all of them rely on extensive case-by-case analysis based19

on different values of k. Our algorithm makes use of the connection between electrical transformations20

and homotopy moves, and thus solves the problem in a unified fashion.21
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1 Introduction22

Let Σ be an arbitrary compact orientable surface, possibly with boundary. We consider a collection of23

closed curves (referred to as a multicurve) on Σ drawn in general position—with finitely many double24

crossings, each of which is a transverse intersection, and no tangents or crossings of higher orders. The25

goal is to tighten the closed curves into another collection of curves with a minimum number of crossings26

using only continuous deformations known as homotopy. The minimum number of crossings achievable27

under homotopy is known as the geometric intersection number, a fundamental topological parameter28

associated with any set of closed curves on a surface. There are many previous works, both in theory and29

in practice, describing how to compute the geometric intersection number and the tightening process30

more or less efficiently; we refer to the extensive historical notes of Despré and Lazarus [22] for more31

background on this classical problem.32

Different papers measured the efficiency of the algorithms in different ways; in this paper we are33

in particular interested in minimizing the total number of combinatorial changes to the closed curves.34

Using standard arguments [4, 5, 54], every homotopy can be decomposed into a finite sequence of35

local changes called the homotopy moves, consisting of the following three basic operations: undo a36

monogon, remove a bigon, and flip a triangle. See Figure 1.1 for an illustration.37

Figure 1.1. The three homotopy moves 1�0, 2�0, and 3�3.

Here our goal is to provide an upper bound on the number of homotopy moves used to tighten38

a given collection of curves. Furthermore, a desired property of the tightening process is that at no39

times the number of crossings increases throughout the homotopy. Intuitively this is a natural property40

to assume; after all, the goal is to minimize the final number of crossings, and in a sense we want41

to perform the algorithm greedily and never make the curves more complicated. In addition, as we42

will explain later on, monotonicity is not merely a natural assumption to enforce on the tightening43

process, it is also the key property to draw connection to other sets of local transformations. Surprisingly,44

proving that such a monotonic tightening process exists actually requires quite involved arguments, and45

it was only shown by Hass and Scott [41] and de Graaf and Schrijver [38] that we can safely make46

such an assumption. Both algorithms used some discrete variants of the curve-shortening technique47

of Grayson [39], Shepard [58], and Angenent [6]. The main downside of the approach is that these48

algorithms are not efficient when measured in combinatorial changes. Indeed, none of the authors of49

previous algorithms analyze their performance, and with careful reading the best upper bound on the50

number of homotopy moves performed is merely exponential. Ideally, we would like to have the best of51

two worlds—a tightening process that is efficient while never creating new crossings.52

1.1 Our results53

In this paper we prove that any collection of closed curves on an orientable surface (possibly with54

boundary) of genus g ≥ 2 can be tightened using a polynomial number of monotonic homotopy moves.55

Theorem 1.1. Any n-vertex multicurve γ on an orientable surface Σ of genus g with b > 0 boundary56

components can be tightened monotonically using O((g + b)n3) homotopy moves. When the surface Σ57

does not have any boundary component (that is, b = 0) and not a torus, the upper bound becomes58

O(n5 log3 g/g2 + gn3).59
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Note that our theorem applies to surface with any combination of genus and number of boundary60

components with the one exception of a boundaryless torus. The result improves over the previous61

monotonic reduction algorithm by de Graaf and Schrijver [38] which, combined with the exponential62

bound on the number of surface maps [9] yielded an exponential upper bound. A recent article by63

Chang et al. [13] gave a polynomial upper bound on the number of homotopy moves. However, their64

algorithm does not guarantee monotonicity, and it only works for a single closed curve; in fact, it is65

understood that a completely new approach is required to overcome these shortcomings. Their algorithm66

relies on the bigon removal approach powered by the result of Hass and Scott [40], proving the existence67

of a singular bigon or monogon—that is, a bigon or monogon that overlaps itself in a not-too-pathological68

way. Such bigons and monogons can be removed using polynomially many homotopy moves (see69

for example [13, §4.2] and [10, §6.2.1]). However, it is known (see for example Figure 0.1 of Hass70

and Scott [40] or Figure 1 of Despré and Lazarus [22]) that such singular bigons may not exist when71

leaving the realm of single closed curves. Furthermore, every known algorithm that removes singular72

bigons increases the number of crossings temporarily during the homotopy process, and therefore is not73

monotonic.74

The first application of our main theorem is that one can convert any given collection of closed curves75

into minimal position (that is, with a minimum number of crossings) using homotopy in polynomial time.76

Theorem 1.2. Given a multicurve γ on an orientable surface Σ, we can compute a minimal position77

of γ on Σ in polynomial time.78

As a corollary, we can compute in polynomial time the geometric intersection number of a multicurve,79

a problem for which the first polynomial-time algorithm was only provided very recently by Despré and80

Lazarus [22]. In that paper, Despré and Lazarus also provide a different algorithm to compute minimal81

position of a single closed curve in polynomial time. Since their techniques also rely on finding and82

removing singular bigons and monogons, it suffers from the same limitations as explained above and83

cannot be readily generalized to the more general setting of multicurves. The existence of an efficient84

algorithm is not immediate even assuming our main theorem; one has to carefully examine each step of85

the proof and make sure they can be implemented efficiently. While Theorem 1.1 does not apply to the86

case where Σ is a torus, we provide a separate algorithm to handle it.87

The second application to the main theorem is the first polynomial-time algorithm that reduces any k-88

terminal plane graph (and more generally, any k-terminal surface graph) using electrical transformations—89

a collection of operations on surface graphs consists of degree-1 reductions, series-parallel reductions,90

and ∆Y -transformations. It is required that all transformations respect the embedding of the graph,91

and no terminals can be removed during the reduction. The goal is to perform a sequence of electrical92

transformations on the input surface graph and reduce the graph as much as possible—that is, to obtain93

another surface graph that minimizes the number of edges.94

Theorem 1.3. Any surface graph with terminals can be reduced as much as possible using electrical95

transformations in polynomial time.96

Electrical transformations have been widely applied to graph algorithms and network optimizations [1,97

28,37,45,47] and other fields of science and engineering [16,44,49,53,59,67]. For a history of electrical98

transformations and other related work, see [10]. The relation between electrical transformations and99

homotopy has been studied implicitly since Tait [63], Steinitz [60,61], and Yajima and Kinoshita [66],100

and explicitly by Goldman and Kauffman [35] and Nobel and Welsh [51], through the lens of medial101

construction. The medial graph G× of a surface embedded graph G is constructed as follows: create a102

vertex for each edge in G, and create an edge between two vertices if the corresponding two edges share103



Tightening Curves on Surfaces Monotonically with Applications 3

both a vertex and a face in G. From the construction it is immediate that every vertex in G× has degree 4.104

So one can decompose the medial graph into a collection of curves γ by making each vertex of G× an105

intersection point between two constituent curves of γ. Quantitative connection between the two sets106

of operations has been established first in the plane [12], and later for general surfaces [10,11]. The107

most important observation we rely on is the following: Any polynomial upper bound on the number of108

monotonic homotopy moves required to tighten the medial multicurve G× turns into a polynomial upper109

bound on the number of electrical transformations required to reduce the surface graph G. Furthermore,110

the same statement holds when one replaces “number of moves” with “running time”.111

There are polynomial-time algorithms that reduce any surface graph with 2-terminals [29, 65],112

3-terminals [33,34,52], and 4-terminals [7,21]. As for arbitrary value of k, previous algorithms assume113

special positions of the terminals, say when all terminals lie on a single face of the plane graph [18,33].114

All these algorithms, especially the ones for constant number of terminals, rely on heavy case-by-case115

analysis to characterize what the reduced graphs look like (for example, the work of Archdeacon et al. [7]116

and Demasi and Mohar [21] for the 4-terminal case in total span more than a hundred pages). In117

contrast, our algorithm functions in a unified way by transforming the graph reduction problem into a118

curve tightening problem on a surface using a set of local operations similar to homotopy moves (see119

Section 5.2), and therefore avoids the above complications. The electrical reduction algorithm relies120

crucially on the fact that the curve tightening process is efficient, monotone, and works for multicurves;121

this is why previous results [13,22,38] cannot be used. An important subtlety is that the aforementioned122

algorithms to reduce surface graphs with terminals also allow the use of one additional move called the123

terminal-leaf contraction. We explain in Section 5.3 how this additional move can also be integrated124

within our framework.125

Our efficient electrical reduction algorithm is the conclusion of a long sequence of works [10,11,12,13]126

and our main philosophical contribution—curves and graphs on surfaces can be reduced efficiently when127

measured in combinatorial changes.128

1.2 Technical contribution129

The proof of Theorem 1.1 can be viewed as an amalgamation of the curve shortening algorithm of de130

Graaf and Schrijver [38], the cluster and pipe expansion technique from graph drawings [15,19,30], and131

the crossing minimization algorithm for flat braids originated from Geck and Pfeiffer in the context of132

word problem over symmetric groups [32,38]. The first step relies on hyperbolic geometry, which is very133

relevant to our tightening problem for the following reasons: (1) any (multi)curve on a surface endowed134

with a hyperbolic metric is homotopic to a unique (multi)geodesic, and (2) a primitive (multi)geodesic135

is in minimal position. Our proof follows this approach closely but the key challenge is to control the136

combinatorics of the curves as well as the length of the process.137

Therefore, our first step is to endow Σ with a hyperbolic metric, and to move the multicurve γ138

to a neighborhood of the unique collection of geodesics of its homotopy class. Unlike de Graaf and139

Schrijver [38], we cannot afford to move the multicurve all the way until it reaches a canonical braid-140

like form. Instead, we execute the curve shortening algorithm frugally until the curves lie in the141

ε-neighborhoods of its geodesics, where ε is chosen just small enough to ensure that these neighborhoods142

do not cover the entire surface. Since we know that the curves can be tightened further while staying in143

the neighborhoods, at this point it is safe to put a puncture on the uncovered surface and reduce the144

problem to curves on (orientable) surfaces with boundary.145

The second step relies on the new observation that, for a collection of curves γ on surface with146

boundary, one can perform a quadratic number of homotopy moves and put the curves into a pipe147

system—a regular neighborhood of some one-dimensional skeleton graph. Then multicurve γ along with148

the pipe system are modified gradually by the expansion operations, in a way that after polynomial many149
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steps, each constituent curve of γ is combinatorially close to a power of some primitive curve, which150

then can be turned into a canonical form that looks like a flat braid. After reaching the braid form we151

use the crossing minimization algorithm [32,38] to make γ tight.152

We summarize the above steps in the following two lemmas. Let γ be a collection of curves on a153

surface Σ of negative Euler characteristic, and let γ∗ be the unique (multi)geodesic of γ on Σ. We say the154

multicurve γ is ε-close to the geodesic γ∗ if the lift of γ in the universal cover lies in an ε-neighborhood155

of the lift of γ∗.156

Lemma 1.4. Let γ be an n-vertex non-contractible multicurve on a surface Σ of genus g ≥ 2 without157

boundary, and let γ∗ be the unique geodesic of γ on Σ. One can endow Σ with a hyperbolic metric so158

that the multicurve γ can be made ε-close to γ∗ using O(n5 log3 g/g2) monotonic homotopy moves for159

some ε = Θ(g/(n log g)); furthermore, the ε-neighborhood of γ∗ does not cover the whole surface Σ.160

Lemma 1.5. Let γ be an n-vertex multicurve with no contractible components on an orientable surface161

Σ of genus g with b > 0 boundary components. Then γ can be tightened using O((g + b)n3) monotonic162

homotopy moves.163

Theorem 1.1 follows rather directly from Lemma 1.4 and Lemma 1.5; this is explained in Section 2.4.164

We prove Lemma 1.4 in Section 3, and Lemma 1.5 in Section 4. Applications are discussed in Section 5.165

2 Preliminaries166

Familiarity with basic concepts regarding the topology and geometry of surfaces will greatly ease the167

reading. We recommend Stillwell [62] for a general combinatorial introduction to the topic, and the first168

chapter of Farb and Margalit [27] for the specific topic on curves, surfaces, and hyperbolic geometry.169

2.1 Curves on surfaces170

A surface Σ is a two-dimensional (topological) manifold, possibly with boundaries. All the surfaces in171

this article are compact, connected, and orientable. The Euler characteristic of a surface Σ is 2−2g− b,172

where g is the genus and b the number of boundary components in Σ. A closed curve on a surface Σ is173

a continuous map γ: S1→ Σ. A multicurve is a collection of closed curves, which form its constituent174

curves. An arc or path on a surface Σ is a continuous map γ: [0, 1]→ Σ with endpoints on the boundary.175

In general, we refer to either a collection of closed curve or arcs as curves. We only consider generic176

curves, that is, curves with only a finite number of self-intersections which are transverse double points.177

A subpath of a curve γ is the restriction of γ to an interval. A curve is simple if it is injective. We178

will consider sometimes closed curves as graphs embedded on Σ by treating their self-intersection179

points as vertices and the maximal subpaths between these vertices as edges. A tangle is a collection of180

boundary-to-boundary paths γ1, . . . ,γs in a closed topological disk, which (self-)intersect only pairwise,181

transversely, and away from the boundary. We call each individual path a strand of the tangle.182

A homotopy between two closed curves γ1 and γ2 is a continuous deformation h: S1 × [0,1]→ Σ183

such that h(·, 0) = γ1 and h(·, 1) = γ2. This definition extends naturally to arcs and multicurves. A184

closed curve is contractible if it is homotopic to a point. In this article, we take the convention that if185

at some point in a homotopy, a multicurve contains a contractible closed curve which has degenerated186

to a point, we can remove this contractible closed curve from the multicurve.1 As explained in the187

introduction, classical arguments show that any homotopy between two closed curves in general position188

1Notice that this differs from de Graaf and Schrijver [38], which is why they require one more homotopy move than we do.
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can be decomposed into a sequence of the three homotopy moves pictured in Figure 1.1. A multicurve is189

tightened, or tight, or is a tightening, or is in minimal position if it has the smallest possible number190

of intersections among all the multicurves within its homotopy class. Sometimes, it will be useful to191

specify in which surface a homotopy or a tightening lies, for example for a multicurve γ contained in a192

surface Σ which is a sub-surface of another surface Σ′; in this case, we will talk about a homotopy, or a193

tightening, within Σ.194

A monogon2 for a curve γ is a subpath that begins and ends at the same vertex x and bounds a disk195

incident to only that vertex. A bigon2 for a curve γ consists of two simple interior-disjoint subpaths196

of γ, sharing two endpoints that together bound a disk on Σ incident to only these two endpoints.197

Similarly, a trigon2 for γ consists of three simple interior-disjoint subpaths of γ, forming three pairwise198

intersections that together bound a disk on Σ. A monogon, bigon, or trigon is empty when the interior199

of the bounded disk is disjoint from γ. A bigon is minimal or innermost if the disk it bounds does200

not contain a smaller bigon or monogon; a minimal monogon is defined similarly. Note that a minimal201

monogon does not contain anything in its interior, since any strand crossing it will form an inner monogon202

or bigon. Therefore, a minimal monogon can be removed by a single 1�0 move.203

An argument dating back to Steinitz [60,61] (see Hass and Scott [41, Lemma 1.4]) shows that a204

minimal bigon can also be removed using O(n) monotonic moves, where n is the sum of the number of205

strands and interior vertices in the bigon.206

We include the proof to be comprehensive.207

Lemma 2.1. A non-empty minimal bigon β must have an empty trigon incident to one of the bounding208

curves. Thus one can first remove all the n vertices inside β using n 3�3 moves, followed by removing209

all s strands of β using s 3�3 moves.210

Proof: Let Θ the tangle formed by γ inside the bigon. Each strand of Θ is simple, otherwise it would211

form a monogon, and each pair of strands intersects at most once, otherwise they would form a bigon.212

Similarly, each strand intersects two distinct bounding curves. If there are no vertices in this tangle,213

there is an empty trigon formed by a vertex and one of the strands.214

Otherwise, for every vertex x of the tangle obtained by intersecting two strands α and β , the two215

strands α and β both intersect one of the bounding curves λ, and thus define a trigon Rx with it. We216

denote the other two endpoints by a and b, and look at such a vertex x such that the trigon it defines is217

inclusion-wise minimal and one of its three endpoints is on λ. Without loss of generality, a is on λ, and218

no strand crosses α between a and x . If a strand crosses β between b and x , denote by y the crossing219

point closest to x . This strand does not cross α between a and x , thus R y is a trigon inside Rx and one220

of its endpoints is on λ, which contradicts minimality of Rx . Thus Rx is empty.221

We can recursively remove the vertices of the tangle Θ using this empty trigon, using n 3�3 moves.222

Then, using s 3�3 moves we can remove all the strands, making the bigon empty. �223

This allows us to remove minimal bigons using one last 2�0 move. For convenience, we state the224

result independently as a lemma, and refer to as the Steinitz bigon removal algorithm:225

Lemma 2.2. Any minimal bigon or monogon with n interior vertices and s strands can be removed226

using n+ s+ 1 monotonic homotopy moves.227

2In this work, we only care about embedded monogons, bigons or trigons and thus only define those. We refer to Hass and
Scott [40] for an extensive review of other kinds of monogons and bigons and the corresponding existence results.
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2.2 Cut graphs and systems of arcs228

A cellular embedding of a graph G on a surface Σ is an injective map from G to Σ where all the faces229

(connected components of complement of the embedding) are homeomorphic to open disks. A tree-230

cotree decomposition of a cellularly embedded graph G is a partition (T, L, C) of the edges of G into231

three disjoint subsets: a spanning tree T of G, the edges C corresponding to a spanning tree of the dual232

graph G∗, and exactly 2g leftover edges L := E(G) \ (T ∪ C), where g is the genus of the underlying233

surface [23]. Let γ be a multicurve on Σ; we temporarily view γ as a 4-regular graph with some given234

embedding. However, the embedding of γ is not necessarily cellular; let G be a cellular refinement of γ235

obtained by triangulating every face. A dual reduced cut graph X [24] (hereafter, just cut graph) is a236

cellularly embedded graph obtained from a tree-cotree decomposition (T, L, C) of G as follows: Start237

with the subgraph of G∗ containing the dual spanning tree C∗ and the leftover edges L∗, repeatedly238

delete degree-one vertices, and finally perform series reductions on all vertices with degree two.239

The cut graph X inherits a cellular embedding into Σ from the embedding of G∗; by construction,240

this embedding has exactly one face. Because every vertex of X has degree 3, Euler’s formula implies241

that X has exactly 4g − 2 vertices and 6g − 3 edges. We call the edges of X arcs. Cutting the surface242

Σ along X yields a polygon with 12g − 6 sides, which we call the fundamental polygon of X . The cut243

graph induces a regular tiling X̂ of the universal cover Σ̂ of Σ; we refer to each lift of the fundamental244

polygon of X as a tile. By construction, the cut graph X satisfies the following crossing property: Each245

edge of the curve γ crosses X at most once.246

When Σ is a surface with boundary, it can be cut into a planar piece using exclusively boundary-to-247

boundary paths: a system of arcs Ξ is a collection of simple boundary-to-boundary paths that cuts the248

surface Σ open into a single polygon. Furthermore, for any closed curve γ on Σ, there exists a system of249

arcs Ξ satisfying the following crossing property: Each arc in Ξ intersects each edge of γ at most twice,250

and only transversely. We summarize this in the following lemma, and refer for example to Colin de251

Verdière and Erickson [17, Section 6.1] or Erickson and Nayyeri [25, Section 3] for a proof of this, as252

well as polynomial-time algorithms to compute such Ξ.253

Lemma 2.3. Let Σ be an arbitrary genus-g surface Σ with b boundary components. There is a system of254

arcs Ξ on Σ of size O(g+ b) in general position relative to multicurve γ such that each arc intersects each255

edge of γ at most twice (and therefore every edge intersects Ξ at most O(g + b) times). Furthermore, Ξ256

can be computed in O(n log n+ (g + b)n) time, where n is the number of crossings in γ.257

2.3 Hyperbolic trigonometry258

We assume the readers have some familiarity with hyperbolic geometry. While we recall most of the259

properties that we rely on, the hyperbolic intuition is sometimes significantly different from the Euclidean260

one. We recommend Traver [64] for a nice introduction to hyperbolic trigonometry.261

Any surface of negative Euler characteristic can be endowed with a hyperbolic metric. The area A(Σ)262

of surface Σ endowed by this metric is constrained related to the Euler characteristic by the Gauss-Bonnet263

formula: A(Σ) = −2πχ(Σ). The key hyperbolic property that we will rely on is that any closed curve264

is homotopic to a unique geodesic under a given hyperbolic metric. When applying this property to a265

multicurve, we will refer to the collection of geodesics it yields as a multigeodesic, or sometimes when266

there is no ambiguity, simply as a geodesic.267

The hyperbolic law of cosines states that for a geodesic triangle with angles α,β , and γ and side268

lengths a, b, and c (such that the segment of length a is opposed to the angle α, and similarly for the269

other ones), we have:270

cosα= − cosβ · cosγ+ sinβ · sinγ · cosh a.271
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A Saccheri quadrilateral is a hyperbolic geodesic quadrilateral with two equal sides—called the272

legs—perpendicular to a third side, called the base; the fourth side is called the top. We denote the273

lengths of the legs, base, and top as a, b and c, respectively. Any Saccheri quadrilateral satisfies the274

following property:275

sinh
c
2
= cosh a · sinh

b
2

.276

A Lambert quadrilateral is a hyperbolic geodesic quadrilateral with three right angles. Denoting by277

α the fourth angle, and by a and b the lengths of the two sides opposite to it, we have the formula278

cosα= sinh a · sinh b.279

2.4 Proving the main theorem280

We conclude the preliminaries by explaining how to prove Theorem 1.1 assuming Lemmas 1.4 and 1.5:281

Proof (of Theorem 1.1): A theorem of Hass and Scott [40, Theorem 2.7] shows that any non-simple282

contractible closed curve on an orientable surface (or more generally, any closed curve homotopic to283

a simple curve) has an embedded monogon or bigon. Therefore, any multicurve in which a closed284

curve is contractible and non-simple also contains an embedded bigon or monogon. Note that a simple285

contractible closed curve crossing other components of the multicurve also forms embedded bigons.286

Thus after removing all the embedded bigons and monogons using Lemma 2.2—which takes O(n2)287

moves for an n-vertex multicurve—we can assume that contractible components, if there are any, have288

been shrunk to points and removed. Therefore throughout the article, we will assume that there are no289

contractible components in the multicurves considered. Since any closed curve on a sphere or a disk is290

contractible, we directly obtain Theorem 1.1 with an O(n2) bound in such cases.291

Lemma 1.4 allows us to reduce the case of boundaryless surfaces (except the torus) to the case292

of surfaces with boundary. Indeed, once a multicurve has been placed in an ε-neighborhood of its293

multigeodesic and the neighborhood does not cover the whole surface Σ, one can safely add a puncture294

(say an arbitrarily small boundary) outside this ε-neighborhood as it has no impact on the tightening of295

γ. Surfaces with boundary are then dealt with using Lemma 1.5. The case when Σ is a boundaryless296

torus is not handled by Lemma 1.4 nor by the previous observations, and thus remains untackled in297

Theorem 1.1. �298

3 Moving Curves Close to Geodesics299

In this section we prove Lemma 1.4. Let Θ be a tangle whose disk is endowed with a Riemannian (say300

hyperbolic or Euclidean) metric so that it is strictly convex. A tangle Θ is straightened if all the strands301

of Θ are shortest paths with respect to the metric. We emphasize the difference between straightened302

and tightened: Tightening is a combinatorial condition where all strands are intersecting minimally;303

straightening is a geometric condition where all strands are shortest paths. A straightened tangle must304

be tightened. A converse statement is provided by the result of Shepard [58] and Neumann-Coto [50],305

which says that any multicurve in minimal position on a surface Σ must be shortest paths with respect to306

some metric on Σ (but not necessarily hyperbolic [42]).307

We will make use of the following quantitative version of Ringel’s homotopy theorem [55,56] (see308

also [36,38,41,57]). Since none of the earlier results proved the quadratic upper bound, we include a309

proof below to be comprehensive.310

Lemma 3.1 (Hass and Scott [41, Lemma 1.6]). Any m-vertex tangle Θ can be straightened (with re-311

spect to some given metric) monotonically using O(m2) homotopy moves.312
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Figure 3.1. The inductive step to straighten a tangle in a Euclidean disk.

Proof: We denote by α1, . . . ,αk the strands of a tangle Θ in a disk D, and by δ1, . . . ,δk the shortest313

paths between their endpoints. We will use several times the result of Steinitz’s mentioned in Lemma 2.2314

in the preliminaries, that any innermost embedded bigon or monogon can be removed using a linear315

number of monotonic moves.316

As a first step, we apply Lemma 2.2 iteratively to any innermost bigon or monogon in the tangle Θ.317

Since removing a bigon or monogon reduces the number of vertices by at least one, this can be done in318

O(m2) moves, after which there are no embedded bigons nor monogons in Θ anymore. In particular,319

every strand αi is simple and any pair of strands αi and α j crosses at most once (at this point, the tangle320

Θ is tightened but not straightened).321

The remainder of the proof uses induction on the number of strands in the tangle. The base case is322

trivial: a tangle made of a single strand can be straightened without using any move. Inductive step is323

pictured in Figure 3.1.324

For an s-strand tangle Θ, we consider the bigons formed by one subpath of a strand and a subpath325

of the disk boundary ∂D. Since all strands are simple and all bigons between any two strands of Θ326

were removed, we can find a bigon between some αi and ∂D that is innermost. Such a bigon is only327

crossed transversely by other strands of the tangles and its vertices can be removed using O(m) 3�3328

moves by applying the first step of Lemma 2.1. Once the bigon contains no vertices, we can move αi329

towards ∂D until αi is arbitrarily close to ∂D. One can then consider a slightly smaller disk than D that330

contains all the strands of the tangle Θ except αi. The new tangle defined by the smaller disk is then331

straightened recursively. Then, what remains is to move αi to the shortest path δi . Since shortest paths332

cross minimally, they do not form bigons. And because αi was chosen so that the bigon formed with333

a subpath of ∂D was innermost, as all the other strands have been straightened inductively, the bigon334

between αi and δi must be innermost, and can be swept using O(m) moves again by Lemma 2.2. Note335

that if αi does not cross any other strand of Θ, this inductive step costs zero moves. The total number of336

moves used throughout the recursion is therefore O(s′ ·m), where s′ is the number of strands crossing337

at least some other strand. By charging each of these strands to one of their crossing points, we have338

s′ = O(m), and therefore the total bound on number of moves is O(m2). �339

We will use the following corollary of Lemma 3.1 in subsequent sections.340

Corollary 3.2. Let δ be a trigon with m vertices. Trigon δ can be made empty using O(m2) monotonic341

homotopy moves in a small neighborhood of δ.342

Proof: Consider the tangle Θ formed by taking a small neighborhood of the trigon δ. We endow Θ with343

a metric in such a way that the trigon, formed by replacing the three strands that are the bounding344

curves of δ with shortest paths with respect to the metric, has its orientation opposite to that of δ. To345

see the existence of such metric, first we endow Θ with a metric of constant curvature (say a hyperbolic346

metric). Notice that by deforming the distances within a small neighborhood of the disk boundary we347
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can realize arbitrary spacings between endpoints of the strands. Now by placing the endpoints of the348

three bounding curves of δ carefully and connecting each pair of them using shortest paths (with respect349

to the endowed metric of constant curvature), one can realize either orientation of the trigon. Applying350

Lemma 3.1 to Θ with respect to the constructed metric empties and flips the trigon δ in O(m2) moves;351

we terminate the algorithm just before δ is flipped. �352

3.1 Constructing the hyperbolic metric353

In this subsection, we explain how to endow Σ with a hyperbolic metric that is well-tailored to the354

purpose of tightening γ.355

Lemma 3.3. Let Σ be a boundaryless surface of genus g ≥ 2 and γ be an n-vertex non-contractible356

multicurve on Σ. There is a hyperbolic metric dH on Σ such that357

(1) multicurve γ can be turned into another multicurve γ′ of length O(n log g) using O(n2) monotonic358

homotopy moves, and359

(2) the length of the shortest non-contractible cycle on Σ (known as the systole) is at least 1.360

Proof: The construction is similar to the argument in Dehn’s seminal result [20] that the graph distance361

on a regular tiling of the universal cover Σ̂ approximates the hyperbolic metric on Σ̂. Construct a362

cut graph X from the curve γ such that every edge of γ crosses X at most O(1) times, as described in363

Section 2.2. Lift the cut graph X to the universal cover endowed with the unique hyperbolic metric, such364

that the edges of X are geodesic segments of equal length and each corner has angle 1/3 circles; this365

implies, using the hyperbolic law of cosines, that each side of the fundamental polygon has length at366

least 1.3 Note that the diameter of the fundamental polygon is O(log g), which also follows from the367

hyperbolic law of cosines. One can project the metric back to the original surface; denote the hyperbolic368

metric constructed as dH .369

To prove that the hyperbolic metric dH defined on surface Σ satisfies item (1), consider the modified370

curve γ′ where all strands within the open disk Σ \ X are straightened using Lemma 3.1. As per lemma,371

γ′ can be obtained from γ using O(n2) moves. Note that any geodesic path not intersecting X has length372

at most the diameter of the fundamental polygon with respect to dH , which is O(log g). This directly373

implies that the length of γ′ is at most O(n log g), thus the hyperbolic metric dH satisfies item (1).374

As for item (2), consider any non-contractible cycle σ on surface Σ; without loss of generality assume375

σ to be a geodesic. If we lift σ to the universal cover Σ̂ such that the lift σ̂ starts and ends on the lift X̂376

of the cut graph X , because σ is non-contractible, the two arcs of X̂ where σ̂ starts and ends respectively377

are two different translates of the same arc in X . Consider the sequence of arcs a0, . . . , ak in X̂ intersected378

by σ̂. Because σ is a geodesic and every vertex in X̂ has degree 3, one has ai 6= ai+1 and no ai is incident379

to ai+2 for all i. If for some i the two arcs ai and ai+1 are not incident to each other (that is, ai and ai+1380

do not share a vertex in X̂ ), then by hyperbolic trigonometry the length of the subpath of σ̂ connecting381

ai to ai+1 is at least the length of the side of the polygon, which is at least 1. Otherwise, if ai is incident382

to ai+1 and ai+1 is incident to ai+2, as ai is not incident to ai+2, by reflecting the subpath of σ̂ from ai+1383

to ai+2 to the tile that contains ai and ai+1 we again have the length of the subpath from ai to ai+1 of σ̂384

lower-bounded by the length of ai+1. This proves that dH satisfies item (2). �385

3.2 Straightening multicurve using disks386

Tortuosity. Let γ be a multicurve on Σ. Denote D(x , r ) the disk centered at point x with radius r387

(with respect to the constructed metric dH in Lemma 3.3). Denote the two endpoints of the maximal388

3To be accurate, the side length is equal to 2 cosh−1 (sin(2π/6) · cos(2π/(24g − 12))) which is bigger than 1 for all g ≥ 2.
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pγ̂

γ̂∗

D(p, r)
x

p

y

x∗ p∗ y∗

r

dH (x , y)

δ δ δ

Figure 3.2. Left: The setup for proof of Lemma 3.4, represented in the Poincaré disk model. The orange curve is the set of
points at distance exactly δ from γ̂∗. This hypercircle is not a geodesic, but is always a circular arc in the Poincaré disk. Right:
Zooming around the disk D(p, r). The tortuosity is minimized when x and y lie on the orange hypercircle. The geodesics
between x , p, and y are in red, and three Saccheri quadrilaterals are formed by red and dotted geodesic arcs.

subpath of γ in D(γ(t), 1/2) containing γ(t) as x and y , and the maximal subpath itself as γ[x , y]. The389

tortuosity [38] of the multicurve γ at point t, denoted as tort(γ, t ), is the difference between the length390

of the subpath of γ lying in D(γ(t), 1/2) and the geodesic distance between the two endpoints of the391

subpath:392

tort(γ, t) := len (γ[x , y])− dH(x , y).393

In practice, the tortuosity of γ at point t lower bounds the improvement one will make after straightening394

the disk D(γ(t), 1/2). The tortuosity of a multicurve γ is the supremum of tort(γ, t) where t ranges over395

[0,1]. The goal of the following lemma is to prove that when the tortuosity of a multicurve is small,396

then the whole multicurve is ε-close to its multigeodesic. In other words, as long as the multicurve γ has397

points that are at least ε away from the geodesic, we can always find a disk centered at some point of γ398

whose straightening will decrease the length of γ by at least fixed amount, depending only on ε.399

Lemma 3.4. For any ε > 0 smaller than the systole of Σ, if the tortuosity of γ is at most O(ε2), then γ is400

ε-close to the multigeodesic γ∗.401

Proof: We will prove the contrapositive statement using hyperbolic trigonometry. For the sake of402

generality we temporarily treat r as a variable; at the end of the calculation one just plugs in r := 1/2.403

Here we list two identities that will be used in our proof.404

(1) For any real number x , sinh(2x) = 2sinh x cosh x and (cosh(x))2 − (sinh(x))2 = 1.405

(2) Given an arbitrary Saccheri quadrilateral with the lengths of the legs, base, and top as a, b, and c406

respectively, then407

sinh
c
2
= cosh a · sinh

b
2

.408

Lift both γ and γ∗ to the universal cover Σ̂; denote the resulting families of paths as γ̂ and γ̂∗409

accordingly. Let t be a point in [0, 1] such that γ̂(t) has maximum distance to γ̂∗. Refer to point γ̂(t) as410

p and the maximum distance as δ; by assumption δ is at least ε. Our goal is to prove that the tortuosity411

of γ at t is at least Ω(ε2). One has412

tort(γ, t) = len (γ̂[x , y])− dH(x , y)≥ 2r − dH(x , y).413
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Here without loss of generality we will assume that x and y are both at distance exactly δ to γ̂∗. The414

reason one can make such an assumption is that, as one moves x and y perpendicularly along the415

geodesics away from γ̂∗, dH(x , y) increases and therefore the tortuosity when both x and y are at416

distance δ is a lower bound to the original tortuosity. See Figure 3.2.417

What is left is to upper bound dH(x , y). Let x∗, p∗, and y∗ be the points on γ̂∗ that have minimum418

distance to x , p, and y respectively. By identity (2) one has419

sinh (dH(x , y)/2) = coshδ · sinh (dH(x
∗, y∗)/2)420

and421

sinh(r/2) = coshδ · sinh (dH(x
∗, y∗)/4) .422

The second equality gives us423

dH(x
∗, y∗)/2= 2 sinh−1

�

sinh(r/2)
coshδ

�

,424

which we plug back in the first equation to get425

sinh (dH(x , y)/2) = coshδ · sinh
�

2sinh−1
�

sinh(r/2)
coshδ

��

.426

Apply identity (1) on the first hyperbolic sine, one has427

sinh (dH(x , y)/2) = coshδ · 2 · sinh
�

sinh−1
�

sinh(r/2)
coshδ

��

· cosh
�

sinh−1
�

sinh(r/2)
coshδ

��

428

= coshδ · 2 ·
�

sinh(r/2)
coshδ

�

· cosh
�

sinh−1
�

sinh(r/2)
coshδ

��

429

= 2 · sinh(r/2) ·
�

1+
�

sinh
�

sinh−1
�

sinh(r/2)
coshδ

���2�1/2

430

= 2 · sinh(r/2) ·
�

1+
�

sinh(r/2)
coshδ

�2�1/2

.431

432

This shows that433

dH(x , y) = 2 · sinh−1

�

2 · sinh(r/2) ·
�

1+
�

sinh(r/2)
coshδ

�2�1/2�

.434

435

Taylor expand dH(x , y) around δ = 0 gives us436

dH(x , y) = 2r −
(sinh(r/2))3

cosh(r/2) · cosh(r)
δ2 +O(δ4),437

and therefore tort(γ, t)≥ Ω(δ2)≥ Ω(ε2). �438

Let us emphasize here how resolutely hyperbolic this lemma is. It works because a line equidistant439

to a geodesic (here γ̂∗) is not a geodesic in hyperbolic geometry, and it is this defect of geodesicity that440

we exploit to lower bound the tortuosity. Comparatively, in Euclidean geometry, a line equidistant to441

a straight line is again a straight line, and thus there is no analogue lemma. This is why our proof442

techniques do not apply to the boundaryless torus.443
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Exposing points outside the neighborhood. Now we proceed to upper bound ε so that the ε-444

neighborhood of the multigeodesic γ∗ does not cover the whole surface Σ.445

Lemma 3.5. Let γ be an n-vertex multicurve on Σ. Then the ε-neighborhood of γ∗ does not cover the446

whole surface Σ if ε is at most O(g/(n log g)).447

Proof: Given any multicurve γ with the corresponding multigeodesic γ∗ on the surface Σ with the448

constructed hyperbolic metric dH , the length of γ∗ is at most O(n log g) by Lemma 3.3(1). For small449

enough ε, the area of the ε-neighborhood of a multicurve with length ` is at most O(ε`). To see this,450

cover the neighborhood with kite-like Lambert quadrilaterals with length of the short sides as ε. The only451

acute angle α of the quadrilateral is equal to arccos((sinhε)2). The area of the quadrilateral is equal to452

the angle deficit, which is π/2−α. Therefore the area of the quadrilateral is at most O(ε2), and thus the453

total area of the ε-neighborhood on Σ is at most O(ε2 · `/ε) = O(ε`).454

The area of the surface is precisely (4g − 4)π. (This follows directly from the Gauss-Bonnet theorem455

which is independent of the hyperbolic metric up to scaling.4) This implies that for the ε-neighborhood456

of γ∗ to cover the whole surface Σ, the following holds:457

ε ≥
(4g − 4)π
O(n log g)

≥ Ω
�

g
n log g

�

.458

In other words, if we set ε ≤ O(g/(n log g)), then the ε-neighborhood of γ∗ cannot cover the whole459

surface Σ, thus proving the lemma. �460

Basmajian, Parlier, and Souto [8] showed that for any fixed genus g, the O(1/n) bound in Lemma 3.5461

is tight up to logarithmic factors.462

3.3 Putting it together463

Now we are ready to prove Lemma 1.4.464

Proof (of Lemma 1.4): We use Lemma 3.3 to endow Σ with a hyperbolic metric. By Lemma 3.3(1),465

after applying O(n2) monotonic homotopy moves the resulting multicurve γ′ has length O(n log g).466

Consider the set of disks centered at each point on the multicurve with radius 1/2, which is smaller than467

half the systole by Lemma 3.3(2); therefore all such disks are embedded in Σ. Straighten any disk using468

Lemma 3.1 if the tortuosity of the center point is at least ε2. Once every point on γ′ has tortuosity less469

than ε2, by Lemma 3.4 the multicurve γ′ now lies in the ε-neighborhood of γ∗.470

Straightening a disk takes O(n2) moves using Lemma 3.1. The tortuosity at a center of each disk is a471

lower bound on the difference between the lengths of the multicurve γ′ before and after straightening.472

From Lemma 3.3(1) the length of γ′ is at most O(n log g). Every time a disk is straightened the length of473

γ′ will drop by at least ε2. Since γ′ is non-contractible, the length of any curve homotopic to γ′ is at least474

the systole, which is Ω(1) by Lemma 3.3(2). Therefore at most O(n log g/ε2) disks will be straightened475

before every point has tortuosity less than ε2. In total at most O(n3 log g/ε2) homotopy moves are476

performed. From Lemma 3.5, setting ε := Θ(g/(n log g)) concludes the proof of Lemma 1.4. �477

4Alternatively, one can derive the area directly: divide the fundamental polygon into 12g − 6 triangles by drawing
straight-lines from the center of the polygon to all vertices, and use the area formula for triangles.
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4 Tightening Curves on Surface with Boundary478

In this section we prove Lemma 1.5. Throughout the rest of the section, let Σ be an orientable surface479

with boundary and let γ be a multicurve on Σ.480

The second phase of the curve shortening algorithm by de Graaf and Schrijver [38] starts with a481

multicurve γ lying within an ε-neighborhood of its multigeodesic on Σ, where in some cases ε is required482

to be exponentially small. Unfortunately we cannot afford to drag γ exponentially close to its geodesic483

which requires more than polynomially many moves (Section 3). Instead, we make the observation484

that one can mimic this part of the algorithm in a combinatorial way, which, in particular, does not485

require the multicurve γ to be close to its own geodesic. We pick an open neighborhood—called a pipe486

system—of some underlying skeleton graph, such that γ can be drawn in proper ways respecting the pipe487

system. We then describe a way to morph the pipe systems using cluster and pipe expansions, a technique488

introduced by Cortese et al. [19] in graph drawings (and later on applied to weak embeddings [2,3,15]489

and crossing numbers [30]), so that the multicurve inside the pipe system can be canonicalized using490

polynomially many monotonic homotopy moves. Conceptually the expansion operations can be viewed491

as ways to morph the metric on surface Σ, so that curves on Σ get transformed closer and closer to the492

geodesic with respect to the morphing metric. After γ is canonical we use the crossing minimization493

algorithm for flat braids to tighten γ [32,38].494

We first define an initial pipe system using system of arcs, and the multicurve is then made to respect495

the pipe system in Section 4.1. In Section 4.2 we introduce the expansion operations formally, followed496

by a description of the main algorithm and its analysis in Section 4.3.497

4.1 Putting Curves into a Pipe System498

Let G be a (multi-)graph drawn on a surface Σ with boundary; we refer to the vertices and edges of499

G as clusters and pipes. The drawing of G is not necessarily an embedding; assume without loss of500

generality that all self-intersections of G are between its edges, are transverse and involve at most two501

edges. A pipe system Π5 of G is a topological neighborhood of the drawing of G on surface Σ with a502

decomposition into regions corresponding to clusters and pipes.503

• For each cluster u in G, a cluster region Du is a topological disk containing u.504

• For each pipe uv in G, a pipe region Ruv is a topological disk containing uv that is disjoint from505

the interior of the cluster regions Du and Dv . Notice that if two pipes intersect in the drawing of G,506

then the two corresponding pipe regions cross on the surface Σ. However, three pipe regions are507

never allowed to overlap at any common point.508

• For each cluster u, there are disjoint connected subsets of the boundary of Du forming ends Au,v ,509

one for each incident edge uv, in the order of the rotation system defined by the drawing of G;510

identify the intersection between Du and Ruv with Au,v .511

When there is no risk of confusion, we sometimes refer to cluster and pipe regions as clusters and pipes512

as well. Let Π be the collection of all the cluster and pipe regions; from time to time we also abuse the513

notation and refer to the union of all cluster and pipe regions as Π, so that one can safely use sentences514

like “(part of) γ lies in the pipe system Π”. If pipe system Π is constructed from graph G, we refer to G515

along with its drawing as the skeleton of Π. Each region can be viewed as a tangle; a strand of a cluster516

or pipe is a maximal subpath of γ inside the corresponding region.517

It is easier to talk about the pipe system by imposing geometry to the topological disks: throughout518

this section, we will generally endow the cluster regions Du with the metric of a Euclidean disk, and the519

5also known as strip system [3,15] or thickening [30]
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pipe regions Ruv with the metric of a thin Euclidean rectangle. However we emphasize that while some520

constructions and proofs in the following sections are described using geometry, they can be rephrased521

using purely combinatorial languages.522

Now the plan is to construct an initial pipe system Π0 using the system of arcs from Lemma 2.3. Let523

Ξ denote the system of arcs given by Lemma 2.3. The pipe system Π0 is obtained by taking the dual524

graph of Ξ as a skeleton graph G, which consists of one unique cluster and O(g + b) (self-loop) pipes.525

But since we care about its precise position with respect to γ, we need to describe the construction of526

Π0 more carefully. We replace each arc of Ξ by two identical copies infinitesimally close to each other,527

co-bounding a 4-gon with two infinitesimal subpaths of the boundary. Each of these 4-gons is a pipe of528

the pipe system Π0 while the “big” component corresponding to the unique polygon obtained by cutting529

Σ along Ξ is the single cluster of Π0. Note that γ is trivially contained in the union of the regions of this530

pipe system, since this union is the whole surface Σ.531

We will prove in Lemma 4.2 that the multicurve γ can be made to respect Π0 by satisfying some good532

properties. Such modified γ along with the pipe system Π0 will be the starting point of the algorithm.533

Respecting pipe system. We say that a multicurve γ respects a given pipe system Π if534

(1) γ lies completely in Π;535

(2) all strands in any cluster or pipe region are simple and no two strands intersects more than once;536

(3) each component of the intersection between γ and any end of Π is a single transverse crossing;537

(4) γ never intersects the same end consecutively more than once; in other words, whenever a curve538

enters a topological disk (whether it’s a cluster or pipe region) from one end, the curve must leave539

from another end of the disk; and540

(5) within the intersection of a pair of pipe regions, pairs of strands from the same pipe region are not541

allowed to cross.542

Before we continue, we quickly comment that given any multicurve γ respecting a pipe system, one543

can safely assume the following additional property as part of the definition.544

(6) No intersections of γ are between strands of the same pipe.545

Lemma 4.1. Let Π be a pipe system. Let R be a pipe region of Π, which is crossed transversely by other546

pipe regions R1, . . . , Rk. Let γ be a multicurve with n crossings respecting Π, but the strands of γ may547

cross in the pipes. Then one can find a sequence of O(|R|2) monotonic homotopy moves to push all the548

crossings between strands of R to an incident cluster region, where |R| denotes the number of crossings549

between strands of R.550

Proof: We will push the crossings between strands of R into an incident cluster region using a controlled551

number of 3�3 moves. A crossing between two strands of R is called extremal if, out of the four substrands552

that it defines, two of those do not cross any other strand of R and end at the same end of R. Pick such553

an extremal crossing z between two strands inside R: by orienting R and its strands from one end to554

the other, leftmost and rightmost crossings will be extremal because of Properties (2) and (4). Now,555

the obstruction to simply moving z to an incident cluster comes from the other pipe regions crossing R556

transversely, as their strands stand in the way. As part of the definition of a pipe system, no two pipe557

regions Ri and R j intersects R at a common point.558

By Property (5), the strands of these transverse pipe regions do not cross within the intersection.559

Thus, the crossing z can be pushed past strands of transverse pipes using only 3�3 moves. See Figure 4.1.560

Since there are O(|R|) crossings to push and each is pushed past O(n) strands from transverse pipes (since561

each transverse strand induces at least once crossing), this can be done using O(n2) 3�3 moves. �562
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Figure 4.1. The red crossing within a pipe is pushed towards an incident cluster by doing 3�3 moves on the triangles marked
in pink.

Using this lemma on all the pipe regions costs O(n2)moves. Observe that all crossings of a multicurve563

γ respecting a pipe system must either be inside the clusters, or between two intersecting pipes where564

the strands of the two pipes intersect in a grid-like pattern. The strands inside a pipe can be drawn in565

parallel connecting from one end to the other, preserving their order on each end.566

Closed walks on skeleton graph. If a multicurve γ respects a pipe system Π whose skeleton graph is567

G, one can define closed walks C associated with γ on G as follows. Let γi be one of the constituent568

curve of γ. Let569

Au0,u1
, Au1,u0

, Au1,u2
, Au2,u1

, . . . , Auw−1,u0
, Au0,uw−1

570

be the sequence of ends of Π that γi intersects. Then closed walk CΠ(γi) in G is defined to be571

[u0, u1, . . . , uw−1, u0].572

Closed walks are considered without basepoint, that is, up to cyclic permutations. Closed walks CΠ(γ)573

are defined to be the collection of all closed walks CΠ(γ), each corresponding to a constituent curve574

γi of γ. Let C(u) and C(uv) denote the vertices and edges of closed walks C that correspond to the575

cluster u and pipe uv, respectively. Let the weight n(uv) be the number of times C uses pipe uv in576

G (in either direction); one has n(uv) = |C(uv)|. Observe that the closed walks C do not contain any577

spurs—subwalks of the form [u, v, u]—by Property (4) in the definition of respecting a pipe system.578

Now we show that any multicurve γ lying in the initial pipe system Π0 can be made to respect it579

using a polynomial number of monotonic homotopy moves.580

Lemma 4.2. Let Σ be a genus-g orientable surface with b boundary components. Any multicurve γ on581

Σ with n crossings can be made to respect the pipe system Π0 using O((g + b)n2) monotonic homotopy582

moves. Furthermore, the tightening problem remains unchanged: any tightening of γ′ within the pipe583

system is also a tightening of γ. The length of the closed walk C corresponding to γ on G is at most584

O((g + b)n).585
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Proof: The very first step is to modify γ so that it contains no embedded monogons or embedded bigons586

within Π0. This step follows from Steinitz algorithm (Lemma 2.2) and takes O(n2)moves, since removing587

each bigon or monogon takes O(n) moves and this may need to be done O(n) times.588

We then use O(|γ∩Π0| · n) monotonic homotopy moves to ensure that γ does not form any bigon589

with any end of Π0. This is identical to the first step in Chang et al. [13, Lemma 4.4]; we repeat the590

main idea for clarity. Assuming that there exists such a bigon, let B denote a minimal embedded bigon591

(under containment) between γ and an end of Π0. By minimality, the only subpaths of γ occurring inside592

B have to be simple and crosses B transversely, from one side to the other. Thus, we can remove B by593

moving the subpath of γ bounding B across, going over each vertex one by one with a 3�3 move. We594

refer to Lemma 4.4 of Chang et al. [13] for more details and an illustration of this process. Removing all595

the bigons between γ and the ends of Π0 using this technique costs O(|γ∩Π0| · n) monotonic homotopy596

moves.597

We immediately have Property (1) because γ is contained in the union of the regions of Π0. Prop-598

erty (2) follows from the fact that we first tightened γ to remove embedded monogons and bigons: if599

any strand of α was non-simple in a cluster or a pipe, it would form such a monogon or bigon. Since600

γ crosses the ends of Π0 transversely, the crossings between γ and any end of Π0 is a point, yielding601

Property (3). We removed bigons between the ends Π0 and γ, and thus γ cannot intersect the same end602

of Π0 consecutively more than once as it would yield a bigon. This gives Property (4). Property (5) is603

true as the interiors of different pipe regions of Π0 do not intersect.604

As all the homotopy moves are performed within the pipe system Π0, any tightening that can be605

obtained from the original γ on the surface Σ can also be realized by a tightening of the new γ within Π0606

that covers the whole Σ. Furthermore, based on the fact that each edge of γ intersects Ξ only O(g + b)607

times, the length of the closed walks C constructed from γ will be at most O((g + b)n). Thus γ can be608

made to respect Π0 using O(|γ∩Π0| · n+ n2) = O((g + b)n2) monotonic homotopy moves. �609

4.2 Tightening curves using local operations610

We define two operations called the cluster expansion and pipe expansion performed on a multicurve γ611

lying in a pipe system Π in this subsection. Such operations have been used to study clustered planarity612

in graph drawings [19,31], weakly simple polygons [2,15], weak embeddings of graphs [3], and crossing613

numbers [30]. Our definition most closely resembles the one in Fulek and Tóth [30]; both allow the614

edges of skeleton graph G to cross in the drawing. The main differences are, instead of preserving615

crossing numbers, we need to argue that the tightening problem remains the same before and after616

the expansion; and unlike the previous papers where expansions can be done instantly, we have to617

implement each expansion operation using monotonic homotopy moves. While the constructions are618

described geometrically, the exact shape and position of the regions are mostly artificial and irrelevant;619

the only important thing is the change to the combinatorial structure.620

Cluster expansion. We perform the following cluster expansion on cluster u and its region Du in621

a pipe system Π with skeleton graph G. To describe the construction, we endow Du with Euclidean622

metric such that all the ends are infinitesimally small, and position these ends so that there are no triple623

intersecting strands of Du.624

We modify γ by replacing every strand of Du with a straight line, and modify G and Π accordingly625

(see Figure 4.2): For each pipe uv incident to u, create a new cluster [uv], whose corresponding cluster626

region in Π is an elliptical neighborhood of the end Au,v , and rename the pipe uv to [uv]v. For every pair627

of pipes uv and uw in G insert a pipe [uv][uw] if there was a strand of γ that connects the end Au,v with628

the end Au,w; insert the corresponding rectangular pipe regions in Π accordingly, so that in the drawing629

of G and Π the pipes intersect transversely. By the choice of Euclidean metric on Du, these pipe regions630
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Figure 4.2. Expanding a cluster Du. The infinitesimal ends have been widened for visibility.

can be taken to be arbitrarily thin and so that no three of them overlap at a point. Finally, remove cluster631

u from G and region Du from Π. Denote the multicurve and pipe system after cluster expansion as γ̃ and632

Π̃, respectively.633

Lemma 4.3. First, the cluster expansion can be implemented using O(n2) monotonic homotopy moves,634

such that after cluster expansion the new multicurve γ̃ still respects the modified pipe system Π̃. Second,635

if we denote by γ̃∗ any tightening of γ̃ within the modified pipe system Π̃ (viewed as a topological space),636

then γ̃∗ is also a tightening of γ within Π.637

Proof: Conceptually, this can be implemented by straightening the tangle defined by the cluster region638

using Lemma 3.1 in O(n2) moves, as the number of crossings in γ is upper bounded by n at any point of639

the algorithm because the homotopy process is monotone.640

Next we prove that the modified multicurve γ̃ respects the modified pipe system Π̃, by showing641

Properties (1)–(5) (and thus also (6)). Let the cluster expansion be performed on cluster u. Properties (1)–642

(3) immediately follow from the new strands being straight lines and the disk being convex. For643

Property (4), consider ends of two different types: ends of the form A[uv],v and ends of the form A[uv],[uw],644

where v and w are clusters adjacent to u in G. For ends of the first type, if γ intersects A[uv],v consecutively645

twice, the subpath of γ between the two intersections must lie inside Du, and therefore must be a strand646

in Du. This implies that γ did not respect Π as Property (4) was already violated, a contradiction. For647

ends of the second type, as we took the new clusters to be elliptical neighborhoods of the ends, and648

the new strands are all straight lines between the ends, each such strand can cross the boundary of649

each cluster of Π̃ at most once. Property (5) follows from the fact that the pipe regions can be made650

infinitesimally thin, and thus generically there are no crossings within the intersection of two of those.651

The second item of the lemma is a consequence of the facts that the cluster expansion performed on652

two multicurves with identical closed walks in the skeleton graph before expansion creates two new653

multicurves with identical closed walks in the new skeleton graph after expansion, and that homotopy654

between two multicurves within the pipe system is equivalent to the equality between two corresponding655

closed walks in the skeleton graph.656

More in details. Since, as a topological space, Π̃ is obtained from Π by adding punctures, any657

tightening γ̃∗ of γ̃ within Π̃ is also homotopic to γ̃ (and thus to γ) within Π. So it suffices to prove that658

such a γ̃∗ is tight within Π. In order to do so, let γ∗ denote a tightening of γ within Π; we prove that γ∗659

and γ̃∗ have equally many self-crossings.660
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Figure 4.3. Expanding a pipe Ruv . The infinitesimal ends have been widened for visibility.

First we claim that γ∗ can be made to respect the pipe system Π using monotonic homotopy moves661

(no matter how many). The proof follows closely the one of Lemma 4.2. As γ∗ is tight, it contains no662

embedded monogons or bigons. We ensure that it does not form any bigon with any end of Π by undoing663

such bigons, starting from the innermost ones. As in that proof, γ∗ now satisfies Properties (1)–(4), but664

it may fail to satisfy Property (5). Within the intersection of two pipe regions, if two strands of γ∗ from665

the same pipe region cross, they define a trigon with a boundary of the region-intersection. By applying666

Corollary 3.2, we can make this trigon empty using monotonic homotopy moves, and then move the667

crossing outside of the intersection. This operation does not break Properties (1)–(4). Repeating this as668

many times as needed, γ∗ satisfies Property (5) and thus respects the pipe system Π.669

Then we claim that the closed walk CΠ(γ∗) is identical to CΠ(γ). Indeed, by Property (4), none670

of these closed walks contains spurs, and γ∗ and γ are homotopic by definition. Since Π retracts (as671

a topological space) into its skeleton graph G, the claim follows from the fact that two closed walks672

without spurs in a graph are homotopic if and only if they are identical (up to cyclic permutation).673

We straighten the tangle induced by γ∗ within the cluster region using monotonic moves. Now, γ∗674

can be considered as a multicurve in the new pipe system Π̃, and furthermore, the closed walk CΠ̃(γ∗)675

induced by γ∗ in Π̃ is identical to CΠ̃(γ̃). (Indeed, in general, for any curve α ⊆ Π̃ ⊆ Π, the closed walk676

CΠ̃(α) is simply obtained from CΠ(α) by replacing subwords wuv with subwords w[wu][uv]v. Because677

CΠ(γ∗) = CΠ(γ) as shown above, one has CΠ̃(γ∗) = CΠ̃(γ̃).) From that we conclude that γ∗ and γ̃ are678

homotopic within Π̃.679

Any curve in Π̃ that is tight in Π is also tight in Π̃. It follows that γ∗ is tight within Π̃, and is therefore680

a tightening of γ̃ within Π̃. Thus it has exactly as many self-crossings as any tightening γ̃∗ of γ̃ within Π̃.681

This concludes the proof. �682

Pipe expansion. We perform the following pipe expansion on a pipe uv. For sake of analysis, we want683

to make sure that the pipe expansions we performed actually improve the quality of the multicurve684

in a pipe system. This motivates the following definitions [14, 19, 30]. Cluster u is a base of pipe uv685

if every vertex in C(u) is incident to some edge in C(uv). A pipe uv is safe if u and v are distinct and686

both u and v are bases of uv. A pipe uv in G is useless if both clusters incident to uv have degree 2 in G;687

otherwise the pipe uv is useful. We will only perform pipe expansion on safe and useful pipes throughout688

the algorithm.689

Let ∆ be a topological ellipse containing the cluster regions Du and Dv together with the pipe region690

Ruv, as well as portions of the pipe regions crossing Ruv (see Figure 4.3). By taking ∆ close enough691

to the region Ruv, we can assume ∆ contains no intersections between any two pipes intersecting Ruv.692

Because pipe uv is safe, the two cluster regions are distinct. We endow ∆ with Euclidean metric such693

that all the ends are infinitesimally small, and position these ends so that there are no triple intersecting694

strands of Du.695
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Then we modify γ by replacing every strand of ∆ with a straight line. We modify G and Π accord-696

ingly, see Figure 4.3: For each pipe uw incident to u other than uv, create a new cluster [uw], whose697

corresponding cluster region in Π is a neighborhood of the intersection between pipe region Ruw and698

the boundary of the disk ∆. Rename the pipe uw into [uw]w. Similarly for each pipe vw incident to v,699

create a new cluster [vw], whose corresponding cluster region in Π is a neighborhood of the end Av,w,700

and rename the pipe vw into [vw]w. Because the pipe uv is safe, both u and v are bases of uv; and G has701

no spurs as γ respects G. Therefore every strand of Ruv must connect an end of Du to an end of Dv . For702

every pair of pipes uw and vw′, insert a pipe [uw][vw′] if there was a strand of ∆ that connects end Au,w703

with end Av,w′ ; insert a corresponding rectangular pipe region in Π accordingly, so that in the drawing of704

G and Π the pipes intersect transversely. By the choice of Euclidean metric on ∆, these pipes can be705

taken to be arbitrarily thin rectangles such that no three of them overlap at a point. Finally, remove706

clusters u and v from G and regions Du and Dv from Π.707

Lemma 4.4. First, the pipe expansion can be implemented using O(n2) monotonic homotopy moves,708

such that after the pipe expansion the new multicurve γ̃ still respects the modified pipe system Π̃. Second,709

if we denote by γ̃∗ a tightening of γ̃ within the modified pipe system Π̃ (viewed as a topological space),710

then γ̃∗ is also a tightening of γ within Π.711

The proof is virtually identical to the proof of Lemma 4.3; we repeat it here to be comprehensive.712

Proof: Let uv be the useful pipe that we perform pipe expansion on. Topologically, this can be imple-713

mented by straightening the tangle inside the disk ∆ using Lemma 3.1, which can be done in O(n2)714

moves, as any crossing in the tangle is also a crossing of γ, which is upper bounded by n at any point of715

the algorithm because the homotopy process is monotone.716

Next we prove that the modified multicurve γ̃ respects the modified pipe system Π̃, by showing717

Properties (1)–(5) (and thus also (6)). Properties (1)–(3) immediately follow from the new strands718

being straight lines and the disk being convex. As for Property (4), consider ends of two different types:719

ends of the form A[uv],v and ends of the form A[uv],[vw′], where w and w′ are clusters incident respectively720

to u and v in G. For ends of the first type, if γ intersects A[uv],v consecutively twice, the subpath of γ721

between the two intersections must lie inside Du, and therefore must be a strand in Du. This implies722

that γ did not respect Π as Property (4) was violated, a contradiction. For ends of the second type, as723

the new strands are all straight lines between the ends, and the cluster regions have been taken to be724

elliptical neighborhoods of the ends, each strand can cross the boundary of each cluster at most once.725

Property (5) follows from the fact that the pipe regions are infinitesimally thin, and thus generically726

there are no crossings within the intersection of two of those.727

For the second item, let γ∗ denote a tightening of γ within Π. We claim that γ∗ can be made to respect728

the pipe system Π using monotonic homotopy moves (no matter how many). The proof follows closely729

the one of Lemma 4.2. As γ∗ is tight, it contains no embedded monogons or bigons. We ensure that it730

does not form any bigon with any end of Π by undoing such bigons, starting from the innermost ones.731

As in that proof, γ∗ now satisfies Properties (1)–(4), but it may fail to satisfy Property (5). Within the732

intersection of two pipe regions, if two strands of γ∗ from the same pipe region cross, they define a trigon733

with a boundary of this intersection. By applying Corollary 3.2, we can make this trigon empty using734

monotonic homotopy moves, and then move the crossing outside of the intersection. This operation735

does not break Properties (1)–(4). Repeating this as many times as needed, γ∗ satisfies Property (5) and736

thus respects the pipe system Π.737

We claim that the closed walk CΠ(γ∗) that it induces there is identical to CΠ(γ). Indeed, by Property (4)738

of the pipe system, none of these closed walks contains spurs, and γ∗ and γ are homotopic by definition.739

Since Π retracts (as a topological space) into its skeleton graph G, the claim follows from the fact that740
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Figure 4.4. A multicurve γ in a canonical form on a sphere with four boundaries. Note that while the top-right curve is
tightened, the bottom-left curve is not (an embedded bigon is labeled in pink).

two closed walks without spurs in a graph are homotopic if and only if they are identical (up to cyclic741

permutation).742

We straighten the tangles of γ∗ within the cluster region using monotonic moves. Now, γ∗ can be743

considered as a curve of the new pipe system Π̃, and furthermore, the closed walk CΠ̃(γ∗) induced by744

γ∗ in Π̃ is identical to CΠ̃(γ̃). (Indeed, in general, for any curve α ⊆ Π̃ ⊆ Π, the closed walk CΠ̃(α) is745

simply obtained from CΠ(α) by replacing subwords wuvw′ with the subwords w[wu][vw′]w′. Because746

CΠ(γ∗) = CΠ(γ) as shown above, this implies CΠ̃(γ∗) = CΠ̃(γ̃).) From that we conclude that γ∗ and γ̃ are747

homotopic within Π̃.748

Any curve in Π̃ that is tight in Π is also tight in Π̃. It follows that γ∗ is tight within Π̃, and is therefore749

a tightening of γ̃ within Π̃. Thus it has exactly as many self-crossings as any tightening γ̃∗ of γ̃ within Π̃.750

This concludes the proof. �751

4.3 Main algorithm752

At the beginning of the algorithm, perform a cluster expansion on the unique cluster in the initial753

pipe system Π0. Note that after this first expansion, the two incident clusters of any pipe are distinct.754

The algorithm repeatedly performs pipe expansion on an arbitrary safe and useful pipe, until no such755

pipe remains. Observe that after a cluster or pipe expansion, any newly created cluster is a base of756

an incident pipe. Thus throughout the algorithm we maintain the invariant that every cluster is a757

base of some pipe; in particular, this implies that there is always a safe pipe after the first cluster758

expansion [19, Property 5] [14, §5.1] [30, Lemma 5].759

Lemma 4.5 (Chang et al. [14, Lemma 5.3], Fulek and Tóth [30, Lemma 5]). If every cluster in the760

pipe system of G is a base of an incident pipe, but G has no useful pipes, then G must be a disjoint union761

of cycles.762

By Lemma 4.5, when all the useful pipes are gone, the skeleton graph must be a disjoint union of763

cycles. We now further put the multicurve into canonical form. A multicurve γ respecting a pipe system764

Π is said to be in canonical form if (1) the skeleton graph G of Π is a disjoint union of cycles; (2)765
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every intersection of γ is either between two strands of different pipes, or lying in a unique cluster u∗;766

furthermore, the strands in cluster u∗ forms (the projection of) a braid. See Figure 4.4.767

Let γ be a multicurve respecting a pipe system whose skeleton graph is a disjoint union of cycles.768

Slide all the crossings inside clusters to some arbitrarily chosen cluster u∗ using multiple applications of769

Lemma 4.1, and perform Lemma 3.1 on u∗ to straighten its strands [38, Propositions 14]; this can be770

done using O(n2) many monotonic homotopy moves. Now the multicurve must be in canonical form.771

De Graaf and Schrijver [38, Propositions 8 and 14] describe an algorithm to tighten any multicurve in772

canonical form using quadratically many monotonic homotopy moves. The main technical lemma [38,773

Proposition 7] can be described as a way to reduce the number of transpositions required to represent774

any permutation using conjugations. Intuitively, they show that as long as the multicurve is not tightened,775

for each constituent curve γi there is always a crossing that one can slide from the top of the braid all the776

way along the pipes where γi lies in, to the bottom of the braid and cancels out with another crossing777

using a 2�0 move, possibly after a sequence of 3�3 moves to adjust the position of the multicurve.778

Analysis. Define the potential function Φ(C ,G) to be the number of edges in C minus the number of779

pipes in G; in notation, Φ(C , G) := |E(C)| − |E(G)|=
∑

uv (|C(uv)| − 1).780

Lemma 4.6 (Chang et al. [14, Lemma 5.4], Fulek and Tóth [30, Lemma 4]). Let γ be a multicurve781

respecting a pipe system Π, with corresponding closed walks C on skeleton graph G. Each pipe expansion782

performed on a useful pipe in Π decreases the potential Φ(C , G) by at least one.783

We now have all the tools to prove Lemma 1.5.784

Proof (of Lemma 1.5): As the potential Φ is always nonnegative and the initial value is at most O((g +785

b)n) by Lemma 4.2, the algorithm terminates after O((g + b)n) steps by Lemma 4.6. Each cluster and786

pipe expansion can be implemented by O(n2) many homotopy moves (Lemmas 4.3 and 4.4). After787

no useful pipe remains, by Lemma 4.5 the skeleton graph must be a disjoint union of cycles. Turning788

γ into canonical form via Lemma 4.1, followed by tightening γ, using the algorithm by de Graaf and789

Schrijver [38], takes O(n2) many homotopy moves.790

By Lemmas 4.3 and 4.4, a multicurve that is tight in the final pipe system is also tight in the original791

pipe system, which covers the entire surface. Therefore we have tightened the multicurve γ, and this792

proves Lemma 1.5. �793

5 Applications794

5.1 Putting curves in minimal positions795

In this subsection, we explain how our techniques can be leveraged to prove Theorem 1.2. Most of the796

steps of the proof are readily algorithmic, in particular the techniques of Section 4 have been designed797

with graph drawing applications in mind. While we have described many steps using geometry, this was798

just for convenience and the cluster and pipe expansion operations are purely combinatorial: instead799

of endowing the disks with a Euclidean metric, one can just choose an (arbitrary) arrangement of800

pseudolines describing how the infinitesimally thin pipe regions will cross.801

In order to do the expansions, we rely on Lemma 3.1. While one could analyze the complexity of802

computing the right sequence of moves, let us just observe that for our application in mind—to compute803

a minimal position for the given multicurve—we can directly straighten the tangle within the disk. So804

the complexity of straightening a tangle with n crossings and m strands is simply O(n+m). Each cluster805



22 Hsien-Chih Chang and Arnaud de Mesmay

and pipe expansion can be realized in O((g + b)n) time since there are O((g + b)n) strands and O(n)806

crossings, therefore the time complexity of the steps described in Section 4 is O((g + b)2n2).807

The remaining algorithmic question is to carry out the straightening process described in Section 3,808

which relies heavily on hyperbolic geometry. Hyperbolic geometric computations are becoming increas-809

ingly common (see for example Iordanov and Teillaud [43]) in computational geometry, and the ones we810

rely on are no harder to carry out than the Euclidean ones. As is customary in computational geometry,811

we work in a real RAM model. For the sake of convenience, we allow computations of hyperbolic812

trigonometric functions and their inverses in constant time, but note that this is not strictly required as813

approximating those functions works equally well.814

The first step of Section 3 is to endow the surface with a hyperbolic metric. In terms of algorithms,815

this is achieved by mapping the surface to a polygon in some model of hyperbolic geometry, for example816

the Poincaré disk. The vertices of the cut graph are mapped to the vertices of a regular hyperbolic817

polygon, and can thus be computed readily. The edges in the Poincaré disk model are portions of circles818

intersecting the boundary at right angles, and can therefore be encoded by their endpoints. Since the819

second step of the proof of Section 3 is to straighten the tangle of γ within this polygon, for an algorithm820

we can start directly with a straightened tangle, that is, a collection of circular arcs.821

The main loop of the algorithm consists of taking a point of maximal tortuosity and straightening822

the tangle within a disk centered at this point. Since, throughout the tightening process, the curve γ823

stays a piecewise-geodesic, the points of maximal tortuosity are always at the vertices between two824

consecutive circular arcs. We loop on all these points to find the one with largest tortuosity. This requires825

length computations which can be done in constant time with inverse hyperbolic functions (note that826

approximating computations are also fine here, and thus adding such functions to the computation827

model is not strictly required).828

We straighten the tangle in a disk centered at the point with maximum tortuosity, and each time829

such a straightening is done, the number of breaking points increases by one for each strand in the830

tangle. There is a potential pitfall here: each straightening could double the number of breaking831

points in the multicurve, which could lead to an exponential number of circular arcs. Furthermore, the832

number of intersections between the multicurve and the reduced cut graph might also increase during a833

straightening. However, we can prove that they do not increase too much.834

Lemma 5.1. Let Σ be endowed with the hyperbolic metric described in Section 3 for a cut graph X , and835

let γ be an n-vertex multicurve on Σ that crosses X at most O(n) times such that all its segments between836

successive intersections with X are geodesics. After any number of straightenings of γ within a disk or837

within the polygon Σ \ X , the number of intersections of γ with X is O(gn).838

Proof: When endowed with the hyperbolic metric described in Section 3, the edges of the cut graph839

are geodesic segments. We extend these segments into a family of O(g) closed geodesics, which we840

denote by ∆. These extensions are closed because the hyperbolic metric has been obtained from an841

equilateral O(g)-gon, and thus extending the geodesics just amounts to triangulating the polygon by842

adding a vertex at the center and connecting it to every vertex by geodesics. Since γ is geodesic within843

the polygon defined by X , it is made of O(n) geodesic arcs, each of which crosses ∆ at most O(g) times,844

thus the number of intersections between γ and ∆ is O(gn). We claim that this number of intersections845

does not increase after any sequence of straightenings. Indeed, we can consider that each straightening846

is a straightening of γ∪∆, viewed as a single multicurve. Since ∆ is already made of geodesics, it is847

unchanged by the straightening. Since the straightening does not increase the number of crossings of848

the multicurve, the number of intersections of γ with ∆, and thus with X , is O(gn). �849

Therefore, by inserting a straightening of all the strands within Σ \ X between two straightenings850
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Figure 5.1. Electrical moves 1�0, 2�1, and 3�3.

within a disk, we can ensure that the multicurve γ is always made of O(gn) geodesic segments, which851

we can encode using the coordinates of their endpoints.852

The loop ends when no point of high tortuosity is found. It remains to find a point inside the853

hyperbolic polygon which is far away (under the hyperbolic metric) from a collection of polynomially854

many geodesic arcs. As we emphasized after the proof of Lemma 3.4, in hyperbolic geometry, the sets of855

points equidistant to a geodesic are called hypercircles, which are not geodesics (unlike in the Euclidean856

setting), but they are still realized by circular arcs in the Poincaré disk model. Therefore, one can easily857

compute all these hypercircles, and find a point to puncture in the complement of regions bounded by858

pairs of circles.859

The bottleneck of the algorithm to move curves close to the geodesics is the sequence of straightenings860

in disks centered at points of high tortuosity: there are O(n3 log3 g/g2) such straightenings. Each of them861

requires finding the correct breaking points among the O(gn) possibilities, after which straightening the862

tangle also takes O(gn) time. The resulting algorithm runs in O(n4 log3 g/g) time. In total, we can put863

a multicurve in minimal position in O(n4 log3 g/g + (g + b)2n2) time.864

Handling the torus. While our techniques do not apply to multicurves on a torus without boundary,865

this case can be handled manually using homology (see for example Stillwell [62, Chapter 5]). Indeed,866

the homotopy class of a closed curve on a torus coincides with its homology, which is a pair of integers867

(p, q) ∈ Z2. For a given multicurve γ, one can compute the corresponding collection of pairs of integers868

(pi , qi) in polynomial time by using any classical homology computation algorithm. Then a minimal869

position of the multicurve γ can be obtained by drawing γ on a Euclidean flat torus represented by a870

unit-square, where each closed curve is realized by a straight geodesic of slope qi/pi . If gcd(pi , qi) 6= 1,871

we take gcd(pi , qi) many copies of the geodesic with a slight offset and connect them so as to realize872

the homology class (p, q) with exactly gcd(pi , qi)− 1 self-crossings. This multicurve is homotopic to873

γ because it is homological to γ, and on the torus homology and homotopy coincide. It is in minimal874

position because any closed curve of homology (p, q) has at least gcd(p, q)− 1 self-crossings, and the875

crossings between different components realize the algebraic intersection number piq j − p jqi, of which876

the absolute value is known to lower bound the geometric intersection number.877

5.2 Electrical reductions878

Next, we consider the implication on reducing surface graphs using electrical transformations and sketch879

a proof of Theorem 1.3. As mentioned in the introduction, every k-terminal graph embedded on a880

surface Σ corresponds to a multicurve lying on a punctured surface through the medial construction by881

adding one puncture on Σ for each terminal in the graph. The set of facial electrical transformations882

corresponds to a set of local operations on multicurves called the electrical moves, which bear extreme883

similarity to the homotopy moves. Let X(γ) denote the minimum number of electrical moves required to884

tighten γ on Σ, and let H↓(γ) denote the minimum number of monotonic homotopy moves required885

to tighten γ on Σ, without ever increase the number of vertices. One can prove that if H↓(γ) ≤ f (n)886

for any n-vertex multicurve on surface Σ, then X (γ)≤ n · f (n) holds, by replacing the first 2�0 move887

with a 2�1 move and recurse [10, Lemma 7.2]. In particular, our polynomial upper bound on the888
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Figure 5.2. A terminal-leaf contraction on graph G and the corresponding operation on medial multicurve G×; the blue solid
squares represent the terminals in G, which turn into punctures on the surface.

number of monotonic homotopy moves directly implies a polynomial bound on the number of electrical889

moves required to tighten a multicurve. The original proof can be turned algorithmic by using the890

polynomial-time algorithm for monotonic homotopy from Theorem 1.2; we include a proof here to make891

the presentation complete.892

Lemma 5.2 (Chang [10, Lemma 7.2]). Fix an arbitrary surface Σ. Any polynomial running time f (n)893

for tightening any n-vertex multicurve γ on Σ using monotonic homotopy moves can be turned into a894

polynomial running time n · f (n) for tightening any n-vertex multicurve γ on Σ using electrical moves.895

Proof: Let γ be an arbitrary multicurve on Σ with n vertices. First, if multicurve γ is already tightened896

under homotopy moves, then it must be tight under electrical moves as well (see Chang, Cossarini, and897

Erickson [11, Lemma 3.7]) and thus the statement trivially holds. Otherwise, consider the first homotopy898

move in the algorithm for tightening γ monotonically (from Theorem 1.2) that decreases the number899

of vertices in γ (that is, either a 1�0 or 2�0 move). Replace the 2�0 move with a 2�1 if needed, one900

arrives at a curve γ′ that has strictly fewer vertices than γ. We restart the monotonic homotopy algorithm901

on γ′ instead.902

The time spent from reducing γ to γ′ is at most f (n). Now by induction on the number of vertices,903

the time g(n) for reducing γ is904

g(n) ≤ g(n− 1) + f (n)905

≤ (n− 1) · f (n− 1) + f (n)906

≤ n · f (n),907
908

which proves the lemma. �909

5.3 Terminal-leaf contraction910

Previous works [7,21,29,34] on reducing surface graphs with terminals using electrical transformations911

also rely on an additional move which is not a facial electrical move. The terminal-leaf contraction6 is a912

leaf-reduction performed on a terminal by contracting its unique incident edge and assigning the merged913

vertex as a new terminal. See Figure 5.2 for a graph- and curve-view of this operation. First thing to914

notice is that a multicurve that is tight under electrical moves might not be tight when terminal-leaf915

contractions are allowed. We will argue that after the multicurve is tightened using electrical moves,916

we can further reduce the curve efficiently using terminal-leaf contractions, until nothing can be done.917

This yields the desired polynomial bounds on number of monotonic homotopy moves, as well as a918

polynomial-time algorithm. To this end we first introduce the following concepts.919

6also known as the FP-assignment [33], after Feo and Provan [29]
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Figure 5.3. A punctured monogon α and the image of its singular disk.

Punctured monogon. A smoothing of a multicurve γ at a vertex x replaces the intersection of γ920

around x with two disjoint simple paths, so that the result is another multicurve; notice that there are921

two possible smoothings at each vertex. More generally, a smoothing of a multicurve γ is any multicurve922

obtained by smoothing a subset of its vertices. A multicurve γ contains a (singular) punctured monogon923

α if γ has a constituent curve γi with a crossing x such that after smoothing γi at x in the way that924

disconnects γi , one of the two curves of the smoothing is freely homotopic to a small circle going exactly925

once around a single puncture of Σ. We call x the tip of punctured monogon α. This small circle bounds926

an embedded punctured disk, which turns into a singular punctured disk under the homotopy. (This is927

akin to diagrams used in geometric and combinatorial group theory, see e.g. [48].) The monogon α itself928

designates this singular disk, that is, a map α: D2→ Σ such that α(D2) covers the puncture exactly once.929

See Figure 5.3 for an example. A punctured monogon α is empty if α(∂D2) is simple and the interior930

of α(D2) is disjoint from γ. A (medial) terminal-leaf contraction always applies on empty punctured931

monogons. By definition punctured monogons are exactly those objects that are homotopic to some932

empty punctured monogon.933

As a sanity check to see that punctured monogons are the right objects to work with, observe that934

any tight multicurve on a sphere with three punctures can be made simple by removing all the punctured935

monogons; this corresponds exactly to the statement that any 3-terminal plane graph can be reduced936

completely using electrical transformations along with terminal-leaf contractions [33].937

First, we show that any punctured monogon can be removed efficiently.938

Lemma 5.3. Let γ be a multicurve with n crossings in minimal position on a surface Σ. If γ contains a939

punctured monogon, then we can compute in O(n3) time a sequence of O(n3) 3�3 moves transforming940

γ into a multicurve γ′ containing an empty punctured monogon.941

Proof: Let α be a punctured monogon in γ. Our plan for the proof is to first turn α into an embedded942

disk (with a puncture), then empty it. Smooth the vertex x in γ (by removing a small neighborhood of943

x in γ and reconnecting the curves in a non-crossing fashion) so that the punctured monogon α turns944

into a closed curve, which we denote as α̌. By definition of punctured monogon, α̌ is homotopic to a945

simple curve winding around the puncture. A result of Hass and Scott [40, Theorem 2.4] shows that if946

α̌ is not simple, there must be an embedded bigon or monogon in α̌ that contains x on the boundary947

(because γ itself is in minimal position). Therefore such a bigon (resp. monogon) corresponds to a trigon948

(resp. bigon) in γ. By minimality of γ, the only possibility is that this is a trigon. Using Lemma 2.2 and949

Corollary 3.2 we can empty and flip the trigon in γ (and thus the bigon in α̌) using at most O(n2) moves.950

Now the complexity of α̌ decreases; after at most n steps we turn α̌ into a simple closed curve. We951

emphasize that as γ is already tight, and the complexity of γ does not change throughout the process.952

At this stage, the singular disk of α is embedded. If we consider the surface Σ without the puncture,953

α forms an embedded monogon. Let α′ be an innermost embedded monogon inside α (possibly α = α′).954
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Considering Σ again with the puncture, since γ is in minimal position, α′ must be a punctured monogon.955

Since it is innermost, all the strands crossing α′ are simple. Any such strand bounds a trigon with the956

tip of α′, which we can remove once again using Corollary 3.2. This does not increase the number957

of crossing strands with the α′. Thus, removing all such strands costs O(n3) moves, after which the958

punctured monogon α′ is empty. �959

Routing set. Next we show that when there are no more punctured monogons, the multicurve must960

be tight under electrical moves and terminal-leaf contractions.961

For any multicurve γ, the routing set [11] of γ is the following collection of homotopy classes:962

route(γ) :=
¦

[γ̌] | γ̌ is a smoothing of γ
©

.963

Each homotopy class in route(γ) is referred to as a route of γ. A key property is that the routing set is964

invariant under electrical moves [11, Lemma 3.6].965

Lemma 5.4. Let γ be a connected multicurve in minimal position on a surface Σ. If γ does not contain a966

punctured monogon, then no sequence of electrical moves and terminal-leaf contractions can transform γ967

into another multicurve with fewer crossings than γ.968

Proof: Assume otherwise that there is a sequence of electrical moves and terminal-leaf contractions969

transforming γ into another multicurve with fewer crossings. Let the number of terminal-leaf contractions970

used in this sequence be minimal among all counterexamples. If no terminal-leaf contraction is used,971

then the fact that γ is tight under electrical moves is a theorem of Chang, Cossarini and Erickson [11,972

Lemma 3.7].973

Otherwise, denote by γ′ and γ′′ the two multicurves just before and after the first terminal-leaf974

contraction is used. The curve γ′ contains an empty punctured monogon, whose tip is denoted by x . We975

emphasize that γ′ might not be in minimal position. We first claim that γ is homotopic to a smoothing976

of γ′′. By definition, γ′ is related to γ by electrical moves, thus route(γ′) = route(γ). Therefore γ is977

homotopic to a smoothing γ̌′ of γ′. A theorem of Neumann-Coto7 [50, Proposition 2.2] shows that978

a tightening of γ̌′ can be found among the smoothings of γ̌′, and thus of γ′. Therefore without loss979

of generality we can take γ̌′ to be in minimal position. Assume for contradiction that x has not been980

smoothed in γ̌′. Denote by κ′ the constituent curve of γ̌′ containing x , and κ the constituent curve of γ981

homotopic to κ′. Since κ and κ′ are homotopic and both in minimal position, they can be transformed982

into each other via only 3�3 moves (see for example Hass and Scott [41, Theorem 2.1]). Since 3�3983

moves preserve punctured monogons and γ (and thus κ) has no punctured monogon, we have that984

κ′ contains no punctured monogon, a contradiction. So the vertex x has been smoothed in γ̌′. While985

there are two possible ways to smooth x , one of them disconnects the multicurve which is impossible986

because γ is a connected multicurve in minimal position and also homotopic to γ̌′. The other smoothing,987

if performed on γ′, gives us γ′′; this implies that γ̌′ can be viewed as a smoothing of γ′′. Therefore, γ is988

homotopic to a smoothing of γ′′.989

Since γ′ and γ are related via electrical moves, by Chang, Cossarini and Erickson [11, Lemma 3.1], γ′′990

(which is a smoothing of γ′) is related via electrical moves to a smoothing γ̌ of γ. If γ̌ = γ, then doing the991

moves in reverse, we have removed the need of a terminal-leaf contraction between γ and γ′′ and thus992

this contradicts the minimality of the number of terminal-leaf contractions used in our counter-example.993

Otherwise, γ is homotopic to a smoothing of γ′′, thus is in route(γ′′), and thus in route(γ̌). Thus γ is994

homotopic to one of its strict smoothings, which contradicts that γ is in minimal position. �995

7Neumann-Coto’s proposition requires the multicurve to be made of primitive curves. But in the proof, this is actually
only needed to apply a theorem of Hass and Scott on monotonic simplification of curves, which is valid also for non-primitive
multicurves, as was proved by de Graaf and Schrijver [38] (or our Lemma 1.5).
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Now we are ready to prove the main result that any multicurve can be tightened using electrical996

moves and terminal-leaf contractions in polynomial time.997

Theorem 5.5. Any multicurve γ on a surface Σ with n vertices can be tightened using electrical moves998

and terminal-leaf contractions in ((g + b) · n5) time.999

Proof: Let γ be an arbitrary multicurve on Σ with n vertices. Our recursive algorithm loops as follows.1000

By Lemma 1.5 and Lemma 5.2, one can tighten γ into another multicurve γ′ using electrical moves1001

in O((g + b) · n4) time. Now γ′ is in minimal position. Without loss of generality, γ′ is connected, as1002

disconnected components cannot interact with each other under electrical moves and terminal-leaf1003

contractions. For each vertex x of γ′ we test whether x is the tip of a punctured monogon using a1004

linear-time homotopy test [26,46]. If γ′ contains no punctured monogon, by Lemma 5.4, γ′ is tight under1005

electrical moves and terminal-leaf contractions. Otherwise, if γ′ contains a punctured monogon, by1006

Lemma 5.3, we can compute in O(n3) time a sequence of O(n3) 3�3 moves turning γ′ into a multicurve1007

containing an empty punctured monogon. Applying a terminal-leaf contraction on this empty punctured1008

monogon, we obtain a new multicurve γ′′ with n− 1 vertices, and we go back to the start of the loop.1009

Since the number of vertices strictly decreases, the bottleneck of the algorithm is to tighten γ using1010

electrical moves and applying Lemma 5.3. The total running time is O((g + b) · n5). �1011
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