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Abstract

Any continuous deformation of closed curves on a surface can be decomposed into a finite sequence of local changes6

on the structure of the curves; we refer to such local operations as homotopy moves. Tightening is the process of7

deforming given curves into their minimum position; that is, those with minimum number of self-intersections.8

While such operations and the tightening process has been studied extensively, surprisingly little is known about9

the quantitative bounds on the number of homotopy moves required to tighten an arbitrary curve.10

An unexpected connection exists between homotopy moves and a set of local operations on graphs called11

electrical transformations. Electrical transformations have been used to simplify electrical networks since the 19th12

century; later they have been used for solving various combinatorial problems on graphs, as well as applications in13

statistical mechanics, robotics, and quantum mechanics. Steinitz, in his study of 3-dimensional polytopes, looked14

at the electrical transformations through the lens of medial construction, and implicitly established the connection15

to homotopy moves; later the same observation has been discovered independently in the context of knots.16

In this thesis, we study the process of tightening curves on surfaces using homotopy moves and their con-17

sequences on electrical transformations from a quantitative perspective. To derive upper and lower bounds we18

utilize tools like curve invariants, surface theory, combinatorial topology, and hyperbolic geometry. We develop19

several new tools to construct efficient algorithms on tightening curves and graphs, as well as to present examples20

where no efficient algorithm exists. We then argue that in order to study electrical transformations, intuitively it is21

most beneficial to work with monotonic homotopy moves instead, where no new crossings are created throughout22

the process; ideas and proof techniques that work for monotonic homotopy moves should transfer to those for23

electrical transformations. We present conjectures and partial evidence supporting the argument.24
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Chapter 1

Introduction and History

Say you’re me and you’re in math class, and your teacher’s talking about ... Well,

who knows what your teacher’s talking about. Probably a good time to start doodling.

— Vi Hart, Doodling in Math Class

143

一角兩角三角形，四角五角六角半。

One-gon, two-gon, tri-angle; four-gon, five-gon, six-gon half.

— Mandarin fingerplay

144

Given an arbitrary closed curve on some 2-dimensional surface, it is natural to look for ways to modify or deform145

the curve continuously into its “simplest” form. The meaning of “simple” varies according to the applications. To146

fix the terminology, our goal is to tighten the curve via continuous deformation (known as homotopy) into another147

closed curve with minimum complexity. Common complexity measures include the time to minimize the length148

of the curve [23,29,30,54,63,65,82,140,162]; the area of the homotopy [39,98,183,255]; the height of the149

homotopy [28,35,36,38,133]; the width of the homotopy [32,34]; and other properties desired for the process,150

like simplicity and monotonicity [37,40,41,42]. Most of the measures studied inherently require some existing151

geometry associated with the surface and the curve. However, in some instances of the curve tightening problem,152

the input curve is only supplied by—or differentiated up to—its combinatorial structure, and therefore a better153

complexity measure, preferably based only on the changes to the structure, is desired.154

Consider the following scenario: Given two curves in the plane, we want to decide which curve is more155

complicated than the other. Various methods are known to measure the “curviness” of the drawings, which can be156

served as a way to decide the complexity of the curves. However, there are cases when “curviness” might not be157

the most suited measure. For example, when the input curves are hand-drawn symbols, the length and shape of158

the curves various drastically from one drawer to the other. What is invariant is the combinatorial structure of the159

hand drawing, that is, what “symbols” they really are. Naïve measure like counting the number of crossings in the160

symbols helps, but it does not solve the problem as the number of planar curves with a fixed number of crossings161

grows exponentially.162

In this thesis we propose and study the following topological complexity measure—the number of local163

operations called homotopy moves that change the combinatorial structure—for tightening closed curves on164

arbitrary surfaces. Such local operations have been studied in topology since almost a hundred years ago165

[6,7,104,105,202,239]; however, to the best of our knowledge, no previous work has tackled the problem from a166

quantitative perspective.167

1.1 Homotopy Moves168

Homotopy is the process of continuously deforming one curve to the other. For the sake of discreting the process,169

we assume throughout the rest of the thesis that all the curves are generic—every self-intersection is formed by170

1



exactly two subpaths crossing each other properly without tangency (that is, a transverse double intersection).171

In this case, one can summarize the changes to the combinatorial structure of the curve on a surface during the172

homotopy using the following set of local operations:173

• 1��0: Remove/add an empty monogon.174

• 2��0: Remove/add an empty bigon.175

• 3�3: Flip an empty triangle; equivalently, move one strand across a self-intersection point.176

Figure 1.1. Homotopy moves 1�0, 2�0, and 3�3.

Each homotopy move is performed by continuously deforming the curve inside an open disk embedded on the177

surface, meeting γ as shown in Figure 1.1. Consequently, we call these operations homotopy moves. Our notation178

is mnemonic; the numbers before and after each arrow indicate the number of local vertices before and after the179

move. (Similar notation has been used by Thurston [236].)180

Homotopy moves are “shadows” of the classical Reidemeister moves used to manipulate knot and link dia-181

grams [7,202]. A compactness argument, first explicitly given by Titus [239] and Francis [104,105] but implicit182

in earlier work of Alexander [6], Alexander and Briggs [7], and Reidemeister [202], implies that any continuous183

deformation between two generic closed curves on any surface is equivalent to—and therefore, any generic curve184

can be tightened by—a finite sequence of homotopy moves.185

It is natural to ask how many homotopy moves are required to tighten a given closed curve on a surface to186

another curve with minimum number of self-intersections (known as the geometric intersection number). An187

algorithm to tighten any planar closed curve using at most O(n2) homotopy moves is implicit in Steinitz’s proof188

that every 3-connected planar graph is the 1-skeleton of a convex polyhedron [230,231]. (See Section 2.6 for a189

more detailed discussion on Steinitz’s algorithm.) The O(n2) upper bound also follows from algorithms for regular190

homotopy, which forbids 0��1 moves, by Francis [103], Vegter [251] (for polygonal curves), and Nowik [185].191

On higher-genus orientable surfaces, a result of Hass and Scott [135] implies that every non-simple closed192

curve that is homotopic to a simple closed curve can be tightened using O(n2) moves, essentially by applying193

Steinitz’s algorithm. Similar result for arbitrary curves on the torus can be derived and extracted from Hass and194

Scott [135]. De Graaf and Schrijver [125] proved that arbitrary curves on the annulus can be tightened using at195

most O(n2) moves.196

When both the surface and the curve are unrestricted, Hass and Scott [136] and de Graff and Schrijver [125]197

independently proved that any closed curve on any surface can be tightened using a finite number of homotopy198

moves that never increase the number of self-intersections. Both results use discrete variants of curve-shortening199

flow. Grayson [126] and Angenent [9] provide similar results using differential curvature flow when the curves and200

surfaces are well-behaved. Later on Paterson proved the same result using a combinatorial algorithm [187]. None201

of these algorithms provide any bound on the number of homotopy moves performed as a function of the number202

of self-intersections. The monotonicity result, together with asymptotic bounds by Bender and Canfield [21] on203

the number of distinct (rooted) 4-regular maps with n vertices and genus g, immediately implies an upper bound204

of the form nO(g)2O(n) on the number of homotopy moves required; this is the best upper bound previously known205

before our work.206
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1.2 Electrical Transformations207

Let’s change our focus from curves to graphs for a moment. Consider the following set of local operations defined208

on plane graphs (that is, planar graphs with embeddings on some surface), called electrical transformations209

(following Colin de Verdière et al. [68]), consisting of six operations in three dual pairs, as shown in Figure 1.2.210

• degree-1 reduction: Contract the edge incident to a vertex of degree 1, or delete the edge incident to a face211

of degree 1212

• series-parallel reduction: Contract either edge incident to a vertex of degree 2, or delete either edge incident213

to a face of degree 2214

• ∆Y transformation: Delete a vertex of degree 3 and connect its neighbors with three new edges, or delete215

the edges bounding a face of degree 3 and join the vertices of that face to a new vertex.216

Figure 1.2. Facial electrical transformations in a plane graph G and its dual graph G∗.

It is natural to ask how many electrical transformations are required in the worst case. The earliest algorithm217

for reducing a plane graph to a single vertex again follows from Steinitz’s proof of the convex polyhedron218

theorem [230,231]. Later algorithms were given by Feo [99], Truemper [242], Feo and Provan [100], and others.219

Both Steinitz’s algorithm and Feo and Provan’s algorithm require at most O(n2) electrical transformations. (We220

will soon discuss Steinitz’s algorithm in Section 2.6, and then Feo and Provan’s algorithm later in Section 8.1.1.)221

Even the special case of regular grids is interesting. Truemper [242, 244] describes a reduction from the222

problem of reducing general plane graphs to regular grids using graph minors, and show how to reduce the p× p223

grid in O(p3) steps. Poger and Sussmann [190] showed how to reduce the (p+ q)× q grid in O(pq2 + q3) steps.224

Nakahara and Takahashi [181] prove an upper bound of O(min{pq2, p2q}) for the p× q cylindrical grid. Because225

every n-vertex plane graph is a minor of an O(n)×O(n) grid [233,249], all of these results imply an O(n3) upper226

bound for arbitrary plane graphs (see Corollary 7.3). Both Gitler [115] and Feo and Provan [100] suspect the227

possibility that Truemper’s algorithm actually performs only O(n2) electrical transformations. On the other hand,228

the smallest (cylindrical) grid containing every n-vertex plane graph as a minor has size Ω(n)×Ω(n) [249].229

Most of these earlier algorithms actually solve a more difficult problem, considered by Akers [5] and Lehman [165],230

of reducing a planar graph with two special vertices called terminals to a single edge between the two. Epifanov [85]231

first proved that such reduction is always possible, using a nonconstructive argument; simpler constructive proofs232

were later given by Feo [99], Truemper [242,244], Feo and Provan [100] (and Nakahara and Takahashi [181],233

whose algorithm is almost identical to Truemper’s but performed on cylindrical grids instead). In fact, all existing234

algorithms that work for arbitrary plane graphs without terminals can be modified to work for the two-terminal235

case.236

Feo-Provan Conjecture. Despite decades of prior work as we shown above, the complexity of the electrical237

reduction process is still poorly understood. Several authors have conjectured that the quadratic bound derived238

from Feo and Provan [100] can be improved. Without any restrictions on which transformations are permitted,239
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the only known lower bound is the trivial Ω(n). Gitler [115] and Archdeacon et al. [12] asked whether the O(n3/2)240

upper bound for square grids can be improved to near-linear. (We will show in Section 7.3.1 that turns out no241

improvements can be made.) As for arbitrary planar graphs, Feo and Provan [100] suggested that “there are242

compelling reasons to think that O(|V |3/2) is the smallest possible order”, possibly referring to earlier empirical243

results of Feo [99, Chapter 6]. Gitler [115] conjectured that a simple modification of Feo and Provan’s algorithm244

requires only O(n3/2) time.245

1.3 Relation between Two Local Operations246

Perhaps the most important and surprising connection we proposed in the thesis, is the existence of a quantitative247

relation between the electrical transformations and the homotopy moves. At the surface1 such connection doesn’t248

seem to make sense; after all, electrical transformations are performed on (embedded) graphs, whereas homotopy249

moves are performed on curves. We argue that, at an intuitive level, reduction using electrical transformations250

should be thought of as a variant of the monotonic homotopy process, where all 0�2 moves are forbidden.251

Connections between graphs and planar curves can be traced back to Tait [234], when he came up the notion252

later known as the “Tait graph”: Given a planar curve and the unique two-coloring of its regions in the plane,253

a graph can be constructed by taking one of the color classes as vertices, and two vertices are adjacent if the254

corresponding two regions share an intersection point of the curve. Notice that a Tait graph always comes with255

a planar embedding. The inverse operation to the Tait graph construction, now known as the medial graph256

construction, was discovered by Steinitz in his study of 3-dimensional convex polyhedron [230,231], which he257

referred to as the “Θ-Prozeß”. The medial graph G× of an embedded graph G is constructed by taking the edges258

of G as vertices and connect two edges of G (with multiplicity) if they share both a vertex and a face in G. Every259

vertex in the medial graph has degree 4, and therefore one can naturally view the medial graph as a system of260

curves lying on the same surface as G, where each intersection point between two (possibly identical) constituent261

curves is transverse. We refer to the set of curves as the medial curves.262

Through the lens of the medial construction, electrical transformations in any embedded graph G correspond to263

local operations in the medial graph G× that bare extreme resemblance—perhaps almost identical to—homotopy264

moves. We refer to such local operations as medial electrical moves.265

Figure 1.3. Electrical transformations and the corresponding medial electrical moves.

Now a natural bijection is established between graphs and systems of generic curves on a fixed surface;266

electrical transformations performed on the graph correspond to medial electrical moves performed on the medial267

curves. Many authors have observed and studied such correspondence, implicitly by Steinitz [230, 231] and268

Grünbaum [128], and explicitly by Yajima and Kinoshita [258], Goldman and Kauffman [117], and Nobel and269

Welsh [184].270

The correspondence also provides another motivation to study electrical and homotopy moves on surfaces:271

When we perform electrical transformations on plane graphs, the terminals should not be involved in any local272

1No pun intended.
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operations. Under the medial graph construction, these terminals turn into punctures in the plane; no electrical273

moves will ever move the curves across a puncture. Therefore, by studying the relationship between electrical274

and homotopy moves on the punctured plane, we can bound the number of electrical transformations required to275

reduce plane graphs with terminals.276

1.4 Results and Outline of the Thesis277

The majority of the thesis is devoted to proving worst-case upper and lower bounds on the number of homotopy278

moves used for tightening curves and the number of electrical transformations required to reduce planar graphs.279

We start with the preliminaries in Chapter 2, introducing the basic concepts used throughout the thesis and280

fixing the terminologies. Then in Chapter 3 we study the numerical curve invariant called defect introduced by281

Arnold [15,16] and Aicardi [4]. Exact formulas of defect on specific families of curves are computed, along with282

several new properties of defect. The chapter finishes with some implications on random knots.283

In Chapter 4 we derive lower bounds on the number of homotopy moves required to tighten curves on surfaces.284

We provide an Ω(n3/2) lower bound on tightening closed curves in the plane through the defect invariant. A285

natural generalization of defect to higher-genus surface gives a stronger Ω(n2) bound for non-contractible curves286

on arbitrary orientable surfaces. The same Ω(n2) bound can be proven and extended to arbitrary curves on any287

surface with non-positive Euler characteristic using a completely different potential function. In Chapter 5, a288

matching O(n3/2) upper bound for planar curves is obtained using the useful cycle technique; we then extend the289

algorithm to arbitrary collection of closed curves in the plane.290

In Chapter 6 we describe two methods to tighten curves on an arbitrary orientable surface by adapting Steinitz’s291

algorithm: First, we present an O((g + b)n3)-step algorithm for tightening curves on an arbitrary orientable292

genus-g surface with b > 0 boundary components. Next, we present an O(gn3 log2 n)-step algorithm for tightening293

curves on an arbitrary orientable genus-g surface without boundary. We conclude the chapter with a discussion on294

monotonicity of the homotopy process.295

In Chapter 7 we study the quantitative relation between electrical transformations and monotonic homotopy296

moves. After a brief discussion on some subtlety in the definition of electrical transformations, we will formally297

discuss the comparison between the two sets of operations, supported by some natural conjectures strengthening298

the relationship between electrical moves and homotopy moves. Evidence towards the conjectures and proofs for299

the special cases are provided in subsequent subsections; in passing, we will make Truemper’s minor lemma [242]300

quantitative. We then apply the theory developed in previous chapters and sections to derive lower bounds301

on the number of electrical transformations required to reduce planar graphs, with or without terminals. One302

of the major theorem we rely on, based on arguments of Truemper [242] and Noble and Welsh [184], is that303

reducing a unicursal plane graph G—one whose medial graph is the image of a single closed curve—using electrical304

transformations requires at least as many steps as reducing the medial graph of G to a simple closed curve using305

homotopy moves.306

1.5 History and Related Work307

Applications of electrical transformations. Electrical transformations have been used since the end of the308

19th century [155,212] to analyze resistor networks and other electrical circuits, but many other applications309

have been discovered since. Akers [5] used the same transformations to compute shortest paths and maximum310
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flows (see also Hobbs [141]). Lehman [165] used them to estimate network reliability; significant amount of311

work on such application follows [49, 131, 225, 240, 245] (see also [107, 129, 209, 210, 213, 224]). Further312

applications on solving combinatorial problems using electrical transformations have been found, including313

multicommodity flows [99]; counting spanning trees, perfect matchings, and cuts [33, 62]; evaluation of spin314

models in statistical mechanics [62, 146]; solving generalized Laplacian linear systems [127, 181]; kinematic315

analysis of robot manipulators [227]; flow estimation from noisy measurements [263]; constructing distance316

preservers [121]; and studying singularities in quantum field theory [200]. Lehman [164] gave a necessary317

condition on problems to which the electrical transformations applies. (See Chapter 7 and Appendix B of Gitler’s318

thesis [115] for some discussion.)319

Local operations related to homotopy moves. Tight bounds are known for two special cases where some320

homotopy moves are forbidden. First, Nowik [185] proved a tight Ω(n2) lower bound for regular homotopy.321

Second, Khovanov [157] defined two curves to be doodle equivalent if one can be transformed into the other using322

1��0 and 2��0 moves. Khovanov [157] and Ito and Takimura [144] independently proved that any planar curve323

can be transformed into its unique equivalent doodle with the smallest number of vertices, using only 1�0 and324

2�0 moves. Thus, two doodle equivalent curves are connected by a sequence of O(n) moves, which is obviously325

tight. It is not known which sets of curves are equivalent under 1��0 and 3�3 moves; indeed, Hagge and Yazinski326

only recently proved that this equivalence is nontrivial [132]; see also related results of Ito et al. [144, 145].327

Looser bounds are also known for the minimum number of Reidemeister moves needed to reduce a diagram of328

the unknot [134,159], to separate the components of a split link [138], or to move between two equivalent knot329

diagrams [70,137].330

Geometric intersection number. The geometric intersection number of a closed curve γ on a surface is the number331

of self-intersections of a tightening of γ. Several methods for characterizing and computing geometric intersection332

numbers are known [52,53,61,119,172]; however, none of these earlier results offers a full complexity analysis.333

Arettines [13] described a polynomial-time algorithm to compute geometric intersection number of a curve on an334

orientable surface with boundary, starting from the reduced crossing sequence of the curve with a system of arcs335

(defined in Section 6.2.1). Despré and Lazarus [77] described the first fully-analyzed polynomial-time algorithm336

to compute the geometric intersection number of arbitrary closed curves on an arbitrary orientable surface. Both337

of these algorithms follow a high-level strategy similar to ours, based on Hass and Scott’s results about singular338

bigons, but neither algorithm computes an explicit sequence of homotopy moves. Instead, Arettines removes339

singular bigons by permuting their intersections along each arc, and Despré and Lazarus remove singular bigons340

by directly smoothing their endpoints. Further references can be found in Despré and Lazarus [77].341

Beyond 2-terminal planar graphs. A vast amount of work has been done to extend the algorithms to planar342

graphs with more than two terminals. Gitler [115] and Gitler and Sagols [116] proved that any three-terminal343

planar graph can be reduced to a graph on the three terminals, confirming the speculation by Akers [5]. Poger [189]344

provided an alternative and efficient algorithm to reduce any three-terminal planar graph using only O(n2) steps.345

Archdeacon et al. [12] and Demasi and Mohar [76] characterized the four-terminal planar graphs that can be346

reduced to just four vertices. Gitler [68,115] proved that for any integer k, any planar graph with k terminals on347

a common face can be reduced to a planar graph with O(k2) vertices. Gitler’s results were significantly extended348

by Colin de Verdière et al. [66,67,68] and Curtis et al. [71,72,73] to the theory of circular planar networks; see349

also Postnikov [199] and Kenyon [156].350
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∆Y-reducible graphs. Gitler [115] proved that every K5-minor-free or K3,3-minor-free graph can be reduced to a351

single vertex; Wagner [253] proved similar results for almost-planar graphs and almost-graphic matroids, building352

on earlier matroid results of Truemper [243]; Truemper [242, Lemma 4] and several others [12,115,181,184]353

proved that the class of ∆Y-reducible graphs is closed under minor; Archdeacon et al. [12] extended the result354

to the class of terminal-reducible graphs, and characterized the class of ∆Y-reducible projective-planar graphs;355

Yu [259, 260] showed there are at least 68 billion forbidden minors obstructions for the class of ∆Y-reducible356

graphs, falling into 20 ∆Y-equivalent classes.357

The two obvious subclasses of ∆Y-reducible graphs are the ∆�Y -reducible graphs and the Y�∆-reducible358

graphs: graphs that are reducible under degree-1 reductions, series-parallel reductions, and exactly one of the359

two directions of ∆Y transformation. These two classes of graphs are far more restrictive than the ∆Y-reducible360

graphs; indeed, they are both subclasses of partial 4-trees [166]. The characterizations and recognition algorithms361

are known for both ∆�Y -reducible graphs [191,192,193] and Y�∆-reducible graphs [14,84,194,214].362

Algebraic structures for curves on surfaces. The collection of multicurves forms a Lie bialgebra structure on363

the surface, first noticed by Goldman [118] and Turaev [247]. See Chas [50,51] for a modern treatment of the364

topic. The electrical moves performed on curves is similar to the operation of the 0-Hecke monoid of the symmetric365

groups (also known as the Richardson–Springer monoid) [237], which can be viewed as electrical moves on flat366

braids. The main technical lemma in the monotonic tightening process for arbitrary annular curves of de Graaf367

and Schrijver [125, Theorem 4] can be extended to Weyl groups and more generally to Coxeter groups [110].368
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Chapter 2

Preliminaries

I don’t like to define my music. To me, music is pure emotion. It’s language that can

communicate certain emotions and the rhythms cuts across genders, cultures and

nationalities. All you need to do is close your eyes and feel those emotions.

— Yanni

376

I respectfully disagree.

— Laurel
377

We assume the readers are familiar with basic terminologies and definitions in graph theory and topo-logy. We378

refer the interested readers to the following references. For basic graph theory, see Diestel [80] and West [254]. For379

topology and manifolds, see Massey [176] and Lee [163]. For topological graph theory, see Mohar-Thomassen [179]380

and Lando-Zvonkin [160]. For combinatorial topology, see Stillwell [232].381

2.1 Surfaces382

Intuitively speaking, a 2-dimensional manifold with boundary is a topological space where locally the neighbor-383

hood of any point in the interior of the space looks like an Euclidean plane, the neighborhood of any point on384

the boundary of the space looks like an Euclidean half-plane. A surface Σ is a 2-dimensional manifold, possibly385

with boundary. All surfaces are assumed to be connected unless stated otherwise. Every point x ∈ Σ lies in an386

open neighborhood that is either homeomorphic to the plane R2 or homeomorphic to an open half-plane with387

x on its boundary. The points with half-plane neighborhoods form the boundary of Σ; the interior of Σ is the388

complement of its boundary.389

The genus of an orientable surface is intuitively the number of holes the surface has. The Euler characteristic390

χ(Σ) of a genus-g orientable surface Σ with b boundary components is equal to 2− 2g − b. Except for a few391

places (which we will mention explicitly), all the surfaces in the thesis are orientable, which means that there is a392

consistent choice of the normal vectors everywhere on the surface. In other words, locally on the surface, words393

like “clockwise”, “counter-clockwise”, “left”, and “right” are all well-defined. One of the most fundamental results394

in combinatorial topology is that all surfaces can be classified by their genus, number of boundary components, and395

orientability [25,81,106,148,177,220]. (For an extended survey on the history, see Gallier and Xu [108].)396

2.2 Curves and Graphs on Surfaces397

2.2.1 Curves398

Formally, a closed curve or a circle in a surface Σ is a continuous map γ from 1-dimensional circle S1 to Σ, and a399

path in Σ is a continuous map η: [0,1]→ Σ. Depending on the context, we sometimes abuse the terminology400
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and refer to a continuous map η: (0, 1)→ Σ as a path as well. We call the two points η(0) and η(1) as endpoints401

of η. A curve is either a closed curve or a path; its parametrization equips the curve with an orientation. We402

sometimes say the curve is directed when we want to emphasize its orientation. A curve is simple if it is injective.403

A subpath of a curve γ is the restriction of γ to an interval; again, a subpath is simple if the restriction is injective.404

We consider only generic curves, which are injective except at a finite number of self-intersections, each of which405

is a transverse double point (which means, no more than two subpaths intersect at the same point, and the tangent406

vectors are not a multiple of the other’s). The double points avoid the boundary of Σ. (Some authors preferred the407

term normal [104,105,238,257] or stable [186].) Unless specified otherwise, we do not distinguish between the408

function γ and its image. Sometimes we refer to closed curves in the plane as planar curves and closed curves in409

the annulus as annular curves.410

2.2.2 Graphs and Their Embeddings411

A graph consists of some 0-dimensional points called vertices and a multiset containing pairs of vertices called412

edges. An embedding of a graph G into an surface Σ maps the vertices of G to distinct points and the edges of G413

to simple interior-disjoint paths between those points. The faces of an embedding are the components of the414

complement of its image in Σ. We sometimes refer to graphs with embeddings as maps. An embedding is cellular415

if every face is homeomorphic to an open disk. Any cellular embedding of G into an orientable surface can be416

encoded combinatorially by its rotation system, which records the counterclockwise order of edges incident to417

each vertex of G. Two cellular embeddings of G are homeomorphic if and only if they have the same rotation418

system, up to reflections of the surface. An embedded graph is a graph G together with a cellular embedding of G419

into some surface Σ. A plane graph is a planar graph with some given cellular embedding in the plane.420

The dual of a cellularly embedded graph G is another cellularly embedded graph G∗ on the same surface,421

whose vertices, edges, and faces correspond to the faces, edges, and vertices of G, respectively. Specifically, the422

dual graph G∗ has a vertex f ∗ for every face f of G, and two vertices of G∗ are connected by an edge if and only if423

the corresponding faces of G are separated by an edge. The dual graph G∗ inherits a cellular embedding into Σ424

from the embedding of G. The dual of the dual of a cellularly embedded graph G is (homeomorphic to) the425

original embedded graph G.426

Let G be a graph cellularly embedded on surface Σ; each face of G being a disk implies that graph G must be427

connected. Euler’s formula states that428

nv − ne + n f = χ(Σ),429

where nv is the number of vertices, ne is the number of edges, and n f is the number of faces of G, respectively. In430

particular, any plane graph G has its number of vertices plus number of faces equals to its number of edges plus 2.431

2.2.3 Curves as 4-regular Maps432

The image of any non-simple closed curve γ has a natural structure as a 4-regular map, whose vertices are the433

self-intersections of γ, edges are maximal subpaths between vertices, and faces are components of Σ \ γ. We434

emphasize that the faces of γ are not necessarily disks. Every vertex x of γ has four corners adjacent to it; these435

are the four components of Dx \γ where Dx is a small disk neighborhood of x . Two curves γ and γ′ are isomorphic436

if their images define combinatorially equivalent maps; we will not distinguish between isomorphic curves.437
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2.2.4 Jordan Curve Theorem438

Given a simple closed curve σ on the sphere, the classical Jordan-Schönflies theorem [149,150,215,250] states439

that σ separates the sphere into exactly two connected components, each of which is simply-connected. The440

weaker result, without the simply-connectedness conclusion, is often known as the Jordan curve theorem. After441

projecting the curve σ into the plane, we refer to the two components of the complement of σ as the interior and442

the exterior of σ, depending on whether the component is bounded or not. Jordan-Schönflies theorem forms the443

basis of most of the arguments in the thesis. We will use the result implicitly without referring to its name. (A444

curious and tangled history regarding the proof(s) of the Jordan curve theorem(s) can be found in Jeff Erickson’s445

notes on computational topology [88, Note 1].)446

2.2.5 Multicurves447

A multicurve on surface Σ is a collection of one or more closed curves in Σ; in particular, a k-curve is a collection448

of k circles. A multicurve is simple if it is injective, or equivalently, if it consists of pairwise disjoint simple closed449

curves. Again we only consider generic multicurves. The image of any multicurve is the disjoint union of simple450

closed curves and 4-regular maps. A component of a multicurve γ is any multicurve whose image is a connected451

component of the image of γ. We call the individual closed curves that comprise a multicurve its constituent452

curves; see Figure 2.1. Most of the definitions on curves can be extended properly to multicurves.453

Figure 2.1. A multicurve with two components and three constituent curves, one of which is simple.

2.2.6 Tangles454

A tangle –IO1 is a collection of boundary-to-boundary paths γ1,γ2, . . . ,γs in a closed topological disk Σ, which (self-455

)intersect only pairwise, transversely, and away from the boundary of Σ. This terminology is borrowed from knot456

theory, where a tangle usually refers to the intersection of a knot or link with a closed 3-dimensional ball [57,69];457

our tangles are perhaps more properly called flat tangles, as they are images of tangles under appropriate projection.458

(Our tangles are unrelated to the obstructions to small branchwidth introduced by Robertson and Seymour [206].)459

Transforming a curve into a tangle is identical to (an inversion of) the flarb operation defined by Allen et al. [8].460

We call each individual path γi a strand of the tangle. The boundary of a tangle –IO is the boundary of the461

disk Σ that defines –IO; we usually denote the boundary by σ. By the Jordan-Schönflies theorem, we can assume462

without loss of generality that σ is actually a Euclidean circle. We can obtain a tangle from any closed curve γ by463

considering its restriction to any closed disk whose boundary σ intersects γ transversely away from its vertices;464

we call this restriction the interior tangle of σ.465

The strands and boundary of any tangle define a plane graph whose boundary vertices each have degree 3 and466

whose interior vertices each have degree 4.467

1Pronounced “Terra”.

11



2.3 Homotopy468

A homotopy between two closed curves γ and γ′ on the same surface Σ is a continuous deformation from one curve469

to the other. Formally this is a continuous map H : S1 × [0, 1]→ Σ such that H(·, 0) = γ and H(·, 1) = γ′. Similarly,470

a homotopy between two paths η and η′ is a continuous deformation that keeps the endpoints fixed. Formally471

this is a continuous map H : [0, 1]× [0, 1]→ Σ such that H(·, 0) = γ, and H(·, 1) = γ′, and both H(0, ·) and H(1, ·)472

are constant functions. Two curves are homotopic, or in the same homotopy class, if there is a homotopy from473

one to the other. A closed curve γ is contractible if it is homotopic to a constant curve; intuitively, this says that474

γ can be continuously contracted to a single point. Otherwise we say γ is non-contractible. The definition of475

homotopy extends naturally to multicurves.476

A multicurve γ on a surface Σ can be tightened via homotopy to another multicurve γ′ with minimum number477

of self-intersections. A multicurve is homotopically tight (h-tight for short) if no homotopy leads to a multicurve478

with fewer vertices. As any contractible curve γ can be made simple through homotopy [135], we sometimes refer479

to the tightening process of a contractible curve γ as simplifying γ.480

Similarly, a tangle is tight if no homotopy of the strands leads to another tangle with fewer vertices, or loose481

otherwise.482

2.3.1 Covering Spaces and Fundamental Groups483

A surface Σ̃ is a covering space of another surface Σ if there is a covering map from Σ̃ to Σ; that is, a continuous484

map π: Σ̃→ Σ so that each point x on Σ has a neighborhood U ⊆ Σ so that π−1(U) is a union of disjoint open sets485

U1 ∪ U2 ∪ · · · , and, for any i, the restriction π|Ui
: Ui → U is a homeomorphism. The universal covering space Σ̂486

(or universal cover for short) is the unique simply-connected covering space of Σ.487

The fundamental group π1(Σ) of a surface Σ consists of all equivalence classes of closed curves passing488

through an arbitrary fixed basepoint on Σ up to homotopy, where the group operation comes from concatenating489

two curves at the fixed point. (For any path-connected space like surfaces, the result is independent to the choice490

of the basepoint up to isomorphism.)491

There is a one-to-one correspondence between subgroups of π1(Σ) and covering spaces of Σ. To be precise,492

given any subgroup Γ of π1(Σ), each element α in group Γ acts on the universal cover Σ̂ by moving the points493

according to the path that projects to the closed curve in Σ representing the element α. one can construct covering494

space Σ̃Γ of Σ as the quotient space Σ̂/Γ , by identifying all the points in the same orbit under the action of Γ on the495

universal cover Σ̂. For example, the trivial subgraph of π1(Σ) corresponds exactly to the universal cover of Σ.496

2.3.2 Lifting497

Let Σ be a surface and Σ̃ be a covering space of Σ with covering map π. A lift of a path η in Σ to Σ̃ is a path η̃ in Σ̃498

such that η = π◦η̃. A lift of a closed curve γ in Σ to Σ̃ is an infinite path γ̃: R→ Σ̃ such that γ(t mod 1) = π(γ̃(t)).499

We sometimes view the closed curve γ as a path γx starting and ending at the same point x in Σ, and therefore500

abuse the terminology and refer to the lift of the path γx as lift of γ (at basepoint x) instead. Observe that the lift501

of γ at basepoint x is always a subpath of the lift of γ. A translate of a lift α̃ is any other lift of α to the same502

covering space; equivalently, two paths α̃, β̃ : [0, 1]→ Σ̃ are translates of each other if and only if π ◦ α̃= π ◦ β̃ .503

The homotopy lifting property guarantees that any homotopy H from a curve γ to another curve γ′ on Σ lifts504

to a homotopy H̃ from γ̃ to γ̃′ on the covering space Σ̃. If we decompose the homotopies H and H̃ into homotopy505
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moves, any homotopy move in H̃ corresponds to a homotopy move in H by projection; however there might be506

additional homotopy moves in H where the strands involved are projected from different parts of the lift on Σ̃.507

2.4 Combinatorial Properties of Curves508

2.4.1 Monogons and Bigons509

A monogon in a closed curve γ on surface Σ is a subpath of γ that begins and ends at some vertex x , intersects510

itself only at x , and bounds a disk in Σ containing exactly one of the four corners at x . A bigon in γ consists of511

two simple interior-disjoint subpaths of γ, sharing endpoints x and y , that together bound a disk in Σ containing512

exactly one corner at x and one at y . Since each subpath is simple, the vertices x and y are distinct.513

We sometimes refer to the interior tangle of the boundary curve of the disk corresponding to the monogon514

(respectively, the bigon) as the interior tangle of the monogon (respectively, the bigon). A monogon or bigon is515

empty if its interior bigon does not intersect the rest of γ. A bigon β is minimal if its interior tangle –IO does not516

contain a smaller bigon, and no strand of –IO forms a bigon with β by intersecting either bounding path of β more517

than once.518

2.4.2 Homotopy Moves519

Consider the following set of local operations performed on any generic curve: 1�0 move removes an empty mono-520

gon, 2�0 move removes an empty bigon, and 3�3 move moves a subpath across a self-intersection. Collectively521

we call them (and their inverses) homotopy moves.2522

Each homotopy move can be executed by a homotopy inside an open disk embedded in Σ, meeting γ as523

shown in Figure 1.1. Conversely, Alexander’s simplicial approximation theorem [6], together with combinatorial524

arguments of Alexander and Briggs [7] and Reidemeister [202], imply that any generic homotopy between two525

closed curves can be decomposed into a finite sequence of homotopy moves. The definition of homotopy and the526

decomposition of homotopies into homotopy moves extend naturally to multicurves and tangles.527

2.4.3 Signs and Winding Numbers528

We adopt a standard sign convention for vertices first used by Gauss [109]. Choose an arbitrary basepoint γ(0)529

and orientation for the curve. For each vertex x , we define sgn(x) = +1 if the first traversal through the vertex530

crosses the second traversal from right to left, and sgn(x) = −1 otherwise. See Figure 2.2.531

1
2 1

2

Figure 2.2. Gauss’s sign convention.

2Unlike the situation for Reidemeister moves on knots, there is no consistent naming for the these local operations. Others called them
Titus moves [104,105]; shadow moves [246,248]; perestroikas [15,16]; Reidemeister-type moves [125,196]; elementary moves [187]; basic
moves [185]; and so on. Here we attempt to resolve the situation once and for all by proposing yet another name.

13



Let γ be a generic closed curve in the plane, and let p be any point not in the image of γ. Let ρ be any532

ray from p to infinity that intersects γ transversely. The winding number wind(γ, p) is the number of times γ533

crosses ρ from right to left, minus the number of times γ crosses ρ from left to right. The winding number does534

not depend on the particular choice of ray ρ. All points in the same face of γ have the same winding number; the535

winding numbers of two adjacent faces differ by 1, with the higher winding number on the left side of the edge.536

If p lies on the curve γ, we define wind(γ, p) to be the average of the winding numbers of the faces incident to p537

with appropriate multiplicity—two faces if p lies on an edge, four if p is a vertex. The winding number of a vertex538

is always an integer.539

The winding number of a directed closed curve γ in the annulus is the number of times any generic path ρ540

from one fixed boundary component to the other crosses γ from left to right, minus the number of times ρ crosses γ541

from right to left. Two directed closed curves in the annulus are homotopic if and only if their winding numbers542

are equal [142].543

2.5 Relating Graphs to Curves544

2.5.1 Medial Construction545

The medial graph of a graph G embedded on surface Σ, which we denote G×, is another graph embedded on546

the same surface whose vertices correspond to the edges of G and whose edges correspond to incidences (with547

multiplicity) between vertices of G and faces of G. Two vertices of G× are connected by an edge if and only if the548

corresponding edges in G are consecutive in cyclic order around some vertex, or equivalently, around some face549

in G. Every vertex in every medial graph has degree 4; thus, every medial graph is the image of a multicurve.550

Conversely, the image of every non-simple multicurve is the medial graph of some embedded graph on Σ. The551

medial graphs of any cellularly embedded graph G and its dual G∗ are identical. To avoid trivial boundary cases,552

we define the medial graph of an isolated vertex to be a circle. We call an embedded graph G unicursal if its553

medial graph G× is the image of a single closed curve.554

The medial graph G× of any 2-terminal plane graph G is properly considered as a multicurve in the annulus;555

the faces of G× that correspond to the terminals are removed from the surface. In general, medial graph G× of any556

k-terminal graph G embedded on surface Σ can be viewed as a multicurve on Σ with all faces of G× representing557

terminals of G being removed.558

2.5.2 Facial Electrical Moves559

The facial electrical transformations consist of six operations in three dual pairs: degree-1 reduction, series-560

parallel reduction, and ∆Y transformation, as shown in Figure 1.2. (In Chapter 1 we simply called them561

electrical transformations; from this point on throughout the rest of the thesis, we reserve that name for the general562

set of transformations performed on arbitrary graphs without embeddings.) Facial electrical transformations on563

any graph G embedded in surface Σ correspond to local operations in the medial graph G× on the same surface564

that closely resemble homotopy moves. Each degree-1 reduction in G corresponds to a 1�0 move in G×, and each565

∆Y transformation in G corresponds to a 3�3 move in G×. A series-parallel reduction in G contracts an empty566

bigon in G× to a single vertex. Extending our earlier notation, we call this operation a 2�1 move. We collectively567

refer to these operations and their inverses as medial electrical moves; see Figure 1.3.568

A multicurve is electrically tight (e-tight for short), if no sequence of medial electrical moves leads to another569
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multicurve with fewer vertices. We use the terminology “tight” for both electrical and homotopic reductions. This570

is not a coincidence; we will justify its usage in Section 7.2.4.571

2.5.3 Depths of Planar and Annular Multicurves572

For any planar multicurve γ and any point p in the plane, let depth(p,γ) denote the minimum number of times a573

path from p to infinity crosses γ. Any two points in the same face of γ have the same depth, so each face f has a574

well-defined depth, which is its distance to the outer face in the dual graph of γ; see Figure 5.1. The depth of the575

multicurve, denoted depth(γ), is the maximum depth of the faces of γ; and the depth-sum potential DΣ(γ) (or just576

potential) is the sum of depths of all the faces of γ. Euler’s formula implies that any 4-regular plane graph with n577

vertices has exactly n+2 faces; thus, for any multicurve γwith n vertices, we have n+1≤ DΣ(γ)≤ (n+1)·depth(γ).578

Depths and potential of a tangle –IO are defined exactly the same as for planar curves: The depth of any face f579

of –IO is its distance to the outer face in the dual graph –IO∗; the depth of the tangle is its maximum face depth; and580

the potential DΣ(–IO) of the tangle is the sum of all face depths.581

The depth of any multicurve γ in the annulus is the minimum number of times a path from one boundary582

to the other crosses γ. Notice how this definition differs from the one for planar multicurves. If we embed the583

annulus in the punctured plane R2 \ o, the depth of the annular multicurve γ is in fact equivalent to depth(o,γ).584

Just as the winding number around the boundaries is a complete homotopy invariant for annular curves, the depth585

turns out to be a complete invariant for facial electrical moves on annular multicurves. (See Section 7.2.3.) By586

definition the inequality |wind(γ, o)| ≤ depth(o,γ) holds.587

2.5.4 Smoothing588

Suppose that γ is a generic closed curve and x is a vertex of γ. Let Dx be a small disk neighborhood of x . Then589

we may smooth the curve γ at x by removing γ∩ Dx from γ and adding in two components of ∂Dx \ γ to obtain590

another 4-regular map. Following Giller [113,143], we refer to the resulting curve as a smoothing of γ.3 There are591

two types of smoothings. One results in another closed curve, with the orientation of one subpath of γ reversed;592

the other breaks γ into a pair of closed curves, each retaining its original orientation. In the latter smoothing, let593

γ+x and γ−x respectively denote the closed curve locally to the left and to the right of x , as shown in Figure 2.3. For594

any vertex x and any other point p, we have wind(γ, p) = wind(γ+x , p)+wind(γ−x , p). More generally, a smoothing595

of a multicurve γ is any multicurve obtained by smoothing a subset of its vertices. For any embedded graph G, the596

smoothings of the medial graph G× are precisely the medial graphs of minors of G.597

x

�+
x

��
x

Figure 2.3. Smoothing a vertex. The left smoothing preserves orientation; the right smoothing preserves connectivity.

3The same operation is also known as a split or splice [152,153]; an opening [219]; a resolution [170,171]; or a cut-and-paste [182]. The
word smoothing was later on picking up by Jones [147] and Kauffman [154].

15



2.6 Tightening Curves via Bigon Removal598

As mentioned in the introduction, an algorithm to simplify any planar closed curve using at most O(n2) homotopy599

moves is implicit in Steinitz’s proof that every 3-connected planar graph is the 1-skeleton of a convex polyhedron600

[230,231]. Specifically, Steinitz proved that any non-simple planar multicurve or any loose tangle with no empty601

monogons contains a bigon. (It follows that a tangle is tight if every strand does not self-intersect, and every pair602

of strands intersects at most once.) Steinitz then proved that any minimal bigon with no empty monogons can be603

transformed into an empty bigon using a sequence of 3�3 moves, each removing one triangular face from the604

bigon. For the sake of completeness, we provide a succinct proof to the latter result here.605

Lemma 2.1. A minimal bigon that contains no empty monogons must have an empty triangle incident to either606

of the two bounding curves of the bigon; therefore such bigon can always be transformed into an empty bigon607

using a sequence of 3�3 moves.608

Proof: Let –IO be the interior tangle of the bigon. First we prove that all the strands of –IO are simple. Assume for609

contradiction that there is an inclusion-wise minimal monogon σ formed by some strand of –IO; let’s call the interior610

tangle of σ as –IOσ. Now all the strands of –IOσ must be simple. However because σ is not empty, any strand of –IOσ611

forms a bigon with σ, contradicting to the fact that the bigon itself is minimal.612

Each pair of strands of –IO intersects at most once. Fixing one of the two curves λ forming the bigon, every613

vertex v inside the bigon (as the intersection point of two strands α and β) defines a closed region Rv formed614

by α, β , and λ. Now we argue the following: Any vertex v with inclusion-wise minimal Rv such that v has a615

neighbor w on λ (when viewed as a graph) must contain no other vertices besides v and the two intersections616

(α∪ β)∩λ. Assume for the contrary, without loss of generality that the neighbor w of v on λ is α∩λ. Consider617

the vertex y on β that is adjacent to z := β ∩λ; by our assumption y is not equal to v. Denote the other curve618

that intersects y as γ; by the above paragraph β does not self-intersect and thus γ 6= β . It is not hard to see now619

that R y is contained in Rv , because γ must intersects λ on the subpath of λ between w and z as β and γ intersect620

at most once. This contradicts to the fact that Rv is inclusion-wise minimal. Therefore, there is an empty triangle621

incident to λ, and one 3�3 move will remove v from the bigon.622

Recursively remove vertices from the bigon; the procedure will only stop when there are no vertices left. At623

this point all strands of –IO are simple and disjoint from each other; one can apply a sequence of 3�3 moves to624

remove all strands from –IO, and thus making the bigon empty. �625

Once the bigon is empty, it can be deleted with a single 2�0 or 2�1 move. Grünbaum [128] describes626

Steinitz’s proof in more detail; indeed, Steinitz’s proof is often incorrectly attributed to Grünbaum. See Gilmer and627

Litherland [114], Hass and Scott [136], Colin de Verdière et al. [68], or Nowik [185] for more modern treatments628

of Steinitz’s technique.629

Removing all the vertices inside the bigon takes as many 1�0 and 3�3 moves as the number of vertices,630

followed by another sequence of 3�3 moves that empties the bigon. This implies the following lemma, which will631

always be referred to as Steinitz’s bigon removal algorithm:632

Lemma 2.2. Any minimal bigon whose interior tangle contains n vertices and s strands can be removed using633

(n+ s) 1�0 and 3�3 moves followed by a single 2�0 or 2�1 move.634
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Chapter 3

Curve Invariant — Defect

Porque una parte importante de la relación amorosa, se juega en esta posibilidad de

reconocer los defectos del otro y preguntarse, sinceramente, si se puede ser feliz a

pesar de ellos.

— Gabriel Rolón, Historias de diván: ocho relatos de vida

635

We consider a numerical invariant1 of closed curves in the plane introduced by Arnold [15,16] and Aicardi [4]636

called defect. (We will only focus on planar curves in this chapter; later on we will discuss how to define defect637

invariant on higher genus surfaces in Section 4.2.) There are several equivalent definitions and closed-form638

formulas for defect and other closely related curve invariants [11,56,167,169,196,222,223,252]; Polyak [195]639

proved that defect can be computed—or for our purposes, defined—as follows:640

defect(γ) := −2
∑

xÇy

sgn(x) · sgn(y).641

Here the sum is taken over all interleaved pairs of vertices of γ: two vertices x 6= y are interleaved, denoted x Ç y ,642

if they alternate in cyclic order—x , y , x , y—along γ. (The factor of −2 is a historical artifact, which we retain only643

to be consistent with Arnold’s original definitions [15,16].) Even though the signs of individual vertices depend644

on the basepoint and orientation of the curve, the defect of a curve is independent of those choices. Moreover,645

the defect of any curve is preserved by any homeomorphism from the plane (or the sphere) to itself, including646

reflection. Trivially, every simple closed curve has defect zero.647

Arnold [15,16] originally defined two related first-order curve invariants St (“strangeness”) and J+ by their648

changes under 2�0 and 3�3 moves, without giving explicit formulas. Aicardi [4] proved that the linear combination649

2St+ J+ is unchanged under 1�0 moves; Arnold dubbed this linear combination the “defect” of the curve [16].650

Aicardi also described n-vertex curves with strangeness −bn(n−1)/6c and n(n+1)/2 for all n; Shumakovich [222,651

223] later proved that all n-vertex curves have strangeness between these two extremes. (Nowik’s Ω(n2) lower652

bound for regular homotopy moves [185] follows immediately from Aicardi’s analysis.) However, the curves with653

extremal strangeness actually have defect zero.654

In Section 3.1, we compute the defect of the standard planar projection of any p× q torus knot where either655

p mod q = 1 or q mod p = 1, generalizing earlier results of Hayashi et al. [137,139] and Even-Zohar et al. [95]. In656

particular, we show that the standard projection of the p× (p+ 1) torus knot, which has p2− 1 vertices, has defect657

2
�p+1

3

�

.658

Next, in Section 3.2, we prove that the defect of any generic closed curve γ with n vertices has absolute value659

at most O(n3/2). Unlike most O(n3/2) upper bounds involving planar graphs, our proof does not use the planar660

separator theorem [168]. First we prove that if the depth of the curve is Ω(
p

n), there is a simple closed curve σ661

1Here the invariance is maintained under curve isotopy, which preserves the combinatorial structure of the curve. For our purpose (and
convention in computer science) it would be better suited to refer to it as a potential function.
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that contains at least s2 vertices of γ, where s is the number of strands in the interior tangle of σ. We establish an662

inclusion-exclusion relationship between the defects of the given curve γ, the curves obtained by tightening γ663

either inside or outside σ, and the curve obtained by tightening γ on both sides of σ. This relationship implies an664

unbalanced “divide-and-conquer” recurrence whose solution is O(n3/2).665

We prove the following surprising observation in Section 3.3: Although the medial graph of a plane graph G666

depends on the embedding of G, the defect of the medial graph of G does not. This result has some implications667

on lower bounds for electrical transformations in Section 7.3.3. The chapter ends with some discussion on models668

of random knots and its connection to defect bounds (Section 3.4).669

3.1 Defect Lower Bound670

3.1.1 Flat Torus Knots671

For any relatively prime integers p and q, let T(p,q) denote the curve with the following parametrization, where672

θ runs from 0 to 2π:673

T (p, q)(θ ) := ((cos(qθ ) + 2) cos(pθ ), (cos(qθ ) + 2) sin(pθ )) .674

The curve T (p, q) winds around the origin |p| times, oscillates |q| times between two concentric circles, and crosses675

itself exactly (|p| − 1) · |q| times. We call these curves flat torus knots.676

Figure 3.1. The flat torus knots T (8, 7) and T (7, 8).

Hayashi et al. [139, Proposition 3.1] proved that for any integer q, the flat torus knot T (q+ 1, q) has defect677

−2
�q

3

�

. Even-Zohar et al. [95] used a star-polygon representation of the curve T (p, 2p+1) as the basis for a universal678

model of random knots; in our notation, they proved that defect(T (p, 2p+ 1)) = 4
�p+1

3

�

for any integer p. In this679

section we simplify and generalize both of these results to all flat torus knots T (p, q) where either q mod p = 1 or680

p mod q = 1. For purposes of illustration, we cut T (p, q) along a spiral path parallel to a portion of the curve, and681

then deform the p resulting subpaths, which we call strands, into a “flat braid” between two fixed diagonal lines.682

See Figure 3.2.683

Lemma 3.1. defect(T (p, ap+ 1)) = 2a
�p+1

3

�

for all integers a ≥ 0 and p ≥ 1.684

Proof: The curve T (p, 1) can be reduced to a simple closed curve using only 1�0 moves, so its defect is zero. For685

the rest of the proof, assume a ≥ 1.686

We define a stripe of T(p, ap + 1) to be a subpath from some innermost point to the next outermost point,687

or equivalently, a subpath of any strand from the bottom to the top in the flat braid representation. Each stripe688
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Figure 3.2. Transforming T (8, 17) into a flat braid.

contains exactly p − 1 crossings. A block of T(p, ap+ 1) consists of p(p − 1) crossings in p consecutive stripes;689

within any block, each pair of strands intersects exactly twice. We can reduce T (p, ap+ 1) to T (p, (a− 1)p+ 1) by690

straightening any block one strand at a time. Straightening the bottom strand of the block requires the following691

�p
2

�

moves, as shown in Figure 3.3.692

• �p−1
2

�

3�3 moves pull the bottom strand downward over one intersection point of every other pair of strands.693

Just before each 3�3 move, exactly one of the three pairs of the three relevant vertices is interleaved, so694

each move decreases the defect by 2.695

• (p− 1) 2�0 moves eliminate a pair of intersection points between the bottom strand and every other strand.696

Each of these moves also decreases the defect by 2.697

Altogether, straightening one strand decreases the defect by 2
�p

2

�

. Proceeding similarly with the other strands,698

we conclude that defect(T(p, ap+ 1)) = defect(T(p, (a− 1)p+ 1)) + 2
�p+1

3

�

. The lemma follows immediately by699

induction. �700

Figure 3.3. Straightening one strand in a block of T (8,8a+ 1).

Lemma 3.2. defect(T (aq− 1, q)) = 2a
�q

3

�

for all integers a ≥ 0 and q ≥ 1.701

Proof: The curve T (q− 1, q) is simple, so its defect is trivially zero. For any positive integer a, we can transform702

T (aq−1, q) into T ((a−1)q−1, q) by incrementally removing the innermost q loops. We can remove the first loop703

using
�q

2

�

homotopy moves, as shown in Figure 3.4. (The first transition in Figure 3.4 just reconnects the top left704

and top right endpoints of the flat braid.)705

• �q−1
2

�

3�3 moves pull the left side of the loop to the right, over the crossings inside the loop. Just before706

each 3�3 move, the three relevant vertices contain one interleaved pair, so each move decreases the defect707

by 2.708

• (q − 1) 2�0 moves pull the loop over q − 1 strands. The strands involved in each move are oriented in709

opposite directions, so these moves leave the defect unchanged.710

19



• Finally, we can remove the loop with a single 1�0 move, which does not change the defect.711

Altogether, removing one loop decreases the defect by 2
�q−1

2

�

. Proceeding similarly with the other loops, we con-712

clude that defect(T (aq−1, q)) = defect(T ((a−1)q−1, q))+2
�q

3

�

. The lemma follows immediately by induction. �713

Figure 3.4. Removing one loop from the innermost block of T (7a− 1, 7).

From Lemma 3.1 and Lemma 3.2 one concludes that the defect of planar curves can be of Ω(n3/2) in the worst714

case.715

3.1.2 Defects of arbitrary flat torus knots716

The argument in Lemma 3.1 and Lemma 3.2 can be used to compute the defect of any flat torus knot T(p, q)717

using a process similar to Euclid’s algorithm. The only subtlety is determining how many 3�3 moves increase or718

decrease the defect.719

Let [p] denote the set {0,1, . . . , p− 1}, and consider the permutation π: [p]→ [p] defined by setting π(i) :=720

iq mod p. We call a triple (i, j, k) of distinct indices in [p] positive if (π(i),π( j),π(k)) is an even permutation of721

(i, j, k) and negative otherwise. Finally, let ∆(p,q) denote the number of positive triples minus the number of722

negative triples. We easily observe that ∆(p, q) =∆(p, q mod p), and the proofs of Lemma 3.1 and Lemma 3.2723

imply the recurrence724

defect(T (p, q)) =







defect(T (p, q− p)) + 2∆(p, q) + 2
�p

2

�

if p < q,

defect(T (p− q, q))− 2∆(q, p) if p > q.
725

This recurrence immediately gives us an algorithm to compute defect(T (p, q)), similar to Euclid’s algorithm. Indeed,726

we can express defect(T (p, q)) directly in terms of the continued fraction expansion of p/q as follows.727

Let r0 := p and r1 := q. For all k ≥ 1 such that rk > 1, define ak := brk−1/rkc and rk+1 := rk−1 mod rk. Then728

we have729

defect(T (p, q)) = 2
∑

k≥1

(−1)k · ak ·∆(rk, rk−1) + 2
∑

k≥1
k even

ak ·
�

rk

2

�

.730

Using the above formula we can prove the reciprocity formula for the defect of flat torus knots.731

Lemma 3.3. For any positive integers p and q, defect(T (p, q)) + defect(T (q, p)) = (p− 1)(q− 1).732
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Proof: Let m be the smallest number such that rm+1 = 1. Then733

defect(T (p, q)) + defect(T (q, p)) = 2
m
∑

k=1

ak ·
�

rk

2

�

734

=
m
∑

k=1

ak · rk(rk − 1)735

=
m
∑

k=1

(rk−1 − rk+1)(rk − 1)736

= (r1r0 − rmrm+1)− (r0 + r1 − rm − rm+1)737

= (p− 1)(q− 1),738
739

which proves the statement. �740

One has the immediate corollary of Lemma 3.1, Lemma 3.2, and Lemma 3.3.741

Corollary 3.1. For all integers a ≥ 0 and p, q ≥ 1, we have742

defect(T (ap+ 1, p)) = −2a
�

p
3

�

and defect(T (p, ap− 1)) = −2a
�

p
3

�

+ 2a
�

p
2

�

− 2(p− 1).743

Fibonacci flat torus knots. An easy symmetry argument implies that the number of negative triples in π is744

exactly p
3 I(p, q), where I(p, q) is the number of inversions in π. A classical theorem of Meyer [178] states that745

I(p, q) =
1
2

�

p− 1
2

�

− 3p · s(q, p).746

Here s(q, p) is the standard Dedekind sum747

s(q, p) :=
p−1
∑

i=1

��

qi
p

����

i
p

��

,748

where ((·)) is the sawtooth function749

((x)) :=







0 if x is an integer,

(x mod 1)− 1
2 otherwise.

750

(For further background on Dedekind sums, including a self-contained proof of Meyer’s theorem, see Rademacher751

and Grosswald [201].) It immediately follows that752

∆(p, q) = 2p2 · s(q, p),753
754

where s(q, p) is the standard Dedekind sum. Dedekind [74] proved the following reciprocity formula when p755

and q are relatively prime:756

s(p, q) + s(q, p) = − 1
4
+

1
12

�

p
q
+

1
pq
+

q
p

�

.757
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From this reciprocity formula and the easy identity s(q, p) = s(q mod p, p), one can derive exact values for the758

Dedekind sum of consecutive Fibonacci numbers [10, p. 72],759

s(Fn+1, Fn) =











0 if n is odd
F2

n + F2
n−1 − 3FnFn−1 + 1

12FnFn−1
=
−Fn−2

6Fn
if n is even

760

and the exact values for defect on Fibonacci flat torus knots follow from careful calculations.761

Lemma 3.4. Let n be an odd number. We have the following.762

defect(T (Fn+1, Fn)) =
1
3
(F2

n − 1)− Fn + 1 defect(T (Fn, Fn−1)) =
1
3
(F2

n − 1)− Fn + 1763

defect(T (Fn, Fn+1)) = −
1
3
(F2

n − 1) + FnFn+1 − Fn+1 defect(T (Fn−1, Fn)) = −
1
3
(F2

n − 1) + FnFn−1 − Fn−1764

765

As an immediate corollary, the absolute value of the defect of both flat torus knots T (Fn, Fn−1) and T (Fn−1, Fn) are766

linear for any n.767

Proof: First let us calculate defect(T (Fn, Fn−1)). Recall the defect formula using continued fraction of p/q:768

defect(T (p, q)) = 2
∑

k≥1

(−1)k · ak ·∆(rk, rk−1) + 2
∑

k≥1
k even

ak ·
�

rk

2

�

.769

In the case of Fibonacci flat torus knots, rk = Fn−k, and ak = 1 for all k ≤ n− 3 (because rn−2 = F2 = 1). With the770

assumption that n is an odd number, we have771

defect(T (Fn, Fn−1)) = 2
n−3
∑

k≥1

(−1)k ·∆(rk, rk−1) + 2
n−3
∑

k≥1
k even

�

rk

2

�

772

= 2
n−1
∑

k≥3

(−1)k ·∆(Fk, Fk+1) + 2
n−1
∑

k≥3
k even

�

Fk

2

�

[replace k with n− k]773

= 2
n−1
∑

k≥3
k even

2F2
k ·
−Fk−2

6Fk
+ 2

n−1
∑

k≥3
k even

�

Fk

2

�

[plug in ∆(Fk, Fk+1)]774

=
1
3

n−1
∑

k≥3
k even

�

3F2
k − 2Fk Fk−2

�−
n−1
∑

k≥3
k even

Fk [rearrange]775

=
1
3

n−1
∑

k≥3
k even

�

F2
k + 2Fk Fk−1

�−
n−1
∑

k≥3
k even

Fk [apply Fk = Fk−1 + Fk−2]776

=
1
3

n−1
∑

k≥3
k even

�

(Fk + Fk−1)
2 − F2

k−1

�− Fn + 2 [apply
∑

0≤i<n F2i = F2n−1 − 1]777

=
1
3
(F2

n − 1)− Fn + 1. [telescope sum]778

779

Similarly we can calculate defect(T (Fn+1, Fn)). (In fact, the answer is exactly the same.) Applying the reciprocity780

formula (Lemma 3.3) gives us the last two equations. �781
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3.2 Defect Upper Bound782

Polyak’s formula [195] gives a straightforward quadratic upper bound on the defect of any closed curve in the783

plane. In this section, we prove an O(n3/2) upper bound on the absolute value of the defect for any planar curves,784

using a recursive inclusion-exclusion argument. This bound matches the asymptotic worst case behavior of defect785

among all planar curves, as demonstrated in Section 3.1. Throughout this section, let γ be an arbitrary non-simple786

closed curve in the plane, and let n be the number of vertices of γ.787

3.2.1 Winding Numbers and Diameter788

First we derive an upper bound in terms of the depth of the curve. We parametrize γ as a function γ: [0, 1]→ R2,789

where γ(0) = γ(1) is an arbitrarily chosen basepoint. For each vertex x of γ, let γx denote the closed subpath of γ790

from the first occurrence of x to the second. More formally, if x = γ(u) = γ(v) where 0< u< v < 1, then γx is the791

closed curve defined by setting γx(t) := γ((1− t)u+ t v) for all 0≤ t ≤ 1.792

Lemma 3.5. For every vertex x , we have
∑

yÇx sgn(y) = 2 wind(γx , x)− 2 wind(γx ,γ(0))− sgn(x).793

Proof: Our proof follows an argument of Titus [238, Theorem 1].794

Fix a vertex x = γ(u) = γ(v), where 0< u< v < 1. Let αx denote the subpath of γ from γ(0) to γ(u− ε), and795

let ωx denote the subpath of γ from γ(v + ε) to γ(1) = γ(0), for some sufficiently small ε > 0. Specifically, we796

choose ε such that there are no vertices γ(t) where u− ε ≤ t < u or v < t ≤ v + ε. (See Figure 3.5.) A vertex y797

interleaves with x if and only if y is an intersection point of γx with either αx or ωx , so798

∑

yÇx

sgn(y) =
∑

y∈αx∩γx

sgn(y) +
∑

y∈γx∩ωx

sgn(y).799

x

�x
↵x

!x

Figure 3.5. Proof of Lemma 3.5: wind(γx , x) = +1− 1+ 1− 1
2 =

1
2

Now suppose we move a point p continuously along the path αx , starting at the basepoint γ(0). The winding800

number wind(γx , p) changes by 1 each time this point γx . Each such crossing happens at a vertex of γ that lies801

on both αx and γx ; if this vertex is positive, wind(γx , p) increases by 1, and if this vertex is negative, wind(γx , p)802

decreases by 1. It follows that803

∑

y∈αx∩γx

sgn(y) = wind(γx ,γ(u− ε))−wind(γx ,γ(0)).804

Symmetrically, if we move a point p backward along ωx from the basepoint, the winding number wind(γx , p)805

increases (resp. decreases) by 1 whenever γ(t) passes through a positive (resp. negative) vertex in ωx ∩ γx ; see806
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the red path in Figure 3.5. Thus,807

∑

y∈ωx∩γx

sgn(y) = wind(γx ,γ(v + ε))−wind(γx ,γ(0)).808

Finally, our sign convention for vertices implies809

wind(γx ,γ(u− ε)) = wind(γx ,γ(v + ε)) = wind(γx , x)− sgn(x)/2,810

which completes the proof. �811

Lemma 3.6. For any planar curve γ, we have |defect(γ)| ≤ 2n · depth(γ) + n.812

Proof: Polyak’s defect formula can be rewritten as813

defect(γ) = −
∑

x

sgn(x)

 

∑

yÇx

sgn(y)

!

.814

(This sum actually considers every pair of interleaved vertices twice, which is why the factor 2 is omitted.) Assume815

without loss of generality that the basepoint γ(0) lies on the outer face of γ, so that wind(γx ,γ(0)) = 0 for every816

vertex x . Then Lemma 3.5 implies817

defect(γ) =
∑

x

sgn(x)
�

sgn(x)− 2 wind(γx , x)
�

= n− 2
∑

x

sgn(x) ·wind(γx , x),818

and therefore819

|defect(γ)| ≤ n+ 2
∑

x

|wind(γx , x)| .820

We easily observe that |wind(γx , x)| ≤ depth(x ,γx)≤ depth(x ,γ) for every vertex x; the second inequality follows821

from the fact that no path crosses γx more times than it crosses γ. The lemma now follows immediately. �822

The quantity
∑

x sgn(x) ·wind(γx , x) is equivalent, up to a factor of 4, to the curve invariant α(γ) introduced by823

Lin and Wang [167], which they defined as the limit of a certain integral (due to Bar-Natan [19]) over a smooth824

knot in R3 that projects to γ, as the knot approaches the plane of projection.825

As we will see the upper bound |defect(γ)| = O (n · depth(γ)) also follows from either our O(n3/2) upper bound826

for homotopy moves (Lemma 5.1) which serves as an upper bound on defect (Lemma 4.1), or from the relation827

between number of medial electrical moves and defect (Theorem 7.2) and the electrical reduction algorithm of828

Feo and Provan [100].829

3.2.2 Inclusion-Exclusion830

Now let σ be a simple closed curve that intersects γ only transversely and away from its vertices. By the Jordan831

curve theorem, we can assume without loss of generality that σ is a Euclidean circle, the number of intersection832

points between γ and σ is even, and the intersection points are evenly spaced around σ. We arbitrarily refer to833

the two tangles defined by σ as the interior and exterior tangles of σ. Let z0, z1, . . . , zs−1 be the points in σ ∩ γ834

in order along γ (not in order along σ). These intersection points decompose γ into a sequence of s subpaths835

γ1,γ2, . . . ,γs; specifically, γi is the subpath of γ from zi−1 to zi mod s, for each index i. Without loss of generality,836

every odd-indexed path γ2i+1 lies outside σ, and every even-indexed path γ2i lies inside σ.837
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Let γåσ and γäσ denote the closed curves that result from tightening the interior and exterior tangles of σ,838

respectively.2 To put it differently, let γåσ denote a generic curve obtained from γ by continuously deforming839

all subpaths γi inside σ, keeping their endpoints fixed and never moving across σ, to minimize the number of840

intersections. (There may be several curves that satisfy the minimum-intersection condition; choose one arbitrarily.)841

Similarly, let γäσ denote any generic curve obtained by continuously deforming the subpaths γi outside σ to842

minimize intersections. Finally, let γ ý σ denote the generic curve obtained by deforming all subpaths γi to843

minimize intersections; in other words, γýσ := (γåσ)äσ = (γäσ)åσ. See Figure 3.6.844

Figure 3.6. Clockwise from left: γ, γäσ, γýσ, and γåσ. The green circle in all four figures is σ.

To simplify notation, we define845

defect(x , y) := [x Ç y] · sgn(x) · sgn(y)846

for any two vertices x and y , where [x Ç y] := 1 if x and y are interleaved and [x Ç y] = 0 otherwise. Then we847

can write the defect of γ as848

defect(γ) = −2
∑

x ,y

defect(x , y).849

Every vertex of γ lies at the intersection of two (not necessarily distinct) subpaths. For any index i, let X(i, i)850

denote the set of self-intersection points of γi , and for any indices i < j, let X(i, j) be the set of points where γi851

intersects γ j .852

If two vertices x ∈ X (i, k) and y ∈ X ( j, l) are interleaved, then we must have i ≤ j ≤ k ≤ l. Thus, we can853

express the defect of γ in terms of crossings between subpaths γi as follows.854

defect(γ) = −2
∑

i≤ j≤k≤l

∑

x∈X (i,k)

∑

y∈X ( j,l)

defect(x , y)855

2We recommend pronouncing å as “tightened inside” and ä as “tightened outside”; note that the symbols å and ä resemble the second
letters of “inside” and “outside”.
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On the other hand, if i < j < k < l, then every vertex x ∈ γi ∩γk is interleaved with every vertex of y ∈ γ j ∩γl .856

Thus, we can express the contribution to the defect from pairs of vertices on four distinct subpaths as follows:857

defect#(γ,σ) := −2
∑

i< j<k<l

∑

x∈X (i,k)

∑

y∈X ( j,l)

sgn(x) · sgn(y)858

We can express this function more succinctly as859

defect#(γ,σ) = −2
∑

i< j<k<l

defect(i, k) · defect( j, l)860

by defining861

defect(i, j) :=
∑

x∈X (i, j)

sgn(x)862

for all indices i < j.863

The following lemma implies that continuously deforming the subpaths γi without crossing σ leaves the value864

defect#(γ,σ) unchanged, even though such a deformation may change the defect defect(γ).865

Lemma 3.7. The value defect(i, j) depends only on the parity of i + j and the cyclic order of the endpoints of γi866

and γ j around σ.867

Proof: There are only three cases to consider.868

If i + j is odd, then γi and γ j lie on opposite sides of σ and therefore do not intersect, so defect(i, j) = 0. For869

all other cases, i + j is even, which implies without loss of generality that j ≥ i + 2.870

Suppose the endpoints of γi and γ j do not alternate in cyclic order around σ, or equivalently, that the871

corresponding subpaths of γýσ are disjoint. The Jordan curve theorem implies that there must be equal numbers872

of positive and negative intersections between γi and γ j , and therefore defect(i, j) = 0.873

Finally, suppose the endpoints of γi and γ j alternate in cyclic order around σ, or equivalently, that the874

corresponding subpaths of γýσ intersect exactly once. Then defect(i, j) = 1 if the endpoints zi , z j , zi−1, z j−1 appear875

in clockwise order around σ and defect(i, j) = −1 otherwise. �876

Now consider an interleaved pair of vertices x ∈ X (i, k) and y ∈ X ( j, l) where at least two of the indices i, j, k, l877

are equal. Trivially, i and k have the same parity, and j and l also have the same parity. If i = j or i = l or j = k or878

j = l, then all four indices have the same parity. If i = k, then we must also have i = j or i = l (or both), so again,879

all four indices have the same parity. We conclude that x and y are either both inside σ or both outside σ.880

Lemma 3.8. For any closed curve γ and any simple closed curve σ that intersects γ only transversely and away881

from its vertices, we have defect(γ) = defect(γåσ) + defect(γäσ)− defect(γýσ).882

Proof: Let us write defect(γ) = defect#(γ,σ) + defect↑(γ,σ) + defect↓(γ,σ), where883

• defect#(γ,σ) considers pairs of vertices on four different subpaths γi , as above,884

• defect↑(γ,σ) considers pairs of vertices inside σ on at most three different subpaths γi , and885

• defect↓(γ,σ) considers pairs of vertices outside σ on at most three different subpaths γi .886

Lemma 3.7 implies that887

defect#(γ,σ) = defect#(γåσ,σ) = defect#(γäσ,σ) = defect#(γýσ,σ).888
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The definitions of γåσ and γäσ immediately imply the following:889

defect↑(γåσ,σ) = defect↑(γýσ,σ) defect↓(γåσ,σ) = defect↓(γ,σ)890

defect↑(γäσ,σ) = defect↑(γ,σ) defect↓(γäσ,σ) = defect↓(γýσ,σ)891
892

The lemma now follows from straightforward substitution. �893

Lemma 3.9. For any closed curve γ and any simple closed curve σ that intersects γ only transversely and away894

from its vertices, we have |defect(γýσ)|= O
�|γ∩σ|3�.895

Proof: Fix an arbitrary reference point z ∈ σ \ γ. For any point p in the plane, there is a path from p to z that896

crosses γýσ at most O(s) times. Specifically, move from p to the nearest point on γýσ, then follow γýσ to σ,897

and finally follow σ to the reference point z. It follows that depth(γýσ) = O(s). The curve γýσ has at most898

2
�s/2

2

�

= O(s2) vertices. The bound |defect(γýσ)|= O(s3) now immediately follows from Lemma 3.6. �899

3.2.3 Divide and Conquer900

We call a simple closed curve σ useful for γ if σ intersects γ transversely away from its vertices, and the interior901

tangle –IO of σ has at least s2 vertices, where s := |σ∩ γ|/2 is the number of strands in –IO.3902

Lemma 3.10. Let γ be an arbitrary non-simple closed curve in the plane with n vertices. Either there is a useful903

simple closed curve for γ whose interior tangle has depth O(
p

n), or the depth of γ is O(
p

n).904

Proof: To simplify notation, let d := depth(γ). For each integer j between 1 and d, let R j be the set of points p905

with depth(p,γ)≥ d + 1− j, and let R̃ j denote a small open neighborhood of the closure of R j ∪ R̃ j−1, where R̃0 is906

the empty set. Each region R̃ j is the disjoint union of closed disks, whose boundary cycles intersect γ transversely907

away from its vertices, if at all. In particular, R̃d is a disk containing the entire curve γ.908

Fix a point z such that depth(z,γ) = d. For each integer j, let Σ j be the unique component of R̃ j that contains z,909

and let σ j be the boundary of Σ j . Then σ1,σ2, . . . ,σd are disjoint, nested, simple closed curves; see Figure 3.7.910

Let n j be the number of vertices and let s j := |γ∩σ j |/2 be the number of strands of the interior tangle of σ j . For911

notational convenience, we define Σ0 :=∅ and thus n0 = s0 = 0. We ignore the outermost curve σd , because it912

contains the entire curve γ. The next outermost curve σd−1 contains every vertex of γ, so nd−1 = n.913

By construction, for each j, the interior tangle of σ j has depth j + 1. Thus, to prove the lemma, it suffices to914

show by induction that if none of the curves σ1,σ2, . . . ,σd−1 is useful, then d = O(
p

n).915

Fix an index j. Each edge of γ crosses σ j at most twice. Any edge of γ that crosses σ j has at least one916

endpoint in the annulus Σ j \Σ j−1, and any edge that crosses σ j twice has both endpoints in Σ j \Σ j−1. Conversely,917

each vertex in Σ j is incident to at most two edges that cross σ j and no edges that cross σ j+1. It follows that918

|σ j ∩ γ| ≤ 2(n j − n j−1), and therefore n j ≥ n j−1 + s j . Thus, by induction, we have919

n j ≥
j
∑

i=1

si920

for every index j.921

3We could define σ to be useful if there are at least α · s2 vertices in the interior tangle, and then optimize α to minimize the resulting
upper bound.
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z

Figure 3.7. Nested depth cycles around a point of maximum depth.

Now suppose no curve σ j with 1≤ j < d is useful. Then we must have s2
j > n j and therefore922

s2
j >

j
∑

i=1

si923

for all 1 ≤ j < d. Trivially, s1 ≥ 1, because γ is non-simple. A straightforward induction argument implies that924

s j ≥ ( j + 1)/2 and therefore925

n = nd−1 ≥
d−1
∑

i=1

i + 1
2
≥ 1

2

�

d + 1
2

�

>
d2

4
.926

We conclude that d ≤ 2
p

n, which completes the proof. �927

We are now finally ready to prove our main upper bound.928

Theorem 3.1. |defect(γ)|= O(n3/2) for every closed curve γ in the plane with n vertices.929

Proof: We prove by induction on n that defect(γ) ≤ C · n3/2 for any closed curve γ with n vertices, for some930

absolute constant C to be determined.931

Let γ be an arbitrary closed curve with n vertices. Let σ be a simple closed curve that is useful for γ (that is,932

m ≥ s2) whose interior tangle has depth O(
p

n), as guaranteed by Lemma 3.10. (If there are no useful curves,933

then Lemma 3.6 implies that |defect(γ)|= O(n3/2).) Let s := |γ∩σ|/2. Lemma 3.8 implies934

defect(γ) = defect(γåσ) + defect(γäσ)− defect(γýσ).935

Suppose there are m vertices of γ lying in the interior of σ. Because the interior tangle of σ has depth O(
p

n), it936

follows that depth(γäσ) = O(
p

n+ s), and therefore by Lemma 3.6 and Lemma 3.9 this implies937

|defect(γäσ)|+ |defect(γýσ)| = O
�

(
p

n+ s) · (m+ s2/2)
�

= O(m
p

n).938

Because σ is useful for γ, γåσ has at most n−m+ s2/2< n vertices. By the inductive hypothesis one has939

|defect(γ)| ≤ C
�

n−m+ s2/2
�3/2
+ c ·mpn940
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for some constant c. The inequality (x − y)3/2 ≤ (x − y)x1/2 = x3/2 − y x1/2 now implies941

|defect(γ)| ≤ Cn3/2 − C(m− s2/2)
p

n+ c ·mpn.942

Finally, again because σ is useful, we must have m− s2/2≥ m/2, which implies943

|defect(γ)| ≤ Cn3/2 − C(m/2)
p

n+ c ·mpn944

= Cn3/2 − (C/2− c)m
p

n.945
946

Provided C/c ≥ 2, then |defect(γ)| ≤ Cn3/2, as required. �947

3.3 Medial Defect is Independent of Planar Embeddings948

Recall that an embedded graph G unicursal if its medial graph G× is the image of a single closed curve. The goal949

of the section is to prove that following surprising property about defect: The defect of the medial graph of an950

arbitrary unicursal planar graph G does not depend on its embedding.951

Theorem 3.2. Let G and H be planar embeddings of the same abstract planar graph. If G is unicursal, then H is952

unicursal and defect(G×) = defect(H×).953

3.3.1 Navigating Between Planar Embeddings954

A classical result of Adkisson [3] and Whitney [256] is that every 3-connected planar graph has an essentially955

unique planar embedding. Mac Lane [175] described how to count the planar embeddings of any biconnected956

planar graph, by decomposing it into its triconnected components. Stallmann [228,229] and Cai [31] extended957

Mac Lane’s algorithm to arbitrary planar graphs, by decomposing them into biconnected components. Mac Lane’s958

decomposition is also the basis of the SPQR-tree data structure of Di Battista and Tamassia [78,79], which encodes959

all planar embeddings of an arbitrary planar graph.960

Mac Lane’s structural results imply that any planar embedding of a 2-connected planar graph G can be961

transformed into any other embedding by a finite sequence of split reflections, defined as follows. A split curve is962

a simple closed curve σ whose intersection with the embedding of G consists of two vertices x and y; without963

loss of generality, σ is a circle with x and y at opposite points. A split reflection modifies the embedding of G by964

reflecting the subgraph inside σ across the line through x and y .965

Lemma 3.11. Let G be an arbitrary 2-connected planar graph. Any planar embedding of G can be transformed966

into any other planar embedding of G by a finite sequence of split reflections.967

To navigate among the planar embeddings of arbitrary connected planar graphs, we need two additional968

operations. First, we allow split curves that intersect G at only a single cut vertex; a cut reflection modifies the969

embedding of G by reflecting the subgraph inside such a curve. More interestingly, we also allow degenerate split970

curves that pass through a cut vertex x of G twice, but are otherwise simple and disjoint from G. The interior971

of a degenerate split curve σ is an open topological disk. A cut eversion is a degenerate split reflection that972

everts the embedding of the subgraph of G inside such a curve, intuitively by mapping the interior of σ to an973

open circular disk (with two copies of x on its boundary), reflecting the interior subgraph, and then mapping974
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the resulting embedding back to the interior of σ. Structural results of Stallman [228,229] and Di Battista and975

Tamassia [79, Section 7] imply the following.976

Figure 3.8. Top row: A regular split reflection and a cut reflection. Bottom row: a cut eversion.

Lemma 3.12. Let G be an arbitrary connected planar graph. Any planar embedding of G can be transformed into977

any other planar embedding of G by a finite sequence of split reflections, cut reflections, and cut eversions.978

3.3.2 Tangle Flips979

Now consider the effect of the operations stated in Lemma 3.12 on the medial graph G×. By assumption, G is980

unicursal so that G× is a single closed curve. Let σ be any (possibly degenerate) split curve for G. Embed G× so981

that every medial vertex lies on the corresponding edge in G, and every medial edge intersects σ at most once.982

Then σ intersects at most four edges of G×, so the tangle of G× inside σ has at most two strands. Moreover,983

reflecting (or everting) the subgraph of G inside σ induces a flip of this tangle of G×. Any tangle can be flipped by984

reflecting the disk containing it, so that each strand endpoint maps to a different strand endpoint; see Figure 3.9.985

Straightforward case analysis implies that flipping any tangle of G× with at most two strands transforms G× into986

another closed curve.987

Figure 3.9. Flipping tangles with one and two strands.

The main result of this subsection is that the resulting curve has the same defect as G×.988

Lemma 3.13. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with one strand yields989

another closed curve γ′ with defect(γ′) = defect(γ).990

Proof: Let σ be a simple closed curve that crosses γ at exactly two points. These points decompose σ into two991

subpaths α ·β , where α is the unique strand of the interior tangle and β is the unique strand of the exterior tangle.992

Let Σ denote the interior disk of σ, and let φ : Σ→ Σ denote the homeomorphism that flips the interior tangle.993

Flipping the interior tangle yields the closed curve γ′ := rev(φ(α)) · β , where rev denotes path reversal.994

No vertex of α is interleaved with a vertex of β; thus, two vertices in γ′ are interleaved if and only if the995

corresponding vertices in γ are interleaved. Every vertex of rev(φ(α)) has the same sign as the corresponding996

vertex of α, since both the orientation of the vertex and the order of traversals through the vertex changed. Thus,997

every vertex of γ′ has the same sign as the corresponding vertex of γ. We conclude that defect(γ′) = defect(γ). �998
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Lemma 3.14. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with two strands yields999

another closed curve γ′ with defect(γ′) = defect(γ).1000

Proof: Letσ be a simple closed curve that crosses γ at exactly four points. These four points naturally decompose γ1001

into four subpaths α · δ · β · ε, where α and β are the strands of the interior tangle of σ, and δ and ε are the1002

strands of the exterior tangle. Flipping the interior tangle either exchanges α and β , reverses α and β , or both;1003

see Figure 3.10. In every case, the result is a single closed curve γ′.1004
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Figure 3.10. Flipping all six types of 2-strand tangle.

Let γ′ be the result of flipping the interior tangle. The curve γ′ äσ is just a reflection of γäσ, which implies1005

that defect(γ′ äσ) = defect(γäσ), and straightforward case analysis implies γ′ åσ = γåσ and γ′ ýσ = γýσ.1006

We conclude by the inclusion-exclusion formula for defect (Lemma 3.8) that1007

defect(γ′) = defect(γ′ åσ) + defect(γ′ äσ)− defect(γ′ ýσ)1008

= defect(γåσ) + defect(γäσ)− defect(γýσ) = defect(γ).1009
1010

�1011

Now Theorem 3.2 follows immediately from Lemmas 3.12, 3.13, and 3.14.1012

3.4 Implications for Random Knots1013

Finally, we describe some interesting implications of our results on the expected behavior of random knots,1014

following earlier results of Lin and Wang [167], Polyak [195], and new results of Even-Zohar, Hass, Linial, and1015

Nowik [95,96,97]. We refer the reader to Burde and Zieschang [27] or Kauffman [151] for further background1016

on knot theory, to Chmutov, Duzhin, and Mostovoy [57] for a detailed overview of finite-type knot invariants, and1017

Even-Zohar [94] for a survey and some new results on the random knot models; we include only a few elementary1018

definitions to keep the presentation self-contained.1019

A knot is (the image of) a continuous injective map from the circle into R3. Two knots are considered equivalent1020

(more formally, ambient isotopic) if there is a continuous deformation of R3 that deforms one knot into the other.1021

Knots are often represented by knot diagrams, which are 4-regular plane graphs defined by a generic projection1022

of the knot onto the plane, with an annotation at each vertex indicating which branch of the knot is “over” or1023

“under” the other. Call any crossing x in a knot diagram ascending if the first branch through x after the basepoint1024

passes over the second, and descending otherwise.1025

The Casson invariant c2 is the simplest finite-type knot invariant; it is also equal to the second coefficient of1026

the Conway polynomial [24,198]. Polyak and Viro [197,198] derived the following combinatorial formula for the1027
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Casson invariant of a knot diagram κ:1028

c2(κ) = −
∑

descending x

∑

ascending y

[x Ç y] · sgn(x) · sgn(y).1029

Like defect, the value of c2(κ) is independent of the choice of basepoint or orientation of the underlying curve γ;1030

moreover, if the knots represented by diagrams κ and κ′ are equivalent, then c2(κ) = c2(κ′).1031

Polyak [195, Theorem 7] observed that if a knot diagram κ is obtained from an arbitrary closed curve γ by1032

independently resolving each crossing as ascending or descending with equal probability, then one can relate the1033

expectation of Casson invariant c2(κ) and the defect of γ by1034

E[c2(κ)] = defect(γ)/8.1035

The same observation is implicit in earlier results of Lin and Wang [167]; and (for specific curves) in the later1036

results of Even-Zohar et al. [95].1037

Even-Zohar et al. [95] studied the distribution of the Casson invariant for two models of random knots, the1038

Petaluma model of Adams et al. [1, 2], which uses singular one-vertex diagrams consisting of 2p + 1 disjoint1039

non-nested loops for some integer p, and the star model, which uses (a polygonal version of) the flat torus knot1040

T (p, 2p+ 1) for some integer p. Even-Zohar et al. prove that the expected value of the Casson invariant is
�p

2

�

/121041

in the Petaluma model and
�p+1

3

�

/2≈ 0.03n3/2 in the star model. Later they studied the Petaluma model in further1042

details [96]; in particular, the probability that Casson invariant of a random knot is equal to a given value decreases1043

to zero as the number of petals grows.1044

Our defect analysis in Section 3.2 implies an upper bound on the Casson invariant for knot diagrams generated1045

from any family of generic closed curves.1046

Corollary 3.2. Let γ be any generic closed curve with n vertices, and let κ be a knot diagram obtained by resolving1047

each vertex of γ independently and uniformly at random. Then |E[c2(κ)]|= O(n3/2).1048

Our results also imply that the distribution of the Casson invariant depends strongly on the precise parameters1049

of the random model; even the sign and growth rate of E[c2] depend on which curves are used to generate knot1050

diagrams. For example:1051

• For random diagrams over the flat torus knot T (p+ 1, p), we have E[c2(κ)] = −
�p

3

�

/4= −n3/2/24+Θ(n).1052

• For random diagrams over the Fibonacci flat torus knot T (Fk+1, Fk), we have E[c2(κ)] =
1
3 (F

2
k −1)− Fk+1 =1053

n/3φ +Θ(
p

n), where φ := (
p

5+ 1)/2 is the golden ratio.1054

• For random diagrams over the connected sum T (p− 1, p)# T (p+ 1, p), we have E[c2(κ)] = 0.1055
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Chapter 4

Lower Bounds for Tightening Curves

Lower bounds are hard. But that doesn’t mean that no progress can be made. To get

a lower bound, it is required [...] that you make a (possible restrictive) model of all

algorithms or data-structures that can solve your problem.

— Discrete lizard, Computer Science Stack Exchange q91156

1056

In this chapter we prove the first non-trivial lower bounds on number of homotopy moves required to tighten1057

closed curves, both in the plane and on higher-genus surfaces. First, in Section 4.1, we derive an Ω(n3/2) lower1058

bound on number of homotopy moves required to simplify any planar curve, using lower bound results on defect1059

we have in Section 3.1, and the fact that each homotopy move changes the defect of a closed curve by at most 2.1060

As for planar multicurves, using winding-number arguments we prove that in the worst case, simplifying an1061

arrangement of k closed curves requires Ω(n3/2+ nk) homotopy moves, with an additional Ω(k2) term if the target1062

configuration is specified in advance.1063

In Section 4.2, we consider curves on surfaces of higher genus. Extending the notion of defect invariant, we1064

prove that Ω(n2) homotopy moves are required in the worst case to transform one non-contractible closed curve1065

to another on the torus, and therefore on any orientable surface. Results of Hass and Scott [135] imply that this1066

lower bound is tight if the non-contractible closed curve is homotopic to a simple closed curve.1067

We then construct an infinite family of contractible curves on the annulus that require at least Ω(n2) moves to1068

tighten in Section 4.3, using a complete different curve invariant than defect. Our new lower bound generalizes to1069

any surface that has the annulus as a covering space—that is, any surface except for the sphere, the disk, or the1070

projective plane.1071

4.1 Lower Bounds for Planar Curves1072

Now we prove our lower bounds for simplifying closed curves in the plane through the defect invariant. Straight-1073

forward case analysis [195] implies that any single homotopy move changes the defect of a curve by at most 2;1074

the various cases are listed below and illustrated in Figure 4.1.1075

• A 1�0 move leaves the defect unchanged.1076

• A 2�0 move decreases the defect by 2 if the two disappearing vertices are interleaved, and leaves the defect1077

unchanged otherwise.1078

• A 3�3 move increases the defect by 2 if the three vertices before the move contain an even number of1079

interleaved pairs, and decreases the defect by 2 otherwise.1080

In light of this case analysis, the following lemma is trivial:1081

Lemma 4.1. Simplifying any closed curve γ in the plane requires at least |defect(γ)|/2 homotopy moves.1082
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Move 1�0 2�0 3�3

0 1 0

3 1

2

St −w 0 0 +1 +1

J+ 2w 0 −2 0 0

defect 0 0 −2 +2 +2

Figure 4.1. Changes to Arnold’s invariants: St, J+, and defect incurred by homotopy moves. Numbers in each figure indicate how many
pairs of vertices are interleaved; dashed lines indicate how the rest of the curve connects. The variable w shown in the 0�1 move column
represents the winding number of the vertex.

As we have mentioned in Chapter 3, Arnold [15, 16] originally defined the curve invariants St and J+ by1083

their changes under 2�0 and 3�3 homotopy moves. Specifically, as shown in Figure 4.1, 3�3 moves change1084

strangeness by ±1 but do not affect J+; 2�0 moves change J+ by either 0 or 2 but do not affect strangeness.1085

Defect bound from either Lemma 3.1, Lemma 3.2, or Corollary 3.1 implies the following lower bound on1086

number of homotopy moves, which is also implicit in the work of Hayashi et al. [139] and Even-Zohar et al. [95].1087

Theorem 4.1. For every positive integer n, there are closed curves with n vertices whose defects are n3/2/3−O(n)1088

and −n3/2/3+O(n), and therefore require at least n3/2/6−O(n) homotopy moves to reduce to a simple closed1089

curve.1090

Proof: The lower bound follows from Lemma 3.1, Lemma 3.2, or Corollary 3.1 by setting a := 1. If n is a prefect1091

square, then the flat torus knot T(
p

n+ 1,
p

n) has n vertices and defect −2
�
p

n
3

�

. If n is not a perfect square,1092

we can achieve defect −2
�bpnc

3

�

by applying 0�1 moves to the curve T (bpnc+ 1, bpnc). Similarly, we obtain an1093

n-vertex curve with defect 2
�bpn+1c+1

3

�

by adding monogons to the curve T (bpn+ 1c, bpn+ 1c+ 1). Lemma 4.11094

now immediately implies the lower bound on homotopy moves. �1095

4.1.1 Multicurves1096

Our previous results immediately imply that simplifying a multicurve with n vertices requires at least Ω(n3/2)1097

homotopy moves; in this section we derive additional lower bounds in terms of the number of constituent curves.1098

We distinguish between two natural variants of simplification: transforming a multicurve into an arbitrary set of1099

disjoint simple closed curves, or into a particular set of disjoint simple closed curves.1100

Lemma 4.2. Transforming a k-curve with n vertices in the plane into k arbitrary disjoint circles requires Ω(nk)1101

homotopy moves in the worst case.1102

Proof: For arbitrary positive integers n and k, we construct a multicurve with k disjoint constituent curves, all but1103

one of which are simple, as follows. The first k− 1 constituent curves γ1, . . . ,γk−1 are disjoint circles inside the1104
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open unit disk centered at the origin. (The precise configuration of these circles is unimportant.) The remaining1105

constituent curve γo is a spiral winding n+ 1 times around the closed unit disk centered at the origin, plus a line1106

segment connecting the endpoints of the spiral; γo is the simplest possible curve with winding number n+1 around1107

the origin. Let γ be the disjoint union of these k curves; we claim that Ω(nk) homotopy moves are required to1108

simplify γ. See Figure 4.2.1109

Figure 4.2. Simplifying this multicurve requires Ω(nk) homotopy moves.

Consider the faces of the outer curve γo during any homotopy of γ. Adjacent faces of γo have winding numbers1110

that differ by 1, and the outer face has winding number 0. Thus, for any non-negative integer w, as long as the1111

maximum absolute winding number
�

�maxp wind(γo, p)
�

� is at least w, the curve γo has at least w+1 faces (including1112

the outer face) and therefore at least w−1 vertices, by Euler’s formula. On the other hand, if any curve γi intersects1113

a face of γo, no homotopy move can remove that face until the intersection between γi and γo is removed. Thus,1114

before the simplification of γo is complete, each curve γi must intersect only faces with winding number 0, 1, or1115

−1.1116

For each index i, let wi denote the maximum absolute winding number of γo around any point of γi:1117

wi :=max
θ

�

�

�wind
�

γo,γi(θ )
�

�

�

� .1118

Let W :=
∑

i wi . Initially, W = k(n+ 1), and when γo first becomes simple, we must have W ≤ k. Each homotopy1119

move changes W by at most 1; specifically, at most one term wi changes at all, and that term either increases or1120

decreases by 1. The Ω(nk) lower bound now follows immediately. �1121

Theorem 4.2. Transforming a k-curve with n vertices in the plane into an arbitrary set of k simple closed curves1122

requires Ω(n3/2 + nk) homotopy moves in the worst case.1123

We say that a collection of k disjoint simple closed curves is nested if some point lies in the interior of every1124

curve, and unnested if the curves have disjoint interiors.1125

Lemma 4.3. Transforming k nested circles in the plane into k unnested circles requires Ω(k2) homotopy moves.1126

Proof: Let γ and γ′ be two nested circles, with γ′ in the interior of γ and with γ directed counterclockwise.1127

Suppose we apply an arbitrary homotopy to these two curves. If the curves remain disjoint during the entire1128

homotopy, then γ′ always lies inside a face of γ with winding number 1; in short, the two curves remain nested.1129

Thus, any sequence of homotopy moves that takes γ and γ′ to two non-nested simple closed curves contains at1130

least one 0�2 move that makes the curves cross (and symmetrically at least one 2�0 move that makes them1131

disjoint again).1132
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Figure 4.3. Nesting or unnesting k circles requires Ω(k2) homotopy moves.

Consider a set of k nested circles. Each of the
�k

2

�

pairs of circles requires at least one 0�2 move and one 2�01133

move to unnest. Because these moves involve distinct pairs of curves, at least
�k

2

�

0�2 moves and
�k

2

�

2�0 moves,1134

and thus at least k2 − k moves altogether, are required to unnest every pair. �1135

Theorem 4.3. Transforming a k-curve with n vertices in the plane into k nested (or unnested) circles requires1136

Ω(n3/2 + nk+ k2) homotopy moves in the worst case.1137

Corollary 4.1. Transforming one k-curve with at most n vertices into another k-curve with at most n vertices1138

requires Ω(n3/2 + nk+ k2) homotopy moves in the worst case.1139

Although our lower bound examples consist of disjoint curves, all of these lower bounds apply without1140

modification to connected multicurves, because any k-curve can be connected with at most k − 1 0�2 moves.1141

On the other hand, any connected k-curve has at least 2k − 2 vertices, so the Ω(k2) terms in Theorem 4.3 and1142

Corollary 4.1 are redundant.1143

4.2 Quadratic Bound for Curves on Surfaces1144

In this section we consider the natural generalization of the defect invariant to closed curves on orientable surfaces1145

of higher genus. Because these surfaces have non-trivial topology, not every closed curve is homotopic to a single1146

point or even to a simple curve.1147

Although defect was originally defined as an invariant of plane curves, Polyak’s formula1148

defect(γ) = −2
∑

xÇy

sgn(x) sgn(y)1149

extends naturally to closed curves on any orientable surface; homotopy moves change the invariant exactly as1150

described in Figure 4.1. Thus, Lemma 4.1 immediately generalizes to any orientable surface as follows.1151

Lemma 4.4. Let γ and γ′ be arbitrary closed curves that are homotopic on an arbitrary orientable surface.1152

Transforming γ into γ′ requires at least |defect(γ)− defect(γ′)|/2 homotopy moves.1153

In contrast to Theorem 3.1, the following construction gives toroidal curves with quadratic defect, implying a1154

quadratic lower bound for tightening non-contractible curves on orientable surfaces with positive genus.1155

Lemma 4.5. For any positive integer n, there is a closed curve on the torus with n vertices and defect Ω(n2) that1156

is homotopic to a simple closed curve but not contractible.1157
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Figure 4.4. A curve γ on the torus with defect Ω(n2) and a simple curve homotopic to γ.

Proof: Without loss of generality, suppose n is a multiple of 8. The curve γ is illustrated on the left in Figure 4.4.1158

The torus is represented by a rectangle with opposite edges identified. We label three points a, b, and c on the1159

vertical edge of the rectangle and decompose the curve into a simple red path from a to b, a simple green path1160

from b to c, and a simple blue path from c to a. The red and blue paths each wind vertically around the torus,1161

first n/8 times in one direction, and then n/8 times in the opposite direction.1162

As in previous proofs, we compute the defect of γ by describing a sequence of homotopy moves that tightens1163

the curve, while carefully tracking the changes in the defect that these moves incur. We can unwind one turn of1164

the red path by performing one 2�0 move, followed by n/8 3�3 moves, followed by one 2�0 move, as illustrated1165

in Figure 4.5. Repeating this sequence of homotopy moves n/8 times removes all intersections between the red1166

and green paths, after which a sequence of n/4 2�0 moves straightens the blue path, yielding the simple curve1167

shown on the right in Figure 4.4. Altogether, we perform n2/64+ n/2 homotopy moves, where each 3�3 move1168

increases the defect of the curve by 2 and each 2�0 move decreases the defect of the curve by 2. We conclude1169

that defect(γ) = −n2/32+ n. �1170

Figure 4.5. Unwinding one turn of the red path.

Theorem 4.4. Tightening a closed curve with n crossings on a torus requires Ω(n2) homotopy moves in the worst1171

case, even if the curve is homotopic to a simple curve.1172

Later in Section 4.3.2, we will describe a sequence of contractible closed curves on the annulus that requires1173

Ω(n2) homotopy moves to tighten through a different kind of curve invariant. Such curves must have defect1174

O(n3/2) by Theorem 3.1.1175
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4.3 Quadratic Bound for Contractible Curves on Surfaces1176

We now prove a quadratic lower bound on the worst-case number of homotopy moves required to tighten closed1177

curves in the annulus; we extend this lower bound to more complex surfaces in Section 4.3.3. Rather than1178

considering the standard annulus S1 × [0, 1], it will be more convenient to work in the punctured plane R2 \ {o},1179

which is homeomorphic to the open annulus S1 × (0, 1); here o is an arbitrary point, which we call the origin.1180

For any homotopy in the punctured plane, homotopy moves across the face containing o are forbidden. This1181

makes the quadratic lower bound possible; without this restriction, any planar curve can be simplified using at1182

most O(n3/2) moves, as we will see in Section 5.1.1183

4.3.1 Traces and Types1184

To simplify the presentation, we identify the vertices before and after a 3�3 move as indicated in Figure 1.1. Each1185

3�3 move involves three subpaths of γ, which intersect in three vertices; intuitively, each of these vertices moves1186

continuously across the opposite subpath. Thus, in any homotopy from one curve γ to another curve γ′, each1187

vertex of the evolving curve either starts as a vertex of γ or is created by a 0�1 or 0�2 move, moves continuously1188

through a finite sequence of 3�3 moves, and either ends as a vertex of γ′ or is destroyed by a 1�0 or 2�0 move.1189

Let H be a homotopy that transforms γ into γ′, represented as a finite sequence of homotopy moves. We define1190

a graph Trace(H), called the trace of H, whose nodes are the vertices of γ, the vertices of γ′, and the 1��0 and1191

2��0 moves in H; each edge of Trace(H) corresponds to the lifetime of a single vertex of the evolving curve. Every1192

node of Trace(H) has degree 1 or 2; thus, Trace(H) is the disjoint union of paths and cycles.1193

Recall that curves γ+x and γ−x are obtained from smoothing the curve γ at vertex x in a way that breaks γ into two1194

closed curves, each respecting the orientation of the original. (See Figure 2.3.) We define the type of any vertex x1195

of any annular curve γ as the winding number of the simpler curve γ+x around the origin o (not around the vertex x);1196

that is, we define type(γ, x ) := wind(γ+x , o). Vertex x is irrelevant if either type(γ, x) = 0 or type(γ, x) = wind(γ, o)1197

and relevant otherwise. Two vertices x and y have complementary types if type(γ, x)+ type(γ, y) = wind(γ, o), or1198

equivalently, if wind(γ+x , o) = wind(γ−y , o). If two vertices have complementary types, then either both are relevant1199

or both are irrelevant.1200

Lemma 4.6. The following hold for any annular curve:1201

(1) Each 1��0 move creates or destroys an irrelevant vertex.1202

(2) Each 2��0 move creates or destroys two vertices with complementary types and identical winding numbers.1203

(3) Each 3��3 move changes the winding numbers of three vertices, each by exactly 1.1204

(4) Except as stated in (1), (2), and (3), homotopy moves do not change the type or winding number of any1205

vertex.1206

Proof: Claim (1) is immediate. Up to symmetry, there are only two cases to consider to prove claim (2): The1207

two sides of the empty bigon are oriented in the same direction or in opposite directions. In both cases, γ+x1208

and γ−y are homotopic and wind(γ, x) = wind(γ, y), where x and y are the vertices of the bigon. See Figure 4.6.1209

Claim (3) follows immediately from the observation that each vertex involved in a 3�3 move passes over the curve1210

exactly once. Finally, claim (4) follows from the fact that winding number is a homotopy invariant; specifically,1211

if there is a homotopy between two planar curves γ and γ′ whose image does not include a point p, then1212

wind(γ, p) = wind(γ′, p) [142]. �1213
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Figure 4.6. The vertices of empty bigons have complementary types and identical winding numbers.

Lemma 4.6 implies that no homotopy move transforms a relevant vertex into an irrelevant vertex or vice versa,1214

and that relevant vertices are neither created by 0�1 moves nor destroyed by 1�0 moves. Let Trace∗(H) denote1215

the subgraph of edges in the trace graph Trace(H) that correspond to relevant vertices of the evolving curve.1216

Again, Trace∗(H) is the disjoint union of paths and cycles. Each path in Trace∗(H) connects either two vertices1217

of γ with complementary types, two vertices of γ′ with complementary types, or a vertex of γ and a vertex of γ′1218

with identical types. Intuitively, each path in Trace∗(H) is the record of a single relevant vertex alternately moving1219

forward and backward in time, reversing directions and types at every 0��2 move. We say that the nodes at the1220

end of each path in Trace∗(H) are paired by the homotopy H. We emphasize that different homotopies may lead1221

to different pairings.1222

Between 2��0 moves, a relevant vertex can participate in any finite number of 3�3 moves. By Lemma 4.6(3),1223

each 3�3 move changes the winding numbers of each of the three moving vertices by 1, and Lemma 4.6(4) implies1224

that the winding number of a vertex changes only when it participates in a 3�3 move. Thus, the homotopy H1225

must contain at least1226

1
3

∑

x∼y

�

�

�wind(x)−wind(y)
�

�

�1227

3�3 moves, where the sum is over all pairs of paired vertices of Trace∗(H), and the winding number of each vertex1228

is defined with respect to the curve (γ or γ′) that contains it.1229

4.3.2 A Bad Contractible Annular Curve1230

Theorem 4.5. For any positive integer n, there is a contractible annular curve with n vertices that requires Ω(n2)1231

homotopy moves to tighten.1232

Proof: For any pair of relatively prime integers p and q, the flat torus knot T (p, q) described in Section 3.1.1 has1233

exactly (|p| − 1) · |q| vertices and winding number p around the origin. For any odd integer p, let Πp denote the1234

closed curve obtained by placing a scaled copy of T(−p, 1) inside the innermost face of T(p, 2) and attaching1235

the two curves as shown in Figure 4.7. For purposes of illustration, we perform homotopy to move all crossings1236

into a narrow horizontal rectangle to the right of the origin, which is also where we join the two curves. The1237

resulting curve Πp has winding number zero around the origin and thus is contractible, and it has 3(p−1) vertices.1238

Within the rectangle (treated as a tangle), the curve consists of 2p simple strands; the endpoints of the strands are1239

connected by disjoint parallel paths outside the rectangle. In the left half of the rectangle, strands are directed1240

downward; in the right half, strands are directed upward. All but two strands connect the top and bottom of the1241

rectangle; the only exceptions are the strands that connect the two flat torus knots.1242
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Figure 4.7. Our bad example curve Π13 in the punctured plane.

We catalog the vertices of Πp as follows; see Figure 4.8. In the left half of the rectangle, Πp has one vertex ai1243

with type i and winding number i, for each integer i from 1 to p. In the right half, Πp has four vertices for each1244

index i between 1 and (p− 1)/2:1245

• two vertices x i and x ′i with type −i and winding number 2i;1246

• one vertex yi with type i and winding number p− 2i; and1247

• one vertex zi with type i − p and winding number p− 2i.1248

1 2 3 4 5 6 7 8 9 10 11 12 123456789101112

–1–2–3–4–5–6

–7–8–9–10–11–12

6543211197531

12108642 –1–2–3–4–5–6

xi
yi
x í
zi

ai

Figure 4.8. Vertices of Π13 annotated by type (bold red numbers next to each vertex) and winding number (thin blue numbers directly
below each vertex).

Every homotopy from Πp to a simple closed curve defines an essentially unique pairing of the vertices of Πp;1249

without loss of generality, ai is paired with x ′i , ap−i is paired with zi , and x i is paired with yi , for each integer i1250

between 1 and (p− 1)/2. Thus, the number of 3�3 moves in any homotopy that contracts Πp is at least1251

1252

1
3

(p−1)/2
∑

i=1

�

|i − 2i|+ |(p− i)− (p− 2i)|+ |2i − (p− 2i)|
�

1253

=
1
3

(p−1)/2
∑

i=1

�

2i + |4i − p|
�

=
1
3

 

(p−1)/2
∑

i=1

2i +
(p−1)/2
∑

j=1

(2 j + 1)

!

=
p(p− 1)

6
.1254

1255

This completes the proof. �1256

4.3.3 More Complicated Surfaces1257

We extend Theorem 4.5 to surfaces with more complex topology as follows. A closed curve in any surface Σ is1258

two-sided if it has a neighborhood homeomorphic to the annulus. Let Σ be a compact surface, possibly with1259
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boundary or non-orientable, that contains a simple two-sided non-contractible cycle α; the only compact surfaces1260

that do not contain such a cycle are the sphere, the disk, and the projective plane. To create a bad example curve1261

for Σ, we simply embed our previous annular curve Πp in an annular neighborhood A of α. The resulting curves1262

are still contractible in Σ and, as we will shortly prove, still require Ω(n2) homotopy moves to simplify.1263

However, winding numbers are not well-defined in surfaces of higher genus, so we need a more careful1264

argument to prove the quadratic lower bound. Instead of reasoning directly about homotopy moves on Σ, we lift1265

everything to a certain covering space of Σ previously considered by several authors [64,87,135,161,217].1266

Theorem 4.6. Let Σ be a compact connected surface, possibly with boundary or non-orientable (but not the1267

sphere, the disk, or the projective plane). For any positive integer n, there is a contractible curve with n vertices1268

in Σ that requires Ω(n2) homotopy moves to simplify.1269

Proof: Let α be a simple two-sided non-contractible closed curve in Σ, that is, a non-contractible curve that lies in1270

an open neighborhood A homeomorphic to the open annulus S1 × (0, 1). Every compact connected surface (other1271

than the sphere, the disk, or the projective plane) contains such a curve.1272

The cyclic covering space Σ̂α of Σ with respect to α is the quotient of the universal covering space of Σ by the1273

infinite-cyclic subgroup of the fundamental group π1(Σ) generated by α. Let π: Σ̂α→ Σ be the corresponding1274

covering map. Standard covering space results imply that α has a unique lift α̂ to Σ̂α that is a simple closed curve.1275

Also, α̂ has an open annular neighborhood Â with non-contractible boundary components in Σ̂. Moreover, we may1276

assume that the restriction of the covering map π to Â is a homeomorphism to A.1277

Let γ̂ be an arbitrary contractible curve in Â, and let γ be the projection of γ̂ to A. The two curves γ and γ̂ have1278

the same number of vertices and edges. By homotopy lifting property, any homotopy H : S1 × [0, 1]→ Σ from γ1279

to a point lifts to a homotopy Ĥ : S1 × [0,1]→ Σ̂α from γ̂ to a point. Each homotopy move in Ĥ projects to a1280

homotopy move in H, but H may include additional homotopy moves, where the strands involved are projected1281

from different parts of the covering space. It follows that simplifying γ in Σ requires at least as many homotopy1282

moves as simplifying γ̂ in Σ̂α.1283

Standard covering space results imply that the interior of Σ̂α is homeomorphic to an open annulus, and1284

therefore to the punctured plane R2 \ {o}. (See, for example, Schrijver [217, Proposition 2].) The lower bound1285

now follows directly from Theorem 4.5, by setting γ̂ := Πp for some p = Θ(n), as defined in Section 4.3.2. If Σ1286

has non-empty boundary, then Σ̂α also has non-empty boundary, but without loss of generality, any homotopy that1287

contracts γ̂ avoids the boundary of Σ̂α. �1288

Theorem 4.6 strengthens the Ω(n2) lower bound in Section 4.2 for tightening non-contractible curves in1289

orientable surfaces. Results of Hass and Scott [135, Theorem 2.7] imply that our lower bound is tight for the1290

Möbius band, the Klein bottle, and any orientable surface except the sphere or the disk; any contractible curve on1291

these surfaces can be simplified using at most O(n2) homotopy moves.1292

The only missing case is the projective plane; see Section 8.2 for a discussion.1293
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Chapter 5

Tightening Planar Curves

I used to love to untangle chains when I was a child. I had thin, busy fingers, and I

never gave up. Perhaps there was a psychiatric component to my concentration but

like much of my psychic damage, this worked to everyone’s advantage.

— Anne Lamott, Plan B: Further Thoughts on Faith

1294

We develop a new algorithm to simplify any closed curve in the plane in O(n3/2) homotopy moves in Section 5.1.1295

First we describe an algorithm that uses O(DΣ) moves, where DΣ is the sum of the face depths of the input1296

curve. At a high level, our algorithm can be viewed as a variant of Steinitz’s algorithm that empties and removes1297

monogons instead of bigons. We then extend our algorithm to tangles: collections of boundary-to-boundary paths1298

in a closed disk. Our algorithm tightens a tangle in O(DΣ +ns) moves, where DΣ is the sum of the depths of1299

the tangle’s faces, s is the number of strands, and n is the number of intersection points. Using the result from1300

Section 3.2.3, we can find a simple closed curve whose interior tangle has m vertices, at most
p

m strands, and1301

maximum face depth O(
p

n). Tightening this tangle and then recursively simplifying the resulting curve requires1302

a total of O(n3/2) moves. We show that this simplifying sequence of homotopy moves can be computed in O(1)1303

amortized time per move, assuming the curve is presented in an appropriate graph data structure. We conclude1304

this chapter by proving that any arrangement of k closed curves can be simplified in O(n3/2+nk) homotopy moves,1305

or in O(n3/2 + nk+ k2) homotopy moves if the target configuration is specified in advance, precisely matching our1306

lower bounds for all values of n and k.1307

5.1 Planar Curves1308

5.1.1 Contracting Simple Loops1309

Lemma 5.1. Every closed curve γ in the plane can be simplified using at most 3 DΣ(γ)− 3 homotopy moves.1310

Proof: We prove the statement by induction on the number of vertices in γ. The lemma is trivial if γ is already1311

simple, so assume otherwise. Let x := γ(θ ) = γ(θ ′) be the first vertex to be visited twice by γ after the (arbitrarily1312

chosen) basepoint γ(0). Let α denote the subpath of γ from γ(θ) to γ(θ ′); our choice of x implies that α is a1313

simple monogon. Let m and s denote the number of vertices and strands in the interior tangle of α, respectively.1314

Finally, let γ′ denote the closed curve obtained from γ by removing α. The first stage of our algorithm1315

transforms γ into γ′ by contracting the monogon α via homotopy moves.1316

We remove the vertices and edges from the interior of α one at a time as follows; see Figure 5.2. If we can1317

perform a 2�0 move to remove one edge of γ from the interior of α and decrease s, we do so. Otherwise, either α1318

is empty, or some vertex of γ lies inside α. In the latter case, at least one vertex x inside α has a neighbor that1319

lies on α. We move x outside α with a 0�2 move (which increases s by 1) followed by a 3�3 move (which1320

decreases m by 1). Once α is an empty monogon, we remove it with a single 1�0 move. Altogether, our algorithm1321
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Figure 5.1. Transforming γ into γ′ by contracting a simple monogon. Numbers are face depths.

transforms γ into γ′ using at most 3m+ s+ 1 homotopy moves. Let M denote the actual number of homotopy1322

moves used.1323

x

Figure 5.2. Moving a monogon over an interior empty bigon or an interior vertex.

Euler’s formula implies that α contains exactly m+ s+ 1 faces of γ. The Jordan curve theorem implies that1324

depth(p,γ′) ≤ depth(p,γ) − 1 for any point p inside α, and trivially depth(p,γ′) ≤ depth(p,γ) for any point p1325

outside α. It follows that DΣ(γ′)≤ DΣ(γ)− (m+ s+ 1)≤ DΣ(γ)−M/3, and therefore M ≤ 3DΣ(γ)− 3DΣ(γ′).1326

The induction hypothesis implies that we can recursively simplify γ′ using at most 3 DΣ(γ′)−3 moves. The lemma1327

now follows immediately. �1328

Our upper bound is a factor of 3 larger than Feo and Provan’s [100]; however our algorithm has the advantage1329

that it extends to tangles, as described in the next subsection.1330

5.1.2 Tangles1331

Recall that a tangle is tight if every pair of strands intersects at most once and loose otherwise. Every loose tangle1332

contains either an empty monogon or a (not necessarily empty) bigon. Thus, any tangle with n vertices can be1333

transformed into a tight tangle—or less formally, tightened—in O(n2) homotopy moves using Steinitz’s algorithm.1334

On the other hand, there are infinite classes of loose tangles for which no homotopy move that decreases the1335

potential, so we cannot directly apply Feo and Provan’s algorithm to this setting. (See Section 8.1.1).1336

We describe a two-phase algorithm to tighten any tangle. First, we remove any self-intersections in the1337

individual strands, by contracting monogons as in the proof of Lemma 5.1. Once each strand is simple, we move1338

the strands so that each pair intersects at most once. See Figure 5.3.1339

Lemma 5.2. Every n-vertex tangle –IO with s simple strands can be tightened using at most 3ns homotopy moves.1340
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Figure 5.3. Tightening a tangle in two phases: First simplifying the individual strands, then removing excess crossings between pairs of
strands.

Figure 5.4. Moving one strand out of the way and shrinking the tangle boundary.

Proof: We prove the lemma by induction on s. The base case when s = 1 is trivial, so assume s ≥ 2.1341

Fix an arbitrary reference point on the boundary circle σ that is not an endpoint of a strand. For each index i,1342

let σi be the arc of σ between the endpoints of γi that does not contain the reference point. A strand γi is extremal1343

if the corresponding arc σi does not contain any other arc σ j .1344

Choose an arbitrary extremal strand γi . Let mi denote the number of tangle vertices in the interior of the disk1345

bounded by γi and the boundary arc σi; call this disk Σi . Let si denote the number of intersections between γi1346

and other strands. Finally, let γ′i be a path inside the disk Σ defining tangle –IO, with the same endpoints as γi , that1347

intersects each other strand in –IO at most once, such that the disk bounded by σi and γ′i has no tangle vertices1348

inside its interior. (See Figure 5.4 for an example; the red strand in the left tangle is γi , the red strand in the1349

middle tangle is γ′i , and the shaded disk is Σi .)1350

We can deform γi into γ′i using essentially the algorithm from Lemma 5.1; the disk Σi is contracted along1351

with γi in the process. If Σi contains an empty bigon with one side in γi , remove it with a 2�0 move (which1352

decreases si by 1). If Σi has an interior vertex with a neighbor on γi , remove it using at most two homotopy1353

moves (which increases si by 1 and decreases mi by 1). Altogether, this deformation requires at most 3mi + si ≤ 3n1354

homotopy moves.1355

After deforming γi to γ′i , we redefine the tangle by shrinking its boundary curve slightly to exclude γ′i , without1356

creating or removing any vertices in the tangle or endpoints on the boundary; see the right of Figure 5.4. We1357

emphasize that shrinking the boundary does not modify the strands and therefore does not require any homotopy1358

moves. The resulting smaller tangle has exactly s − 1 strands, each of which is simple. Thus, the induction1359

hypothesis implies that we can recursively tighten this smaller tangle using at most 3n(s−1) homotopy moves. �1360

Corollary 5.1. Every n-vertex s-strand tangle –IO can be tightened using at most 3 DΣ(–IO) + 3ns homotopy moves.1361

Proof: As long as –IO contains at least one non-simple strand, we identify a simple monogon α in that strand and1362
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remove it as described in the proof of Lemma 5.1. Suppose there are m vertices and t strands in the interior tangle1363

of α, and let M be the number of homotopy moves required to remove α. The algorithm in the proof of Lemma 5.11364

implies that M ≤ 3m+ t + 1, and Euler’s formula implies that α contains m+ t + 1 ≥ M/3 faces. Removing α1365

decreases the depth of each of these faces by at least 1 and therefore decreases the potential of the tangle by at1366

least M/3.1367

Let –IO′ be the remaining tangle after all such monogons are removed. Our potential analysis for a single monogon1368

implies inductively that transforming –IO into –IO′ requires at most 3 DΣ(–IO)− 3 DΣ(–IO′)≤ 3 DΣ(–IO) homotopy moves.1369

Because –IO′ still has s strands and at most n vertices, Lemma 5.2 implies that we can tighten –IO′ with at most 3ns1370

additional homotopy moves. �1371

5.1.3 Main Algorithm1372

Our main algorithm repeatedly finds a useful closed curve using Lemma 3.10 whose interior tangle has depth O(
p

n),1373

and tightens its interior tangle; if there are no useful closed curves, then we fall back to the monogon-contraction1374

algorithm of Lemma 5.1.1375

Theorem 5.1. Every closed curve in the plane with n vertices can be simplified in O(n3/2) homotopy moves.1376

Proof: Let γ be an arbitrary closed curve in the plane with n vertices. If γ has depth O(
p

n), Lemma 5.1 and1377

the trivial upper bound DΣ(γ)≤ (n+ 1) · depth(γ) imply that we can simplify γ in O(n3/2) homotopy moves. For1378

purposes of analysis, we charge O(
p

n) of these moves to each vertex of γ.1379

Otherwise, let σ be an arbitrary useful closed curve chosen according to Lemma 3.10. Suppose the interior1380

tangle of σ has m vertices, s strands, and depth d. Lemma 3.10 implies that d = O(
p

n), and the definition of1381

useful implies that s ≤ pm, which is O(
p

n). Thus, by Corollary 5.1, we can tighten the interior tangle of σ in1382

O(md + ms) = O(m
p

n) moves. This simplification removes at least m − s2/2 ≥ Ω(m) vertices from γ, as the1383

resulting tight tangle has at most s2/2 vertices. Again, for purposes of analysis, we charge O(
p

n) moves to each1384

deleted vertex. We then recursively simplify the resulting closed curve.1385

In either case, each vertex of γ is charged O(
p

n) moves as it is deleted. Thus, simplification requires at most1386

O(n3/2) homotopy moves in total. �1387

The bound in Theorem 5.1 is asymptotically optimal as it matches the lower bound in Theorem 4.1 up to1388

constant factors. As an immediate corollary of Theorem 5.1 and Theorem 7.2, we obtain an alternative proof to1389

the subquadratic defect upper bound in Section 3.2.1390

5.1.4 Efficient Implementation1391

Here we describe how to implement our curve-simplification algorithm to run in O(n3/2) time; in fact, our1392

implementation spends only constant amortized time per homotopy move. We assume that the input curve1393

is given in a data structure that allows fast exploration and modification of plane graphs, such as a quad-1394

edge data structure [130] or a doubly-connected edge list [22]. If the curve is presented as a polygon with m1395

edges, an appropriate graph representation can be constructed in O(m log m+ n) time using classical geometric1396

algorithms [55,60,180]; more recent algorithms can be used for piecewise-algebraic curves [83].1397

Theorem 5.2. Given a simple closed curve γ in the plane with n vertices, we can compute a sequence of O(n3/2)1398

homotopy moves that simplifies γ in amortized constant time per move.1399
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Proof: We begin by labeling each face of γ with its depth, using a breadth-first search of the dual graph in O(n)1400

time. Then we construct the depth contours of γ—the boundaries of the regions R̃ j from the proof of Lemma1401

3.10—and organize them into a contour tree in O(n) time by brute force. Another O(n)-time breadth-first traversal1402

computes the number of strands and the number of interior vertices of every contour’s interior tangle; in particular,1403

we identify which depth contours are useful. To complete the preprocessing phase, we place all the leafmost useful1404

contours into a queue. We can charge the overall O(n) preprocessing time to the Ω(n) homotopy moves needed to1405

simplify the curve.1406

As long as the queue of leafmost useful contours is non-empty, we extract one contour σ from this queue and1407

simplify its interior tangle –IO as follows. Suppose –IO has m interior vertices.1408

Following the proof of Theorem 5.1, we first simplify every monogon in each strand of –IO. We identify monogons1409

by traversing the strand from one endpoint to the other, marking the vertices as we go; the first time we visit a1410

vertex that has already been marked, we have found a monogon α. We can perform each of the homotopy moves1411

required to shrink α in O(1) time, because each such move modifies only a constant-radius boundary of a vertex1412

on α. After the monogon is shrunk, we continue walking along the strand starting at the most recently marked1413

vertex.1414

The second phase of the tangle-simplification algorithm proceeds similarly. We walk around the boundary1415

of –IO, marking vertices as we go. As soon as we see the second endpoint of any strand γi , we pause the walk to1416

straighten γi . As before, we can execute each homotopy move used to move γi to γ′i in O(1) time. We then move1417

the boundary of the tangle over the vertices of γ′i , and remove the endpoints of γ′i from the boundary curve, in1418

O(1) time per vertex.1419

The only portions of the running time that we have not already charged to homotopy moves are the time1420

spent marking the vertices on each strand and the time to update the tangle boundary after moving a strand aside.1421

Altogether, the uncharged time is O(m), which is less than the number of moves used to tighten –IO, because the1422

contour σ is useful. Thus, tightening the interior tangle of a useful contour requires O(1) amortized time per1423

homotopy move.1424

Once the tangle is tight, we must update the queue of useful contours. The original contour σ is still a depth1425

contour in the modified curve, and tightening –IO only changes the depths of faces that intersect –IO. Thus, we could1426

update the contour tree in O(m) time, which we could charge to the moves used to tighten –IO; but in fact, this1427

update is unnecessary, because no contour in the interior of σ is useful. We then walk up the contour tree from σ,1428

updating the number of interior vertices until we find a useful ancestor contour. The total time spent traversing1429

the contour tree for new useful contours is O(n); we can charge this time to the Ω(n) moves needed to simplify1430

the curve. �1431

5.2 Planar Multicurves1432

Finally, we describe how to extend our O(n3/2) upper bound to multicurves in the plane. Just as in Section 4.1.1,1433

we distinguish between two variants, depending on whether the target of the simplification is an arbitrary set1434

of disjoint cycles or a particular set of disjoint cycles. In both cases, our upper bounds match the lower bounds1435

proved in Section 4.1.1.1436

First we extend our monogon-contraction algorithm from Lemma 5.1 to the multicurve setting. Recall that a1437

component of a multicurve γ is any multicurve whose image is a component of the image of γ, and the individual1438

closed curves that comprise γ are its constituent curves. The main difficulty is that one component of the multicurve1439
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might lie inside a face of another component, making progress on the larger component impossible. To handle1440

this potential obstacle, we simplify the innermost components of the multicurve first, and we move isolated simple1441

closed curves toward the outer face as quickly as possible. Figure 5.5 sketches the basic steps of our algorithm1442

when the input multicurve is connected.1443

Figure 5.5. Simplifying a connected multicurve: shrink an arbitrary simple monogon or cycle, recursively simplify any inner components,
translate inner circle clusters to the outer face, and recursively simplify the remaining non-simple components.

Lemma 5.3. Every n-vertex k-curve γ in the plane can be transformed into k disjoint simple closed curves using1444

at most 3 DΣ(γ) + 4nk homotopy moves.1445

Proof: Let γ be an arbitrary k-curve with n vertices. If γ is connected, we either contract and delete a monogon,1446

exactly as in Lemma 5.1, or we contract a simple constituent curve to an isolated circle, using essentially the1447

same algorithm. In either case, the number of moves performed is at most 3DΣ(γ)− 3DΣ(γ′), where γ′ is the1448

multicurve after the contraction. The lemma now follows immediately by induction.1449

We call a component of γ an outer component if it is incident to the unbounded outer face of γ, and an inner1450

component otherwise. If γ has more than one outer component, we partition γ into subpaths, each consisting1451

of one outer component γo and all inner components located inside faces of γo, and we recursively simplify1452

each subpath independently; the lemma follows by induction. If any outer component is simple, we ignore that1453

component and simplify the rest of γ recursively; again, the lemma follows by induction.1454

Thus, we can assume without loss of generality that our multicurve γ is disconnected but has only one outer1455

component γo, which is non-simple. For each face f of γo, let γf denote the union of all components inside f .1456

Let n f and k f respectively denote the number of vertices and constituent curves of γf . Similarly, let no and ko1457

respectively denote the number of vertices and constituent curves of the outer component γo.1458

We first recursively simplify each subpath γf ; let κ f denote the resulting cluster of k f simple closed curves. By1459

the induction hypothesis, this simplification requires at most 3DΣ(γf ) + 4n f k f homotopy moves. We translate1460

each cluster κ f to the outer face of γo by shrinking κ f to a small ε-ball and then moving the entire cluster along1461

a shortest path in the dual graph of γo. This translation requires at most 4nok f homotopy moves; each circle1462

in κ f uses one 2�0 move and one 0�2 move to cross any edge of γo, and in the worst case, the cluster might1463
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cross all 2n0 edges of γo. After all circle clusters are in the outer face, we recursively simplify γo using at most1464

3 DΣ(γo) + 4noko homotopy moves.1465

The total number of homotopy moves used in this case is1466

∑

f

3 DΣ(γf ) + 3 DΣ(γo) +
∑

f

4n f k f +
∑

f

4nok f + 4noko.1467

Each face of γo has the same depth as the corresponding face of γ, and for each face f of γo, each face of the1468

subpath γf has lesser depth than the corresponding face of γ. It follows that1469

∑

f

DΣ(γf ) +DΣ(γo)≤ DΣ(γ).1470

Similarly,
∑

f n f + no = n and
∑

f k f + ko = k. The lemma now follows immediately. �1471

To reduce the leading term to O(n3/2), we extend the definition of a tangle to the intersection of a multicurve γ1472

with a closed disk whose boundary intersects the multicurve transversely away from its vertices, or not at all. Such1473

a tangle can be decomposed into boundary-to-boundary paths, called open strands, and closed curves that do not1474

touch the tangle boundary, called closed strands. Each closed strand is a constituent curve of γ. A tangle is tight if1475

every strand is simple, every pair of open strands intersects at most once, and otherwise all strands are disjoint.1476

Theorem 5.3. Every k-curve in the plane with n vertices can be transformed into a set of k disjoint simple closed1477

curves using O(n3/2 + nk) homotopy moves.1478

Proof: Let γ be an arbitrary k-curve with n vertices. Following the proof of Lemma 5.3, we can assume without1479

loss of generality that γ has a single outer component γo, which is non-simple.1480

When γ is disconnected, we follow the strategy in the previous proof. Let γf denote the union of all components1481

inside any face f of γo. For each face f , we recursively simplify γf and translate the resulting cluster of disjoint1482

circles to the outer face; when all faces are empty, we recursively simplify γo. The theorem now follows by1483

induction.1484

When γ is non-simple and connected, we follow the useful closed curve strategy from Theorem 5.1. We define1485

a closed curve σ to be useful for γ if the interior tangle of σ has its number of vertices at least the square of the1486

number of open strands; then the proof of Lemma 3.10 applies to connected multicurves with no modifications. So1487

let –IO be a tangle with m vertices, s ≤pm open strands, ` closed strands, and depth d = O(
p

n). We straighten –IO1488

in two phases, almost exactly as in Section 5.1.2, contracting monogons and simple closed strands in the first1489

phase, and straightening open strands in the second phase.1490

In the first phase, contracting one monogon or simple closed strand uses at most 3 DΣ(–IO)−3 DΣ(–IO′) homotopy1491

moves, where –IO′ is the tangle after contraction. After each contraction, if –IO′ is disconnected—in particular, if1492

we just contracted a simple closed strand—we simplify and extract any isolated components as follows. Let –IO′o1493

denote the component of –IO′ that includes the boundary cycle, and for each face f of –IO′o, let γ f denote the union1494

of all components of –IO′ inside f . We simplify each multicurve γ f using the algorithm from Lemma 5.3—not1495

recursively!—and then translate the resulting cluster of disjoint circles to the outer face of γ. See Figure 5.6.1496

Altogether, simplifying and translating these subpaths requires at most 3 DΣ(–IO′)−3 DΣ(–IO′′)+4n
∑

f k f homotopy1497

moves, where –IO′′ is the resulting tangle.1498

The total number of moves performed in the first phase is at most 3DΣ(–IO) + 4m` = O(m
p

n + n`). The1499

first phase ends when the tangle consists entirely of simple open strands. Thus, the second phase straightens1500
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Figure 5.6. Whenever shrinking a monogon or simple closed strand disconnects the tangle, simplify each isolated component and translate
the resulting cluster of circles to the outer face of the entire multicurve.

the remaining open strands exactly as in the proof of Lemma 5.2; the total number of moves in this phase is1501

O(ms) = O(m
p

n). We charge O(
p

n) time to each deleted vertex and O(n) time to each constituent curve that1502

was simplified and translated outward. We then recursively simplify the remaining multicurve, ignoring any outer1503

circle clusters.1504

Altogether, each vertex of γ is charged O(
p

n) time as it is deleted, and each constituent curve of γ is charged1505

O(n) time as it is translated outward. �1506

With O(k2) additional homotopy moves, we can transform the resulting set of k disjoint circles into k nested1507

or unnested circles.1508

Theorem 5.4. Any k-curve with n vertices in the plane can be transformed into k nested (or unnested) simple1509

closed curves using O(n3/2 + nk+ k2) homotopy moves.1510

Corollary 5.2. Any k-curve with at most n vertices in the plane can be transformed into any other k-curve with at1511

most n vertices using O(n3/2 + nk+ k2) homotopy moves.1512

Theorems 4.2 and 4.3 and Corollary 4.1 imply that these upper bounds are tight in the worst case for all1513

possible values of n and k. As in the lower bounds, the O(k2) terms are redundant for connected multicurves.1514

More careful analysis implies that any k-curve with n vertices and depth d can be simplified in O(n min{d, n1/2}+1515

k min{d, n}) homotopy moves, or transformed into k unnested circles using O(n min{d, n1/2} + k min{d, n} +1516

k min{d, k}) homotopy moves. Moreover, these upper bounds are tight, up to constant factors, for all possible1517

values of n, k, and d. We leave the details of this extension as an exercise for the reader.1518
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Chapter 6

Tightening Curves on Surfaces

Let bigons be bygones.

— Anna, The Geometric Supposer: What is it a case of?
1519

In this chapter we prove that any n-vertex closed curve on an arbitrary orientable surface of negative Euler1520

characteristic can be tightened in polynomially many homotopy moves. Throughout the chapter we assume the1521

reader is familiar with fundamentals of combinatorial topology on surfaces. We refer the readers to Massey [176],1522

Stillwell [232], and Giblin [112] for comprehensive introductions to the topic.1523

Our main technical contribution is to extend Steinitz’s bigon removal algorithm to singular bigons—bigons that1524

wrap around the surface and overlap themselves but nevertheless have well-defined disjoint bounding paths—1525

whose existence is guaranteed by a theorem of Hass and Scott [135, Theorem 2.7]. (A formal definition of the1526

singular bigon can be found in Section 6.1.) To work with singular bigons, it is conceptually easier to look at a lift1527

of the bigon in the universal cover. Unlike the case when the bigon is embedded, moving the two bounding paths of1528

the bigon now also moves all their translates in the universal cover, which potentially changes the structure inside1529

the lifted bigon. We overcome this difficulty by carefully subdividing the homotopy into phases, each performed1530

inside a subset of the universal cover that maps injectively onto the original surface.1531

We provide two algorithms to remove singular bigons: one for orientable surface with boundary and one for1532

those without. We consider surfaces with boundary first, not only because the bound obtained is stronger, but also1533

because the proof is simpler and provides important intuition for the more difficult proof of the boundary-less case.1534

The benefit of working on surface with boundary is that the fundamental group of such surface is free; intuitively1535

one can always find a way to decrease the complexity of the bigon wrapping around the surface.1536

Our proof for surface without boundary uses a discrete analog of the classical isoperimetric inequality in the1537

hyperbolic plane to bound the number of vertices inside the lifted bigon (area) in terms of the number of vertices1538

on its boundary (perimeter). To make the presentation self-contained, we provide an elementary proof of this1539

inequality using the combinatorial Gauss-Bonnet theorem [18,93,173,188]. The second algorithm is surprisingly1540

complex and subtle, with multiple components and tools drawn from discrete and computational topology.1541

6.1 Singular Bigons and Singular Monogons1542

Here we generalize the Steinitz’s bigon removal algorithm to any closed curves on arbitrary orientable surfaces.1543

Following Hass and Scott [135], a singular bigon in γ consists of two subpaths of γ that are disjoint in the domain,1544

and the two subpaths are homotopic to each other in Σ. Similarly, a singular monogon is a subpath of γ whose1545

two endpoints are identical in Σ, and that forms a null-homotopic closed curve in Σ.1546

Our algorithms rely on the following simple property of singular monogons and bigons, which follows1547

immediately from their definition.1548
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Figure 6.1. A basic singular bigon and a basic singular monogon in the annulus.

Lemma 6.1. The bounding paths of any singular monogon or bigon in γ cross γ at most 2n times.1549

Proof: Any point traversing the entire curve γ passes through each of the n self-intersection points twice, and the1550

bounding paths of a singular bigon are disjoint in the domain by definition. �1551

An important subtlety of Hass and Scott’s definition is that a lift of a singular bigon to the universal cover is1552

not necessarily an embedded bigon. First, the lifted boundary paths of the bigon need not be simple or disjoint.1553

More subtly, the endpoints of the lifted bigon might not enclose single corners: an embedded bigon looks like a1554

lens Ç, but a lift of a singular bigon might resemble a heart ♥ or a butt C C. Similarly, a lift of a singular monogon1555

is not necessarily an embedded monogon; the lifted subpath might self-intersect way from its endpoint, and it may1556

not enclose a single corner at its endpoint.1557

We define a singular monogon or singular bigon to be basic if any of its lifts on the universal cover is an1558

embedded monogon or bigon, respectively. Hass and Scott proved that any closed curve with excess intersections1559

on an arbitrary orientable surface, with or without boundary, must contain a singular monogon or a singular1560

bigon [135, Theorem 4.2]. However, a close reading of their proof reveals that the singular monogon or singular1561

bigon they find is in fact basic. We thus restate their result without repeating the proof.1562

Lemma 6.2 (Hass and Scott [135]). Let γ be a closed curve on an arbitrary orientable surface. If γ has excess1563

intersections, then there is a basic singular monogon or a basic singular bigon in γ.1564

In their paper Hass and Scott also demonstrated a multicurve with excess intersections that does not contain1565

any singular monogons or bigons. Therefore our algorithms do not generalize to multicurves directly. In fact, such1566

question is still open.1567

Conjecture 6.1. Any multicurve on an arbitrary orientable surface can be tightened using polynomially many1568

homotopy moves.1569

6.2 Surfaces with Boundary1570

In this section, we consider the case of surfaces with boundary.1571

Theorem 6.1. On an oriented surface of genus g with b > 0 boundary components, a closed curve with n1572

self-intersections can be tightened using at most O((g + b)n3) homotopy moves.1573

Later in Section 6.3 we will describe a similar algorithm for closed curves on an arbitrary orientable surface1574

without boundary. The reader is encouraged to follow the order of the presentation and get an intuitive sense of1575

how the bigon removal algorithm operates in this simpler setting.1576
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Removing singular bigons, as guaranteed by Lemma 6.2, is the foundation of our upper bound proofs. Given1577

a curve γ with n vertices that is not already tightened, we decrease the number of vertices of γ as follows. If γ1578

contains an embedded monogon or bigon, we delete it following Steinitz’s algorithm (Lemma 2.2), using O(n)1579

homotopy moves. Otherwise, if γ contains a basic singular bigon, we attempt to remove it, essentially by swapping1580

the two bounding curves; however, if at any point γ has only n− 2 vertices, we immediately abort the bigon1581

removal and recurse. Finally, if γ contains no basic singular bigons, Lemma 6.2 implies that γ must contain a1582

basic singular monogon; we perform a single 0�1 move to transform it into a basic singular bigon (as shown in1583

Figure 6.2) and then defer to the previous case.1584

Figure 6.2. A single 0�1 move transforms a basic singular monogon into a basic singular bigon.

The curve γ is tightened after repeating the previous reduction process at most n times. Thus, Theorem 6.11585

follows immediately from the following lemma, which we prove in the remainder of this section.1586

Lemma 6.3. Let Σ be an orientable surface of genus g with b > 0 boundary components, and let γ be a closed1587

curve in Σ with n vertices that contains a basic singular bigon, but no embedded monogons or bigons. The number1588

of vertices of γ can be decreased by 2 using O((g + b)n2) homotopy moves.1589

6.2.1 Removing a Basic Singular Bigon1590

Fix a surface Σ and a closed curve γ with n vertices, satisfying the conditions of Lemma 6.3. A system of arcs ∆1591

on the surface Σ is a collection of simple disjoint boundary-to-boundary paths that cuts the surface Σ open into1592

one single polygon. Euler’s formula implies that every system of arcs contains exactly 2g + b− 1 arcs. Cutting1593

the surface along these arcs leaves a topological disk P whose boundary alternates between arcs (each arc in ∆1594

appears twice) and subpaths of the boundary. We refer to P as the fundamental polygon of Σ with respect to ∆.1595

For any closed curve γ on any orientable surface Σ with boundary, there is a system of arcs ∆ satisfying1596

the following crossing property: Each arc in ∆ intersects each edge of γ at most twice, and only transversely.1597

(For examples of such a construction, see Colin de Verdière and Erickson [64, Section 6.1] or Erickson and1598

Nayyeri [92, Section 3].) The fundamental polygon induces a tiling of the universal cover of Σ; we call each lift of1599

the fundamental polygon a tile.1600

Any basic singular bigon β of γ in Σ lifts to a bigon β̂ in the universal cover of Σ, with two bounding subpaths1601

λ and ρ that are disjoint in the domain of γ except possibly at their endpoints. Since β̂ bounds a disk in the1602

universal cover, any lift of any arc of ∆ intersects β̂ an even number of times. The intersection of a tile with β̂ may1603

have several components; we call each component a block. A block is transverse if it is adjacent to both λ and ρ,1604

and extremal otherwise. The transverse blocks have a natural linear ordering B1, . . . , Bk along either λ or ρ.1605

Our process for removing the bigon β̂ has three stages: (1) Sweep inward over the extremal blocks, (2) sweep1606

across the sequence of transverse blocks, and finally (3) remove one small empty bigon at a corner of β̂ . The first1607

two stages are illustrated in Figure 6.3. This homotopy projects to a homotopy on Σ. We will prove that at the end1608

of this bigon removal process, γ has exactly n− 2 vertices.1609

To simplify our algorithm, we actually abort the bigon-removal process immediately as soon as γ has n− 21610

vertices; however, for purposes of analysis, we conservatively assume that the removal process runs to completion.1611
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Figure 6.3. Removing a basic singular bigon on a surface with boundary. Top: Sweeping extremal blocks. Bottom: Sweeping transverse
blocks.

We separately analyze stage (1) and stage (2) next.1612

Lemma 6.4. All extremal blocks can be removed from β̂ using O((g+ b)n2) moves, without changing the number1613

of vertices of γ.1614

Proof: We actually describe how to remove every embedded bigon formed by a subpath of γ and a subpath of any1615

arc in ∆ using at most O((g + b)n2) homotopy moves, each of which is a 3�3 move. Every extremal block in β̂1616

projects to such an embedded bigon, because tiles (and a fortiori blocks) project injectively into the surface Σ.1617

We proceed inductively as follows. Suppose γ and ∆ bound an embedded bigon, since otherwise there is1618

nothing to prove. Let B be a minimal embedded bigon with respect to containment, bounded by a subpath δ of an1619

arc in ∆, and a subpath α of the curve γ. Because γ has no embedded monogons or bigons, every subpath of γ1620

inside B is simple, and every pair of such subpaths intersects at most once. Moreover, every such subpath has1621

one endpoint on α and the other endpoint on δ. Thus, the number of intersections between δ and γ is equal to1622

number of intersections between α and γ \α.1623

To remove B, we apply the following homotopy process similar to Steinitz’s algorithm (Lemma 2.2); the only1624

difference here is that δ is not part of the curve γ, and therefore no actual homotopy move is required if some1625

subpaths of δ participate in a move. We first sweep the subpath α across B until the bigon defined by α and δ1626

has no vertices in its interior, and then sweep α across δ without performing any additional homotopy moves, as1627

shown in Figure 6.4. Because the number of intersections between δ and γ is equal to number of intersections1628

between α and γ \α, this sweep does not change the number of vertices of γ.1629

Figure 6.4. Sweeping a minimal embedded bigon bounded by a subpath of γ (black) and a subpath of ∆ (red). Thin (blue) lines are other
subpaths of γ.

To implement the sweep, Steinitz’s lemma (Lemma 2.1) implies that if the interior of B contains any vertices1630

of γ, then some triangular face of γ lies inside B and adjacent to an edge of α. Thus, we can reduce the number of1631

interior vertices of B with a single 3�3 move. It follows inductively that the number of moves required to sweep1632

over B is equal to the number of vertices in the interior of B, which is trivially at most n.1633

Removing a minimal embedded bigon between γ and ∆ takes at most n moves and decreases the number1634

of intersections between γ and ∆ by 2. Each of the O(g + b) arcs in ∆ intersects each of the O(n) edges of γ1635
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at most twice by the crossing property of ∆, so the total number of such intersections is at most O((g + b)n).1636

Finally, because every move is a 3�3 move, we never change the number of vertices of γ. The lemma follows1637

immediately. �1638

Now let B1, B2, . . . , Bk denote the sequence of transverse blocks of β̂ , and let δi denote the common boundary1639

Bi and Bi+1 for each index i. Each path δi is a subpath of a lift of some arc in ∆. For notational convenience, let1640

x := δ0 and y := δk denote the endpoints of β̂ , so that each block Bi has paths δi−1 and δi on its boundary.1641

Recall that λ and ρ denote the bounding subpaths of β̂ . To sweep over the transverse blocks, we intuitively1642

maintain a path φ from a point on λ to a point on ρ, which we call the frontier. The frontier starts as a trivial1643

path at the endpoint δ0. Then we repeatedly sweep the frontier over Bi from δi−1 to δi , as i goes from 1 to k.1644

After these k iterations, the frontier lies at the endpoint δk.1645

Our actual homotopy modifies the bounding curves λ and ρ as shown in the bottom of Figure 6.3. Intuitively,1646

the prefixes of λ and ρ “behind” φ are swapped; the frontier itself is actually an arbitrarily close pair of crossing1647

subpaths connecting the swapped prefixes of λ and ρ with the unswapped suffixes “ahead” of the frontier. Replacing1648

the single path φ with a close pair of crossing paths increases the number of homotopy moves to perform the1649

sweep by only a constant factor.1650

Lemma 6.5. Sweeping φ over one transverse block requires at most O(n) homotopy moves.1651

Proof: Consider a sweep over Bi , from δi−1 to δi . We start by moving the frontier just inside Bi , without performing1652

any homotopy moves. The main sweep passes φ over every vertex in Bi , including the vertices on the bounding1653

paths λ and ρ, stopping φ just before it reaches δi . Finally, we move the frontier onto δi without performing any1654

homotopy moves. Because the interior of each block projects injectively onto the surface, no other translate of φ1655

intersects Bi during the sweep.1656

Up to constant factors, the number of homotopy moves required to sweep Bi is bounded by the number of1657

vertices of γ inside Bi , plus the number of intersections between γ and the bounding subpaths δi−1 or δi . There1658

are trivially at most n vertices in Bi , and the crossing property of the system of arcs ∆ implies that each arc in ∆1659

intersects γ at most O(n) times. �1660

With the two previous lemmas in hand, we are finally ready to prove Lemma 6.3. Let γ be a closed curve in Σ1661

with a basic singular bigon β , let β̂ be a lift of β to the universal cover of Σ, and let λ be one of the bounding1662

paths of β̂ .1663

The definition of singular bigon implies that λ contains at most 2n edges of γ by Lemma 6.1. Each of these1664

edges crosses each arc of ∆ at most twice, and there are O(g + b) arcs in ∆, so λ crosses ∆ at most O((g + b)n)1665

times. Each transverse block Bi except the last can be charged to the unique intersection point δi ∩λ. We conclude1666

that β̂ contains O((g + b)n) transverse blocks.1667

Sweeping inward over all extremal blocks in β̂ requires O((g + b)n2) homotopy moves and does not change1668

the number of vertices of γ by Lemma 6.4. Sweeping over all O((g + b)n) transverse blocks requires a total of1669

O((g + b)n2) homotopy moves by Lemma 6.5. Sweeping the transverse blocks has the same effect as smoothing1670

one endpoint of the bigon and doubling the other endpoint, as shown on the bottom right of Figure 6.3, which1671

implies that γ still has n vertices. Removing the final empty bigon with a single 2�0 move reduces the number of1672

vertices to n− 2.1673

This completes the proof of Lemma 6.3, and therefore the proof of Theorem 6.1.1674
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6.3 Surfaces Without Boundary1675

In this section, we prove our upper bound for closed curves on surfaces without boundary. The following theorem1676

improves over the O(n4) bound given by the earlier conference version [47] when the genus g is at most n/ log2 n.1677

Theorem 6.2. On an oriented surface without boundary, a closed curve with n self-intersections can be tightened1678

using at most O(gn3 log2 n) homotopy moves.1679

We follow the same high-level strategy described in Section 6.2; consequently, it suffices to prove that a basic1680

singular bigon can be removed using O(gn2 log2 n) homotopy moves.1681

Instead of a system of arcs, we decompose the surface using a reduced cut graph; this cut graph induces a1682

regular hyperbolic tiling in the universal cover of the surface. In Section 6.3.1 we describe how to compute a1683

cut graph whose induced tiling intersects the bounding paths of any basic singular bigon at most O(n) times. In1684

Section 6.3.2, we apply Dehn’s isoperimetric inequality for regular hyperbolic tilings [75] to bound the number of1685

tiles lying in the interior of the bigon. Then we describe our process for removing a singular bigon at two levels of1686

detail. First, in Section 6.3.3, we provide a coarse description of the homotopy as a sequence of moves in the bigon1687

graph, which is the decomposition of the lifted bigon by the tiling. We process the regions in this decomposition in1688

a particular order to keep the number of chords created by translates of the moving path under control. Finally in1689

Section 6.3.4 we obtain the actual sequence of homotopy moves by carefully perturbing the curves in the previous1690

homotopy into general position; bounding the intersections between perturbed chords is the most delicate portion1691

of our analysis.1692

6.3.1 Dual Reduced Cut Graphs1693

A tree-cotree decomposition of a cellularly embedded graph G is a partition (T, L, C) of the edges of G into three1694

disjoint subsets: a spanning tree T of G, the edges C corresponding to a spanning tree of the dual graph G∗, and1695

exactly 2g leftover edges L := E(G) \ (T ∪ C), where g is the genus of the underlying surface [86].1696

Let γ be a closed curve on Σ; we temporarily view γ as a 4-regular graph with some given embedding. However,1697

the embedding of γ is not necessarily cellular; let G be a cellular refinement of γ obtained by triangulating every1698

face. A dual reduced cut graph X (hereafter, just cut graph) is a cellularly embedded graph obtained from a1699

tree-cotree decomposition (T, L, C) of G as follows: Start with the subgraph of G∗ induced by the dual spanning1700

tree C∗ and the leftover edges L∗, repeatedly delete vertices with degree one, and finally perform series reductions1701

on all vertices with degree two [91].1702

The cut graph X inherits a cellular embedding intoΣ from the embedding of G∗; by construction, this embedding1703

has exactly one face. Because every vertex of X has degree 3, Euler’s formula implies that X has exactly 4g − 21704

vertices and 6g − 3 edges. To be consistent with the terminology in Section 6.2.1, we call the edges of X arcs.1705

Cutting the surface Σ along X yields a polygon with 12g − 6 sides, which we call the fundamental polygon of X .1706

The cut graph induces a regular tiling X̂ of the universal cover Σ̂ of Σ; we refer to each lift of the fundamental1707

polygon of X as a tile.1708

By construction, the cut graph X satisfies the following crossing property: Each edge of the curve γ crosses X1709

at most once. We emphasize that this crossing property might no longer hold when we start moving the curve γ.1710

Compared with the system of arcs we used in Section 6.2 which satisfies a weaker crossing property (that each1711

edge of γ crosses each arc at most O(1) times), the cut graph gives us an improved upper bound on the number of1712

tiles intersecting the bounding paths of an embedded bigon in the universal cover of Σ.1713
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Bigon graph. The tiling of the universal cover of Σ induced by the cut graph X decomposes the disk bounded1714

by β̂ into pieces; we call this decomposition the bigon graph. More formally, we define the bigon graph G as1715

follows. By construction, β̂ intersects the tiling X̂ transversely. The vertices of G are the two endpoints of β̂ , the1716

intersections of λ and ρ with arcs of the tiling, and the vertices of the tiling in the interior of β̂ . The arcs of G are1717

subpaths of λ∪ρ and subpaths of tiling arcs bounded by these vertices. Finally, the bounded faces of G are the1718

components of the intersection of each tile with the interior of β̂ . We emphasize that the intersection of a single1719

tile with the interior of β̂ may have several components.1720

6.3.2 Isoperimetric Inequality1721

Consider an embedded bigon β̂ in the universal cover of surface Σ, which is a lift of a basic singular bigon in the1722

curve γ on Σ. Unlike the case of surface with boundary in Section 6.2, there may be tiles lying completely in the1723

interior of the bigon β̂ , without intersecting the two bounding paths. We bound the number of such interior tiles1724

using a discrete isoperimetric inequality, which is a consequence of Dehn’s seminal observation that the graph1725

metric defined by a regular tiling of the hyperbolic plane is a good approximation of the continuous hyperbolic1726

metric [75]. We provide a self-contained proof of this inequality, using a combinatorial version of the Gauss-Bonnet1727

theorem described at varying levels of generality by Banchoff [18], Lyndon and Schupp [174], and Gersten and1728

Short [111].1729

Let G be a graph with a cellular embedding onto surface Σ, and let χ(Σ) be the Euler characteristic of Σ, defined1730

as the number of vertices and faces in G minus the number of edges in G, which is equal to χ(Σ) = 2− 2g − b,1731

where g is the genus of Σ and b is the number of boundary components of Σ. One can view the definition of the1732

Euler characteristic of Σ through a different lens. Assign an arbitrary real “interior angle” ∠c to each corner c1733

of Σ. Define the curvature κ(v) of a vertex v of G as 1− 1
2 deg v +

∑

c∈v(
1
2 −∠c), and the curvature κ( f ) of a1734

face f of G as 1−∑c∈ f (
1
2 −∠c). The following equality, which is an immediate consequence of Euler’s formula, is1735

known as the combinatorial Gauss-Bonnet theorem:1736

∑

v

κ(v) +
∑

f

κ( f ) = χ(Σ).1737

Now we are ready to bound the number of faces of the bigon graph G. The perimeter L(G) of the bigon1738

graph G is the number of intersections between the two bounding paths of the bigon and arcs of X̂ .1739

Lemma 6.6. Let Σ be a closed surface of genus g > 1, let γ be a closed curve on Σ, let X be the cut graph of γ1740

on Σ, and let G be a bigon graph of some embedded bigon β̂ in Σ̂. Then the number of faces in the bigon graph G1741

is at most O(L(G)).1742

Proof: Let I denote the union of all tiles in X̂ that lie entirely in the interior of β̂ (that is, the union of all faces1743

of G that are actually complete tiles). The region I may be empty or disconnected; however, every component of I1744

is a closed disk. First we connect the number of tiles in I with the number of vertices on the boundary of I .1745

Let D be an arbitrary component of I . Let A denote the number of tiles in D, and let L denote the number1746

of vertices on the boundary of D. Every boundary vertex is either incident to one interior tile and has degree 21747

(convex) or incident to two interior tiles and has degree 3 (concave). Let L+ and L− respectively denote the1748

number of convex and concave vertices on the boundary of D. Assign angle 1/3 to each corner of D, so that1749

• every interior vertex has curvature 0,1750
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• every convex vertex has curvature 1/6,1751

• every concave vertex has curvature −1/6, and1752

• every face has curvature 2− 2g.1753

The combinatorial Gauss-Bonnet theorem now implies that (L+ − L−)/6+ (2− 2g)A= 1, and therefore L+ − L− =1754

(12g − 12)A+ 6. (In particular, L+ ≥ L−.) Thus, some face f is incident to at least 12g − 11 convex vertices, and1755

therefore at least 12g −10 arcs on the boundary of D. Deleting f from D removes at least 12g −10 boundary arcs1756

and exposes at most 4 interior arcs. The isoperimetric inequality A≤ L/(12g − 14) now follows immediately by1757

induction.1758

Now consider the embedded bigon β̂ . Because each vertex in X̂ has degree 3, every convex vertex of I is either1759

incident to an arc intersecting β̂ , or incident to another convex vertex of I , in which case the two convex vertices1760

belongs to different components of I . The number of components of I having no convex vertices incident to β̂ is1761

strictly less than the number of those do, and therefore by an easy charging argument, there are at most O(L(G))1762

convex vertices on the boundary of I . Using the deduced inequality L+ ≥ L− from the previous paragraph, we1763

have now showed that I contains at most O(L(G)) vertices and thus at most O(L(G)/g) tiles. In the mean while,1764

at most O(L(G)) faces are incident to the boundary of β̂ . Thus, the total number of faces of G is at most O(L(G)),1765

as claimed. �1766

Lemma 6.1 and the crossing property of the cut graph X imply that at most O(n) tiles of Σ intersect the two1767

bounding paths λ and ρ of β̂ . Thus Lemma 6.6 implies that the bigon graph G has at most O(n) faces, and1768

therefore O(n) vertices and arcs by Euler’s formula.1769

As a corollary, one can derive a logarithmic bound on the maximum distance from any vertex of X̂ inside the1770

bigon to one of the two bounding paths.1771

Lemma 6.7. Let Σ be an orientable surface of genus g > 1 and γ be a closed curve on Σ. Let X be the cut graph1772

of γ on Σ and G be the corresponding bigon graph of some embedded bigon β̂ in Σ̂. Denote n the number of1773

vertices in G. Then the maximum distance from a vertex of G to either bounding path of β̂ is at most O(log n).1774

Proof: Consider the set S≤k of vertices of G with distance at most k to some fixed vertex v of G. As k grows, the1775

set S≤k grows exponentially in size since X̂ is a hyperbolic tiling. This implies that for some distance k = O(log n)1776

the set S≤k has non-empty intersection with the given bounding path of β̂ . �1777

6.3.3 Coarse Homotopy1778

Let β be a basic singular bigon in γ, let β̂ be its lift to the universal cover, and let λ and ρ be the bounding paths1779

of β̂ . Our goal is to remove this bigon by swapping the bounding paths λ and ρ, which has the same effect as1780

smoothing the two endpoints of β , reducing the number of vertices of γ by 2. See Figure 6.5. In this section, we1781

construct a homotopy from λ to ρ, not as a sequence of individual homotopy moves, but as a coarser sequence1782

of moves in the bigon graph of β̂ . Applying the reversal of this sequence of moves to ρ moves it to the original1783

position of λ, completing the exchange of the two bounding paths.1784

Discrete homotopy. We construct a discrete homotopy [35,36,133] through the bigon graph G that transforms1785

one bounding path λ of the bigon into the other bounding path ρ. This discrete homotopy is a sequence of walks1786

in G—which may traverse the same arc in G more than once—rather than a sequence of generic curves. In the1787
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Figure 6.5. Swapping the two bounding paths of a bigon.

next section, we will carefully perturb these walks into generic curves, and implement each step of the discrete1788

homotopy as a finite sequence of homotopy moves.1789

Let W be a walk on the bigon graph G from one endpoint of the bigon to the other. A spike in W is an arc of G1790

followed immediately by the same arc in the opposite direction. We define two local operations for modifying W ;1791

see Figure 6.6.1792

• Face move: Replace a single arc e in W with the complementary boundary walk around some face f of G1793

that is incident to e.1794

• Spike move: Delete a spike from W and decrease the length of W by two.1795

We emphasize that after a face move across face f , the frontier walk W may traverse some arcs of f more than1796

once; moreover, these multiple traversals may or may not be spikes. Because every face f is a disk, the arc e and1797

its complementary boundary walk around f share endpoints, and thus any face move can be implemented by a1798

homotopy across f . Similarly, a spike move can be implemented by a homotopy in the arc containing the spike. A1799

discrete homotopy in G is a finite sequence of face moves and spike moves. We refer to the current walk W at any1800

stage of this homotopy as the frontier walk.1801

Figure 6.6. A face move and a spike move.

The following result by Har-Peled et al. [133] guarantees the existence of some discrete homotopy whose1802

frontier walk is short at all times. The original result assumes that the underlying graph is triangulated; however1803

the proof still works on regular tilings.1804

Lemma 6.8 (Har-Peled et al. [133, Theorem 1]). Given an n-vertex arc-weighted bigon graph G with two1805

bounding paths λ and ρ, there is a discrete homotopy from λ to ρ whose frontier walk has (weighted) length at1806

most1807

O (|λ|+ |ρ|+ f∗ · (d∗ +w∗) · log n) ,1808

where f∗ is the maximum size of the faces, d∗ is the maximum distance between a vertex in G and a vertex on λ,1809

and w∗ is the maximum arc weight over all arcs. Furthermore, each arc of G is traversed at most twice by any1810
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frontier walk in the discrete homotopy.1811

Set the weight of each arc e in the bigon graph G to 0 if e is on the bounding path λ or ρ, and set the weight1812

to 1 otherwise. By Lemma 6.7, the maximum distance between a vertex in G and a vertex on λ is at most O(log n).1813

Now apply Lemma 6.8 to G, one obtains a discrete homotopy from λ to ρ where all the frontier walks have at1814

most O(g log2 n) arcs of X̂ not on λ or ρ, and each arc of G is traversed at most twice by any frontier walk in the1815

discrete homotopy. By crossing property of the cut graph X , there is at most O(n) crossings between γ̂ and X ,1816

and therefore together with Lemma 6.1 all the frontier walks have at most O(gn log2 n) crossings with γ̂. We1817

refer these as the frontier property of the coarse homotopy, summarized as follow: At every stage of the discrete1818

homotopy,1819

(a) the frontier walk W passes through at most O(g log2 n) arcs of X̂ not on λ or ρ,1820

(b) the frontier walk W intersects (the original) γ̂ at most O(gn log2 n) times, and1821

(c) each arc of G is traversed at most twice by any frontier walk in the discrete homotopy.1822

6.3.4 Fine Homotopy1823

Interactions between the moving frontier and the original curve present a significant subtlety in our algorithm. We1824

refine the discrete homotopy in the previous section, first by perturbing the moving frontier walk so that after1825

every graph move γ is a generic curve, and then by decomposing the perturbed graph moves into a finite sequence1826

of homotopy moves.1827

Perturbing the frontier. First, given the frontier walk Ŵ at any stage of the coarse homotopy, perturb Ŵ into1828

a simple path in the universal cover Σ̂. Based on the frontier property (c) of the coarse homotopy described in1829

Section 6.3.3, combinatorially there is only one such perturbation. We will denote the perturbed frontier walk1830

in Σ̂ by ω̂. Project the perturbed frontier walk ω̂ back to the surface Σ to obtain the frontier curve ω. Notice1831

that the number of self-intersections of ω near any vertex of (the original) γ is at most 4 (locally it looks like the1832

symbol #). The frontier curve ω is not necessarily generic, as subpaths of ω near the cut graph X could overlap1833

each other in unspecified ways.1834

To specify the perturbation near the cut graph X , we define a convenient family O of open sets, which we1835

call bubbles, that covers the cut graph X and its complement face in Σ, following a construction of Babson and1836

Chan [17]. (See also Erickson [89].) Each bubble in O is either a vertex bubble, an arc bubble, or a face bubble.1837

The vertex bubbles are disjoint open balls around the vertices of X . The arc bubbles are disjoint open1838

neighborhoods of the portions of the arcs of X away from the vertices. Finally, the face bubble is an open1839

neighborhoods of the portions of Σ\X away from the vertices and the arcs; there is only one face bubble in O. The1840

intersection of all pairs of two bubbles of different types is the disjoint union of open disks, one for each incidence1841

between the corresponding vertex and arc, vertex and face, or arc and face of X . See Figure 6.7.1842

Figure 6.7. Vertex bubbles, arc bubbles, and face bubbles.
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We now describe how to draw the frontier curve ω near the cut graph X so that the complexity inside each1843

bubble of X is controlled. We model each arc bubble as a Euclidean rectangle containing several straight segments1844

parallel to the arc, which we call tracks, arranged so that each track in the arc bubble of e intersects γ transversely.1845

(The metric is merely a convenience, so that we can write “straight” and “parallel”; the tracks can be defined1846

purely combinatorially.)1847

Figure 6.8. Closeup of an arc bubble of some arc e in X , showing subpaths of the frontier ω sticking to subpaths in e, including the
perturbations of two spikes.

Now consider a frontier curve ω; each maximal subpath along some arc e of X is drawn on a unique track in1848

the arc bubble of e. Moreover, when ω switches from arc e to another arc e′ (including at the tip of a spike at a1849

vertex of X , which we view as a zero-length walk), there is a corner at the intersection of those two tracks. The1850

part of ω that follows the bounding paths λ and ρ stays unchanged.1851

Thus, every subpath of ω inside the arc bubble of some arc e alternates between tracks parallel to e and either1852

(1) tracks parallel to other arcs or (2) parallel to the bounding paths λ and ρ. Intuitively, we say that a subpath of1853

ω sticks to an arc of X if the subpath lies on some track in the corresponding arc bubble. Similarly, we say that a1854

subpath of ω sticks to the bounding paths λ and ρ if the corresponding subpath of Ŵ traverses arcs of G on λ̂1855

and ρ̂ in the universal cover Σ̂. See Figure 6.8.1856

Graph moves revisited. In our perturbed homotopy, we require every face move to be performed entirely within1857

the corresponding face bubble, and every spike move to be performed entirely within the corresponding arc bubble,1858

while maintaining the track structure of the perturbed frontier ω. To this end, we introduce two additional graph1859

moves for modifying the frontier curve ω.1860

• Arc move: Move a maximal subpath sticking to an arc e of X into an incident face bubble, within the arc1861

bubble of e implemented by switching tracks.1862

• Vertex move: Move the curve across a vertex v of X within the corresponding vertex bubble.1863

Figure 6.9. An arc move and a vertex move.

The arc moves and vertex moves can be seen as preprocessing steps to ensure that a subpath of ω lies in the1864

proper face or arc bubble before performing a face or a spike move. Thus, our perturbed coarse homotopy still1865

follows the outline given in Section 6.3.3, but now each face move might be prefaced by a single arc move, and1866

each spike move might be prefaced by a single vertex move, as shown in Figure 6.10.1867
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Figure 6.10. Top: An arc move followed by a face move. Bottom: A vertex move followed by a spike move.

We emphasize that every face move is performed entirely within a face bubble, every arc move and spike move1868

is performed entirely within an arc bubble, and every vertex move is performed entirely within a vertex bubble.1869

Therefore each graph move can be implemented solely on the original surface Σ.1870

The final homotopy. Finally, we construct a sequence of homotopy moves moving one bounding path λ to the1871

other bounding path ρ by decomposing the perturbed graph moves.1872

Lemma 6.9. Let Σ be an orientable surface without boundary, and let γ be a closed curve with n vertices on Σ1873

that contains a basic singular bigon β , but no embedded monogons or bigons. Then β can be removed using1874

O(gn2 log2 n) homotopy moves, without changing the rest of γ.1875

Proof: Let β̂ be the lift of β to the universal cover Σ̂; let λ̂ and ρ̂ be the bounding curves of β̂ in Σ̂; let G be the1876

corresponding bigon graph. Our earlier analysis implies that G has at most O(n) vertices, arcs, and faces. Thus,1877

moving λ̂ to ρ̂ requires at most O(n) graph moves.1878

Each of these graph moves is performed within a bubble in O that embeds in Σ, and therefore can be realized1879

using O(m) homotopy moves, where m is the number of vertices of γ within that bubble before the graph move1880

begins. It remains only to prove the following claim:1881

Between any two graph moves, the number of vertices of γ inside any bubble is at most O(gn log2 n).1882

The proof of this claim is surprisingly delicate. All the properties we mentioned in each of the previous subsections1883

contribute to avoid the danger of increasing the number of vertices in γ uncontrollably during the process:1884

(1) dividing the homotopy into graph moves (Section 6.3.1 and Section 6.3.2), (2) the order of face moves1885

(Section 6.3.3), and (3) the way the perturbed frontier curve lies near the cut graph (Section 6.3.4). For the rest1886

of the proof we refer to subpaths of the frontier curve ω within a bubble simply as chords.1887

The maximum number of vertices of curve γ inside a bubble between two graph moves is at most the sum1888

of the number of vertices of γ before the homotopy, the number of intersections between the original γ and the1889

chords, and the number of intersections between pairs of chords. The first term is at most n by definition; the1890

frontier property (b) of the coarse homotopy implies that the second term is at most O(gn log2 n). To bound the1891

last term, we separately consider each type of bubble:1892

• Face bubble: Because vertices and arcs of the tiling do not lie inside a face bubble, every chord in a face1893

bubble sticks to the bounding paths λ or ρ. The way we construct the perturbed frontier curve ω ensures1894

that at most two chords stick to the same subpath of λ or ρ in the bubble. Since both λ and ρ are subpaths1895

of γ, we can charge the intersections between chords to the corresponding vertices in (the original) γ. There1896

are at most n vertices of γ in the face bubble, and therefore at most O(n) vertices are created by intersecting1897

chords within the bubble.1898
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• Arc bubbles: Our construction ensures that the chords within each arc bubble are polygonal curves, and the1899

number of intersections between two such chords does not exceed the sum of the number of segments in1900

each of them. The frontier property (c) of the coarse homotopy implies that each arc of X is traversed by Ŵ1901

at most twice, and therefore each chord sticking to e consists of at most O(1) segments. It follows that any1902

pair of chords that stick to the arc intersect O(1) times. The frontier property (a) of the coarse homotopy1903

implies that Ŵ always traverse at most O(g log2 n) arcs not on the bounding paths λ and ρ. This in turn1904

implies that there are at most O(g log2 n) chords inside any arc bubble that stick to the arc, and at most1905

O(g log2 n) tracks are needed for any arc bubble. By crossing property of the cut graph, at most O(n) chords1906

stick to λ and ρ, We conclude that at most O(gn log2 n) vertices are created by intersecting chords within1907

any arc bubble.1908

• Vertex bubbles: Being subpaths of γ, bounding paths λ and ρ will never intersect the vertex bubbles. Thus,1909

each chord in a vertex bubble sticks to a walk on the arcs of X incident to the vertex, which must have length1910

2. Our construction of the perturbed frontierω ensures that each pair of these chords intersects at most O(1)1911

times. Similar to the case of the arc bubble, there are at most O(log2 n) chords inside any vertex bubble. We1912

conclude that at most O(log4 n) vertices are created by chords intersecting within any vertex bubble.1913

This concludes the proof. �1914

Summary. We conclude by summarizing our proof of Theorem 6.2. Let γ be a closed curve on an orientable1915

surface without boundary. If γ is not yet tightened, Lemma 6.2 implies that after at most one 0�1 move (see1916

Figure 6.2), γ contains at least one basic singular bigon. By Lemma 6.9, we can decrease the number of vertices1917

of γ by two by removing one basic singular bigon in O(gn2 log2 n) homotopy moves. After O(n) such bigon1918

removals, all the excess intersections of γ must have been removed. We conclude that γ can be tightened using at1919

most O(gn3 log2 n) homotopy moves.1920

6.4 Tightening Curves Using Monotonic Homotopy Moves1921

The proofs of Hass and Scott [136] and de Graaf and Schrijver [125] have the additional benefit that the number1922

of vertices of the curve never increases during the homotopy process.1 It would be much preferable if our efficient1923

homotopy processes in Section 6.2 and Section 6.3 are monotonic as well; in other words, we are looking for a1924

sequence of polynomially many monotonic homotopy moves to tighten the given multicurve.1925

We made partial progress towards such a goal. In particular, we show that it is sufficient to assume the surface1926

has boundary. Let γ be a multicurve on Σ, and let γ∗ be the unique geodesic of γ on Σ—a multicurve consisting of1927

each shortest representative among the homotopy class of the constituent curves in γ. Let the ε-neighborhood of1928

a curve γ be the union of all ε-disks centered at some point of γ. We say the curve γ is ε-close to the geodesic γ∗ if1929

the lift of γ in the universal cover lies in an ε-neighborhood of the lift of γ∗.1930

Lemma 6.10. Let γ be an n-vertex noncontractible curve on a genus-g orientable surface Σ and let γ∗ be the1931

unique geodesic of γ on Σ. Curve γ can be made ε-close to γ∗ using O(n5 log3 g/g2) monotonic homotopy moves1932

for some ε = O(g/(n log g)); furthermore, the ε-neighborhood of γ∗ does not cover the whole surface Σ.1933

1De Graaf and Schrijver’s result requires a fourth type of homotopy move, which moves an isolated simple contractible constituent curve
from one face of the rest of the multicurve to another. However, since this move can only be applied to disconnected multicurves, it does not
affect our argument.
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The proof of Lemma 6.10 can be viewed as an efficient implementation of the first step of the algorithm by1934

de Graaf and Schrijver, moving the curve close to the unique geodesic of its homotopy class. Our proof relies1935

heavily on hyperbolic trigonometry; for a clean introduction to the topic see Traver [241].1936

6.4.1 Moving Curves Close to Geodesics1937

In this subsection we prove Lemma 6.10. Let –IO be a tangle whose disk is endowed with a hyperbolic metric.1938

Tangle –IO is straightened if all the strands of –IO are geodesics with respect to dH . We emphasize the difference1939

between straightened and tightened; a straightened tangle must be tightened, but not vice versa. We will make use1940

of the following quantitative version of Ringel’s homotopy theorem [203,204] (see also [120,125,136,211]).1941

Lemma 6.11 (Hass and Scott [136, Lemma 1.6]). Any n-vertex tangle can be straightened (with respect to a1942

hyperbolic metric) monotonically using O(n2) homotopy moves.1943

Construct hyperbolic metric. First we modify γ by straightening all the strands of within the open disk Σ \ X1944

using O(n2) moves by Lemma 6.11. Now we construct a hyperbolic metric on surface Σ such that1945

(1) the length of the (modified) curve γ is at most O(n log g), and1946

(2) the length of the shortest non-contractible cycle (known as the systole) is at least 1.1947

The construction is similar to the argument in Dehn’s seminal result [75] that the graph distance on a regular1948

tiling of the universal cover Σ̂ approximates the hyperbolic metric on Σ̂. Construct the cut graph X from curve γ1949

such that every edge of γ crosses X at most O(1) times, like we described in Section 6.3.1. Lift the cut graph X to1950

the universal cover endowed with the unique hyperbolic metric, such that each corner has angle 1/3 circles; this1951

implies that each side of the fundamental polygon has length at least 1.2 One can project the metric back to the1952

original surface; denote the hyperbolic metric constructed as dH .1953

To prove that the hyperbolic metric dH defined on surface Σ satisfies property (1), consider the modified curve γ1954

where all strands within the open disk Σ \ X are straightened. Note that any geodesic path not intersecting X has1955

length at most O(log g) (which is the diameter of the fundamental polygon with respect to dH). By Lemma 6.1 this1956

implies that the length of the modified γ is at most O(n log g), thus the hyperbolic metric dH satisfies property (1).1957

As for property (2), consider any non-contractible cycle σ on surface Σ; without loss of generality assume σ1958

to be a geodesic. If we lift σ to the universal cover Σ̂ such that the lift σ̂ starts and ends on the lift X̂ of the cut1959

graph X , because σ is non-contractible, the two arcs of X̂ where σ̂ starts and ends respectively are two different1960

translates of the same arc in X . Consider the sequence of arcs a0, . . . , ak in X̂ intersected by σ̂. Because σ is a1961

geodesic and every vertex in X̂ has degree 3, one has ai 6= ai+1 and no ai is incident to ai+2 for all i. If for some i1962

the two arcs ai and ai+1 are not incident to each other (that is, ai and ai+1 do not share a vertex in X̂ ), then by1963

hyperbolic trigonometry the length of the subpath of σ̂ connecting ai to ai+1 is at least the length of the side of1964

the polygon, which is at least 1. Otherwise, if ai is incident to ai+1 and ai+1 is incident to ai+2, as ai is not incident1965

to ai+2, by reflecting the subpath of σ̂ from ai+1 to ai+2 to the tile that contains ai and ai+1 we again have the1966

length of the subpath of σ̂ lower-bounded by the length of ai+1. This proves that dH satisfies property (2).1967

Tortuosity. Let γ : [0, 1]→ Σ be a curve. Denote D(x , r ) the disk centered at point x with radius r (with respect1968

the metric dH). Let It be the maximal interval of [0,1] containing t such that γ(It) lies in the disk D(γ(t), 1/2).1969

2To be accurate, the length of the side is equal to 2cosh−1 (sin(2π/6) · cos(2π/(24g − 12))).
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The tortuosity [125] of curve γ at point t, denoted as tort(γ, t ), is the difference between the length of the1970

subpath of γ lying in the disk of radius 1/2 centered at γ(t) and the geodesic distance between the two endpoints1971

of the subpath. Formally,1972

tort(γ, t) := |γ(It)| − dH(γ(It(0)),γ(It(1))) .1973

Practically speaking, the tortuosity of γ at point t is equal the improvement one will make after straightening the1974

disk D(γ(t), 1/2). The tortuosity of curve γ is the supremum of tort(γ, t) where t ranges over [0, 1]. The goal of1975

the following lemma is to prove that when the tortuosity of the curve is small, then the whole curve is ε-close to1976

its unique geodesic. In other words, as long as the curve γ has points that are at least ε away from the geodesic,1977

we can always find a disk centered at some point of γ whose straightening will decrease the length of γ by at least1978

fixed amount, depending only on ε.1979

Lemma 6.12. For any small ε > 0, if the tortuosity of γ is at most O(ε2), then γ is ε-close to the geodesic γ∗.1980

Proof: We will prove the contrapositive statement using hyperbolic trigonometry. For the sake of generality we1981

temporarily treat r as a variable; at the end of the calculation one just plugin r := 1/2. Here we list two identities1982

that will be used in our proof.1983

(1) For any real number x , sinh(2x) = 2sinh x cosh x and (cosh(x))2 − (sinh(x))2 = 1.1984

(2) Given an arbitrary Saccheri quadrilateral with the lengths of the legs, base, and top as a, b, and c respectively,1985

then1986

sinh
c
2
= cosh a · sinh

b
2

.1987

Lift both γ and γ∗ to the universal cover Σ̂; denote the resulting paths as γ̂ and γ̂∗ accordingly. Let t be a point1988

in [0,1] such that γ̂(t) has maximum distance to γ̂∗. Refer to point γ̂(t) as p and the maximum distance as δ;1989

by assumption δ is at least ε. Our goal is to prove that the tortuosity of γ at t is at least Ω(ε2). Denote the two1990

endpoints of the maximal subpath of γ̂ in D(p, r) containing p as x and y, and the maximal subpath itself as1991

γ̂[x , y]. One has1992

tort(γ, t) = |γ̂[x , y]| − dH(x , y)≥ 2r − dH(x , y).1993

Here without loss of generality we will assume that x and y are both at distance exactly δ to γ̂∗. The reason1994

one can make such an assumption is because, as one moves x and y perpendicularly along the geodesics away1995

from γ̂∗, dH(x , y) increases and therefore the tortuosity when both x and y are at distance δ is a lower bound to1996

the original tortuosity.1997

What is left is to upper bound dH(x , y). Let x∗, p∗, and y∗ be the points on γ̂∗ that have minimum distance to1998

x , p, and y respectively. By identity (2) one has1999

sinh (dH(x , y)/2) = coshδ · sinh (dH(x
∗, y∗)/2)2000

and2001

sinh(r/2) = coshδ · sinh (dH(x
∗, y∗)/4) .2002

The second equality gives us2003

dH(x
∗, y∗)/2= 2sinh−1

�

sinh(r/2)
coshδ

�

,2004
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plug back to the first equation one has2005

sinh (dH(x , y)/2) = coshδ · sinh
�

2sinh−1
�

sinh(r/2)
coshδ

��

.2006

Apply identity (1) on the first hyperbolic sine, one has2007

sinh (dH(x , y)/2) = coshδ · 2 · sinh
�

sinh−1
�

sinh(r/2)
coshδ

��

· cosh
�

sinh−1
�

sinh(r/2)
coshδ

��

2008

= coshδ · 2 ·
�

sinh(r/2)
coshδ

�

· cosh
�

sinh−1
�

sinh(r/2)
coshδ

��

2009

= 2 · sinh(r/2) ·
�

1+
�

sinh
�

sinh−1
�

sinh(r/2)
coshδ

���2�1/2

2010

= 2 · sinh(r/2) ·
�

1+
�

sinh(r/2)
coshδ

�2�1/2

.2011

2012

This shows that2013

dH(x , y) = 2 · sinh−1

�

2 · sinh(r/2) ·
�

1+
�

sinh(r/2)
coshδ

�2�1/2�

2014

2015

by identity (2). Taylor expand dH(x , y) around δ = 0 gives us2016

dH(x , y) = 2r − (sinh(r/2))3

cosh(r/2) · cosh(r)
δ2 +O(δ4),2017

and therefore tort(γ, t)≥ Ω(δ2)≥ Ω(ε2). �2018

Exposing points outside the neighborhood. Now we proceed to bound ε so that the ε-neighborhood of the2019

geodesic γ∗ does not cover the whole surface Σ.2020

Lemma 6.13. Let γ be an n-vertex curve on Σ. Then the ε-neighborhood of γ∗ does not cover the whole surface Σ2021

if ε is at most O(g/(n log g)).2022

Proof: Given any curve γ with the corresponding unique (close) geodesic γ∗ on surface Σ with the constructed2023

hyperbolic metric dH , the length of γ∗ is at most O(n log g) by property (1). For small enough ε, the area of the2024

ε-neighborhood of a curve with length ` is at most O(ε`).3 The area of the surface is precisely (4g − 4)π. (This2025

follows directly from Gauss-Bonnet theorem which is independent to the hyperbolic metric up to scaling.4) This2026

implies that for the ε-neighborhood of γ∗ to cover the whole surface Σ, the following holds:2027

ε ≥ (4g − 4)π
O(n log g)

≥ Ω
�

g
n log g

�

2028

In other words, if we set ε ≤ O(g/(n log g)), then the ε-neighborhood of γ∗ cannot cover the whole surface Σ,2029

thus proving the lemma. �2030

3To see this, cover the neighborhood with kite-like Lambert quadrilaterals with length of the short sides as ε. The only acute angle α of the
quadrilateral is equal to arccos((sinhε)2). The area of the quadrilateral is equal to the angle deficit, which is π/2−α. In combine the area of
the quadrilateral is at most O(ε2), and thus the total area of the ε-neighborhood on Σ is at most O(ε2 · `/ε) = O(ε`).

4Alternatively, one can derive the area directly: divide the fundamental polygon into 12g − 6 triangles by drawing straight-lines from the
center of the polygon to all vertices, and use the area formula for triangles.
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Basmajian, Parlier, and Souto [20] showed that for any fixed genus g, the O(1/n) bound in Lemma 6.13 is2031

tight up to logarithmic factors.2032

Putting it together. Now we are ready to prove Lemma 6.10. Consider the set of disks centered at each point2033

on the curve with radius 1/2, which is smaller than half the systole by property (2); therefore all such disks are2034

embedded in Σ. Straighten any disk using Lemma 6.11 if the tortuosity of the center point is at least ε2. Once2035

every point on γ has tortuosity less than ε2, by Lemma 6.12 the curve γ now lies in the ε-neighborhood of γ∗.2036

Straighten a disk takes O(n2) moves using Lemma 6.11. The tortuosity at a center of each disk is a lower2037

bound on the difference between the lengths of the curve γ before and after straightening. From property (1) of2038

the hyperbolic metric dH the length of γ is at most O(n log g). Every time a disk is straightened the length of the2039

curve γ will drop by at least ε2. Since γ is noncontractible, the length of any curve homotopic to γ is at least the2040

systole, which is Ω(1) by property (2). Therefore at most O(n log g/ε2) disks will be straighten before every point2041

has tortuosity less than ε2. In total at most O(n3 log g/ε2) homotopy moves are performed. From Lemma 6.13,2042

setting ε := O(g/(n log g)) concludes the proof of Lemma 6.10.2043
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Chapter 7

Electrical Transformations

I believe in love at first sight.

You want that connection, and then you want some problems.

— Keanu Reeves

2044

In this section we explore the close relationship between electrical transformations for graphs and homotopy2045

moves for curves on arbitrary surfaces. We start with some possible different definitions of electrical transformations2046

performed on graphs with embeddings. Then we focus on the most restrictive version—the facial electrical2047

transformations—and work with them at the level of medial multicurves. Quantitative connections between such2048

transformations and the homotopy moves are the main focus of the rest of the section. We conclude our discussion2049

of the connection with an application, by providing tight lower bounds on the number of electrical transformations2050

required to reduce plane graphs with or without terminals using results we derived in previous chapters.2051

7.1 Types of Electrical Transformations2052

Electrical transformations defined on general graphs consist of the following set of local operations performed2053

on any graph:2054

• Leaf contraction: Contract the edge incident to a vertex of degree 1.2055

• Loop deletion: Delete the edge of a loop.2056

• Series reduction: Contract either edge incident to a vertex of degree 2.2057

• Parallel reduction: Delete one of a pair of parallel edges.2058

• Y�∆ transformation: Delete a vertex of degree 3 and connect its neighbors with three new edges.2059

• ∆�Y transformation: Delete the edges of a 3-cycle and join the vertices of the cycle to a new vertex.2060

We distinguish between three increasingly general types of electrical transformations on graphs embedded on a2061

surface: facial, crossing-free, and arbitrary.2062

An electrical transformation in a graph G embedded on a surface Σ is facial if any deleted cycle is a face of G.2063

All leaf contractions, series reductions, and Y�∆ transformations are facial, but loop deletions, parallel reductions,2064

and ∆�Y transformations may not be facial. As we have seen in the introduction and preliminaries (Sections 1.22065

and 2.5.2), facial electrical transformations form three dual pairs, as shown in Figure 1.2; for example, any series2066

reduction in G is equivalent to a parallel reduction in the dual graph G∗.2067

An electrical transformation in G is crossing-free if it preserves the embeddablility of the underlying graph2068

into the same surface. Equivalently, an electrical transformation is crossing-free if the vertices of the cycle deleted2069

by the transformation are all incident to a common face (in the given embedding) of G. All facial electrical2070

transformations are trivially crossing-free, as are all loop deletions and parallel reductions. If the graph embeds2071
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in the plane then crossing-free electrical transformations are also called planar. (For ease of presentation, we2072

assume throughout this chapter that plane graphs are actually embedded on the sphere instead of the plane.) The2073

only non-crossing-free electrical transformation is a ∆�Y transformation whose three vertices are not incident to2074

a common face; any such transformation introduces a K3,3-minor into the graph, connecting the three vertices of2075

the ∆ to an interior vertex, an exterior vertex, and the new Y vertex.2076

Figure 7.1. A non-planar ∆�Y transformation.

7.2 Connection Between Electrical and Homotopy Moves2077

Recall that facial electrical transformations in any plane graph G correspond to local operations in the medial2078

graph G× known as the medial electrical moves; we refer them as electrical moves for short in this chapter (see2079

Figure 1.3).2080

For any connected multicurve (or 4-regular graph) γ on surface Σ,2081

• let X(γ) denote the minimum number of electrical moves required to tighten γ on Σ,2082

• let H↓(γ) denote the minimum number of homotopy moves required to tighten γ on Σ, without ever increase2083

the number of vertices. In other words, no 0�1 and 0�2 moves are allowed.2084

• let H(γ) denote the minimum number of homotopy moves required to tighten γ on Σ.2085

As we mentioned in Section 6.4, de Graaf and Schrijver [125] proved that any multicurve γ can be tightened2086

using monotonic homotopy moves, which implies that H↓(γ) = 0 if and only if H(γ) = 0. In other words, standard2087

homotopy moves and monotonic homotopy moves share the same set of target multicurves with minimum number2088

of vertices. Now by definition one has H↓(γ)≥ H(γ) for any multicurve γ on surface Σ.2089

Tightening curves using electrical moves is a more difficult problem than tightening curves using homotopy2090

moves. Modulo some conjectures we will discuss shortly, in the following subsections we argue that the number of2091

electrical moves required is polynomially-related to the number of monotonic homotopy moves required.2092

As initial evidence, both Steinitz’s algorithm and Feo-Provan’s algorithm can easily be adapted to simplify2093

planar curves monotonically, simply by replacing each 2�1 move encountered with a 2�0 move and recursing. A2094

subtlety here is that we do not know a priori whether tightening a multicurve using electrical moves will result in2095

the same multicurve as tightening using homotopy moves (or whether the two tightened multicurves even have2096

the same number of vertices). Notice that we don’t have such a problem in the plane as all planar multicurves can2097

be tightened to simple curves using either electrical or homotopy moves. One direction follows from de Graaf and2098

Schrijver [125].2099

Lemma 7.1. Let γ be a connected multicurve on an arbitrary surface Σ. If γ is electrically tight, then γ is2100

homotopically tight.2101

70



Proof: Let γ be a connected multicurve in some arbitrary surface, and suppose γ is not homotopically tight. Result2102

of de Graaf and Schrijver [125] implies that γ can be tightened by a finite sequence of homotopy moves that never2103

increases the number of vertices. In particular, applying some finite sequence of 3�3 moves to γ creates either an2104

empty monogon, which can be removed by a 1�0 move, or an empty bigon, which can be removed by either a2105

2�0 move or a 2�1 move. Thus, γ is not e-tight. �2106

The main obstacle in showing the opposite direction is that we don’t have a similar monotonicity result like de2107

Graaf and Schrijver [125] for electrical moves on arbitrary surfaces. In Sections 7.2.2 and 7.2.3 the monotonicity2108

results are established for both planar and annular multicurves, which implies that the two types of tightness2109

are indeed equivalent for those multicurves. We conjecture that the same holds for arbitrary multicurve on any2110

surface.2111

Conjecture 7.1. Any multicurve on any surface Σ is electrically tight if and only if it is homotopically tight.2112

Assume Conjecture 7.1 holds, we can formally compare the number of electrical moves to the number of2113

homotopy moves required to tighten a multicurve. The following lemma demonstrates that monotonic homotopy2114

moves are indeed closely related to electrical moves.2115

Lemma 7.2. Assume Conjecture 7.1 holds. Fix an arbitrary surface Σ. Let f (n) be a non-decreasing function. If2116

H↓(γ)≤ f (n) holds for all multicurves γ on Σ with n vertices, then X (γ)≤ n · f (n) also holds for all γ.2117

Proof: Given a minimum-length sequence of monotonic homotopy moves that tightens γ. If H↓(γ) = 0, assuming2118

Conjecture 7.1 one has X (γ) = 0 as well and thus the statement trivially holds. Otherwise, consider the first move2119

in the sequence that decreases the number of vertices in γ (that is, either a 1�0 or 2�0 move). Replace the 2�02120

move with a 2�1 if needed, one arrives at a curve γ′ that has strictly less vertices than γ. The number of homotopy2121

moves in the sequence from the original γ to γ′ is at most H↓(γ). Now by induction on the number of vertices,2122

X (γ) ≤ X (γ′) +H↓(γ)2123

≤ (n− 1) ·H↓(γ′) +H↓(γ)2124

≤ (n− 1) · f (n− 1) + f (n)2125

≤ n · f (n),2126
2127

which proves the lemma. �2128

After presenting all the necessary terminologies, in Section 7.2.4 we will introduce the strong smoothing2129

conjecture (Conjecture 7.3) which implies both Conjecture 7.1 (and thus Lemma 7.2 without the assumption), and2130

the opposite direction of the inequality between H↓(γ) and X (γ) (see Lemma 7.16). We discuss other consequences2131

and partial attempts towards proving Conjecture 7.1 in the same section.2132

Before that, we provide evidence to the conjecture(s) in Section 7.2.2 and Section 7.2.3 by showing that for2133

arbitrary planar and annular curves, both Conjecture 7.1 and the inequality X (γ) +O(n) ≥ H↓(γ) holds. This2134

demonstrates that X (γ) and H↓(γ) are at most a linear factor away from each other for planar or annular curve γ.2135

7.2.1 Smoothing Lemma—Inductive case2136

The following key lemma follows from close reading of proofs by Truemper [242, Lemma 4] and several others [12,2137

115,181,184] that every minor of a ∆Y-reducible graph is also ∆Y-reducible. Our proof most closely resembles2138
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an argument of Gitler [115, Lemma 2.3.3], but restated in terms of electrical moves on multicurves to simplify2139

the case analysis. In his PhD thesis [122, Proposition 5.1], de Graaf provided a proof to some special case of the2140

lemma at the level of medial curves.2141

Lemma 7.3. Let γ be any connected multicurve on surface Σ, and let γ̌ be a connected smoothing of γ. Applying2142

any sequence of electrical moves to γ to obtain γ′; let x be the number of electrical moves in the sequence. Then2143

one can apply a similar sequence of electrical moves of length at most x to γ̌ to obtain a (possibly trivial) connected2144

smoothing γ̌′ of γ′.2145

Proof: We prove the statement by induction on the number of electrical moves in the sequence and the number2146

of smoothed vertices. If γ̌ = γ then the statement trivially holds. Otherwise, we first consider the special case2147

where γ̌ is obtained from γ by smoothing a single vertex x . Without loss of generality let γ′ be the result of the2148

first electrical move. There are two nontrivial cases to consider.2149

First, suppose the move from γ to γ′ does not involve the smoothed vertex x . Then we can apply the same2150

move to γ̌ to obtain a new multicurve γ̌′; the same multicurve can also be obtained from γ′ by smoothing x .2151

1→0

2→1 = 1→0

3→3 2→1 =

=

1→2 = =

Figure 7.2. Cases for the proof of the Lemma 7.3; the circled vertex is x .

Now suppose the first move does involve x . In this case, we can apply at most one electrical move to γ̌ to2152

obtain a (possibly trivial) smoothing γ̌′ of γ′. There are eight subcases to consider, shown in Figure 7.2. One2153

subcase for the 0�1 move is impossible, because γ̌ is connected. In the remaining 0�1 subcase and one 2�12154

subcase, the curves γ̌, γ̌′, and γ′ are all isomorphic. In all remaining subcases, γ̌′ is a connected proper smoothing2155

of γ′.2156

Finally, we consider the more general case where γ̌ is obtained from γ by smoothing more than one vertex. Let γ̃2157

be any intermediate curve, obtained from γ by smoothing just one of the vertices that were smoothed to obtain γ̌.2158

As γ̌ is a connected smoothing of γ̃, the curve γ̃ itself must be connected too. Our earlier argument implies that2159

there is a sequence of electrical moves that changes γ̃ to a smoothing γ̃′ of γ′. The inductive hypothesis implies2160

that there is a sequence of electrical moves that changes γ̌ to a smoothing γ̌′ of γ̃′, which is itself a smoothing2161

of γ′. This completes the proof. �2162
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As a remark, using a similar argument one can recover a result by Newmann-Coto [182]: any homotopy2163

from multicurve γ to another multicurve γ′ that never removes vertices can be turned into a homotopy from a2164

smoothing of γ to a smoothing of γ′. Chambers and Liokumovich [40] studied a similar problem where one wants2165

to convert a homotopy between two simple curves on surface into an isotopy, without increasing the length of any2166

intermediate curve by too much. They showed that the desired isotopy can be obtained from a clever Euler-tour2167

argument on the graph of all possible complete smoothings of the intermediate curves.2168

7.2.2 In the Plane2169

The main result of this subsection is that the number of homotopy moves required to simplify a closed curve in2170

the plane is a lower bound on the number of electrical moves required to simplify the same closed curve. Our2171

result makes explicit the quantitative bound implicit in the work of Noble and Welsh [184], and most of our proofs2172

closely follow theirs.2173

We also establish two other results on the fly—the function X (·) never increases under smoothings, and the2174

monotonicity of electrical moves—which are interesting in their own right. The fact that every planar curve can be2175

simplified using either electrical or homotopy moves makes the proofs in this subsection slightly easier comparing2176

to the annular case (see Section 7.2.3).2177

Lemma 7.4. X (γ̌)≤ X (γ) for every connected smoothing γ̌ of every connected multicurve γ in the plane.2178

Proof: Let γ be a connected multicurve, and let γ̌ be a connected smoothing of γ. If γ is already simple, the2179

lemma is vacuously true. Otherwise, applying a minimum-length sequence of electrical moves that simplifies γ. By2180

Lemma 7.3 there is another sequence of electrical moves of length at most X (γ) that simplifies γ̌. We immediately2181

have X (γ̌)≤ X (γ) and the lemma is proved. �2182

Lemma 7.5. For every connected multicurve γ, there is a minimum-length sequence of electrical moves that2183

simplifies γ to a simple closed curve that does not contain 0�1 or 1�2 moves.2184

Proof: Consider a minimum-length sequence of electrical moves that simplifies an arbitrary connected multicurve γ2185

to a simple closed curve. For any integer i ≥ 0, let γi denote the result of the first i moves in this sequence;2186

in particular, γ0 = γ and γX (γ) is a simple closed curve. Minimality of the simplification sequence implies that2187

X (γi) = X (γ)− i for all i; in particular, X (γi) decreases as i grows. Now let i be an arbitrary index such that γi2188

has one more vertex than γi−1. Then γi−1 is a connected proper smoothing of γi , so Lemma 7.4 implies that2189

X (γi−1)≤ X (γi), giving us a contradiction. �2190

Lemma 7.6. X (γ)≥ H↓(γ)≥ H(γ) for every closed curve γ in the plane.2191

Proof: The second inequality is straightforward. The proof of the first inequality proceeds by induction on X (γ).2192

Let γ be a closed curve. If X (γ) = 0, then γ is already simple, so H↓(γ) = 0. Otherwise, consider a minimum-2193

length sequence of electrical moves that simplifies γ to a simple closed curve. Lemma 7.5 implies that we can2194

assume that the first move in the sequence is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the theorem2195

immediately follows by induction.2196

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be the result of the2197

corresponding 2�0 move. The minimality of the sequence implies that X (γ) = X (γ′) + 1, and we trivially have2198

H↓(γ)≤ H↓(γ◦)+1. Because γ consists of one single curve, γ◦ is also a single curve and is therefore connected. The2199
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curve γ◦ is also a proper smoothing of γ′, so the Lemma 7.4 implies X (γ◦)≤ X (γ′)< X (γ). Finally, the inductive2200

hypothesis implies that X (γ◦)≥ H↓(γ◦), and therefore2201

H↓(γ)− 1≤ H↓(γ◦)≤ X (γ◦)≤ X (γ′) = X (γ)− 12202

which completes the proof. �2203

7.2.3 In the Annulus2204

Tight curves on the annulus. To prove similar results in the annulus, first we have to prove Conjecture 7.1 for2205

annular multicurves. Recall that the depth of any annular multicurve γ is the minimum number of times a path2206

from one boundary to the other crosses γ. In many ways, depth can be viewed an unsigned version of winding2207

number. Just as the winding number around the boundaries is a complete homotopy invariant for curves in the2208

annulus, the depth turns out to be a complete invariant for electrical moves on the annular multicurve.2209

Lemma 7.7. Electrical moves do not change the depth of any connected multicurve in the annulus.2210

Proof: Let γ be a connected multicurve in the annulus. For any face of γ that could be deleted by a electrical2211

move, exhaustive case analysis implies that there is a shortest path in the dual of γ between the two boundary2212

faces of γ that avoids that face. �2213

For any integer d > 0, let αd denote the unique closed curve in the annulus with d − 1 vertices and winding2214

number d. Up to isotopy, this curve can be parametrized in the plane as2215

αd(θ ) := ((cos(θ ) + 2) cos(dθ ), (cos(θ ) + 2) sin(dθ )) .2216

In the notation of Section 3.1.1, αd is the flat torus knot T (d, 1).2217

Lemma 7.8. For any integer d > 0, the curve αd is both h-tight and e-tight.2218

Proof: Every connected multicurve in the annulus with either winding number d or depth d has at least d + 12219

faces (including the faces containing the boundaries of the annulus) and therefore, by Euler’s formula, has at least2220

d − 1 vertices. �2221

Lemma 7.9. If γ is an h-tight connected multicurve in the annulus, then γ= αd for some integer d.2222

Proof: A multicurve in the annulus is h-tight if and only if its constituent curves are h-tight and disjoint. Thus,2223

any connected h-tight multicurve is actually a single closed curve. Any two curves in the annulus with the same2224

winding number are homotopic [142]. Finally, up to isotopy, αd is the only closed curve in the annulus with2225

winding number d and d − 1 vertices [135, Lemma 1.12]. �2226

The following corollaries are now immediate by Lemma 7.1.2227

Corollary 7.1. A connected multicurve γ in the annulus is e-tight if and only if γ = αdepth(γ); therefore, any2228

multicurve γ is e-tight if and only if γ is h-tight.2229

Corollary 7.2. Let γ and γ′ be two connected multicurves in the annulus. Then γ can be transformed into γ′ by2230

electrical moves if and only if depth(γ) = depth(γ′).2231
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Equipped with the understanding of tight annular curves, we are ready to extend the results in Section 7.2.22232

to the annulus.2233

Lemma 7.10. For any connected smoothing γ̌ of any connected multicurve γ in the annulus, we have X (γ̌) +2234

1
2 depth(γ̌)≤ X (γ) + 1

2 depth(γ).2235

Proof: Let γ be an arbitrary connected multicurve in the annulus, and let γ̌ be an arbitrary connected smoothing2236

of γ. Without loss of generality, we can assume that γ is non-simple, since otherwise the lemma is vacuous.2237

If γ is already e-tight, then γ = αd for some integer d ≥ 2 by Corollary 7.1. (The curves α0 and α1 are simple.)2238

First, suppose γ̌ is a connected smoothing of γ obtained by smoothing a single vertex x . The smoothed curve γ̌2239

contains a single monogon if x is the innermost or outermost vertex of γ, or a single bigon otherwise. Applying2240

one 1�0 or 2�0 move transforms γ̌ into the curve αd−2, which is e-tight by Lemma 7.8. Thus we have X (γ̌) = 12241

and depth(γ̌) = d − 2, which implies X (γ̌) + 1
2 depth(γ̌) = X (γ) + 1

2 depth(γ). As for the general case when γ̌ is2242

obtained from γ by smoothing more than one vertices, the statement follows from the previous case by induction2243

on the number of smoothed vertices.2244

If γ is not e-tight, applying a minimum-length sequence of electrical moves that tightens γ into some curve γ′.2245

By Lemma 7.3 there is another sequence of electrical moves of length at most X (γ) that tightens γ̌ to some2246

connected smoothing γ̌′ of γ′, which can be further tightened electrically to an e-tight curve using arguments in the2247

previous paragraph because γ′ is e-tight. This implies that X (γ̌)≤ X (γ) + 1
2 (depth(γ′)− depth(γ̌′)). By Lemma 7.7,2248

γ and γ′ have the same depth, and γ̌ and γ̌′ have the same depth. Therefore X (γ̌)+ 1
2 depth(γ̌)≤ X (γ)+ 1

2 depth(γ)2249

and the lemma is proved. �2250

Lemma 7.11. For every connected multicurve γ in the annulus, there is a minimum-length sequence of electrical2251

moves that tightens γ to αdepth(γ) without 0�1 or 1�2 moves.2252

Proof: Consider a minimum-length sequence of electrical moves that tightens an arbitrary connected multicurve γ2253

in the annulus. For any integer i ≥ 0, let γi denote the result of the first i moves in this sequence. Suppose γi has2254

one more vertex than γi−1 for some index i. Then γi−1 is a connected proper smoothing of γi , and depth(γi) =2255

depth(γi−1) by Lemma 7.7; so Lemma 7.10 implies that X (γi−1)≤ X (γi), contradicting our assumption that the2256

reduction sequence has minimum length. �2257

Lemma 7.12. X (γ) + 1
2 depth(γ)≥ H↓(γ)≥ H(γ) for every closed curve γ in the annulus.2258

Proof: Again the second inequality is straightforward, as explained at the start of the section. Let γ be a closed2259

curve in the annulus. If γ is already e-tight, then X (γ) = H↓(γ) = 0 by Lemma 7.1, so the lemma is trivial.2260

Otherwise, consider a minimum-length sequence of electrical moves that tightens γ. By Lemma 7.11, we can2261

assume that the first move in the sequence is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the theorem2262

immediately follows by induction on X (γ), since by Lemma 7.7 neither of these moves changes the depth of the2263

curve.2264

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be the result if we2265

perform the 2�0 move on the same empty bigon instead. The minimality of the sequence implies X (γ) = X (γ′)+1,2266

and we trivially have H↓(γ) ≤ H↓(γ◦) + 1. Because γ is a single curve, γ◦ is also a single curve and therefore a2267

connected proper smoothing of γ′. Thus, Lemma 7.7, Lemma 7.10, and induction on the number of vertices imply2268

X (γ) +
1
2

depth(γ) = X (γ′) +
1
2

depth(γ′) + 12269
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≥ X (γ◦) +
1
2

depth(γ◦) + 12270

≥ H↓(γ◦) + 12271

≥ H↓(γ),2272
2273

which completes the proof. �2274

7.2.4 Towards Connection between Electrical and Monotonic Homotopy Moves2275

In this subsection we discuss some attempts to establish a formal connection between electrical and monotonic2276

homotopy moves. In particular, we formulate two versions of smoothing conjecture that imply both Conjecture 7.12277

and the relation between functions X and H↓.2278

A closed curve γ is primitive if γ is not homotopic to a proper multiple of some other closed curve. A multicurve2279

is primitive if all its constituent curves are primitive. We show equivalence between the following concepts on2280

primitive multicurves. Let γ be a multicurve on an orientable surface Σ such that each constituent curve of γ is2281

primitive. Define the µ -function as2282

µ(γ,σ) := min
σ′∼σ
σ′ôγ

cr(γ,σ′),2283

where cr(γ,σ′) is the number of crossing between γ and σ′, and the minimum is ranging over all closed curve σ′2284

homotopic to the given closed curve σ on Σ, intersecting γ transversely.1 Denote µγ as the single-variable function2285

µ(γ, ·). The notion of µ-function is deeply related to the representativity or facewidth of a graph studied in2286

topological graph theory [205,208,235]. The µ-function is invariant under electrical moves and isotopy of γ.2287

The µ-function is a higher-genus analogue to the depth function defined in the annulus. The following result2288

that µ is invariant under electrical moves can be found in Robertson and Vitray [208]; we sketch a proof for sake2289

of completeness.2290

Lemma 7.13 (Robertson and Vitray [208, Proposition 14.4]). Electrical moves do not change µγ for any mul-2291

ticurve γ on surface Σ.2292

Proof: For any face of γ intersected by some closed curve σ that could be deleted after an electrical move,2293

exhaustive case analysis implies that there is another closed curve σ′ that avoids that face. �2294

Multicurve γ satisfies simplicity conditions [217] if (1) any lifting of γi in the universal cover Σ̂ does not2295

self-intersect for any constituent curve γi of γ, and (2) any distinct liftings of γi and γ j in Σ̂ intersect each other2296

at most once for any pair of (possibly identical) constituent curves γi and γ j of γ. Multicurve γ is minimally2297

crossing [217,219] if each constituent curve of γ has minimum number of self-intersections in its homotopy class,2298

and every pair of constituent curves has minimum intersections with each other, in their own homotopy classes. In2299

notation, one has2300

cr(γi) = min
γ′i∼γi

cr(γ′i) and cr(γi ,γ j) = min
γ′i∼γi

γ′j∼γ j

cr(γ′i ,γ
′
j)2301

for all constituent curves γi and γ j of γ; cr(γi) denotes the number of self-intersections of curve γi . Multicurve γ2302

is crossing-tight [217,219] if µγ 6= µγ̌ for any proper smoothing γ̌ of γ.2303

1In Schrijver [219], the µ-function is defined with respect to the graph corresponding to γ through medial construction; the function
defined here is denoted as µ′ in his paper.
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Our proof of equivalence relies on machineries developed extensively in the sequence of work by de Graaf and2304

Schrijver [123,124,125,216,217,218,219] who did all the weight-lifting. However the original work does not2305

address the problem of relating electrical and homotopy moves.2306

Theorem 7.1. Let γ be a multicurve on an orientable surface whose constituent curves are all primitive. The2307

following statements are equivalent: (1) Multicurve γ satisfies simplicity conditions, (2) γ is minimally crossing,2308

(3) γ is crossing-tight, (4) γ is e-tight, and (5) γ is h-tight.2309

Proof (sketch): (1)⇔ (2)⇔ (3): Schrijver [217, Proposition 12] showed that γ satisfies simplicity conditions if2310

and only if γ is minimally crossing and each constituent curve is primitive. Later in the same paper [217, Theorem 5]2311

he also showed that γ is minimally crossing and each constituent curve is primitive if and only if γ is crossing-tight.2312

An alternative proof using the monotonicity of homotopy process can be found in de Graaf’s thesis [122].2313

(3)⇒ (4): In another paper Schrijver [219, Theorem 2] showed that two crossing-tight multicurves γ and γ′2314

can be transformed into each other using only 3�3 moves if (and only if) µγ = µγ̌. This result implies that if2315

multicurve γ is crossing-tight then γ is e-tight, as electrical moves preserves the µ-function by Lemma 7.13.2316

(4)⇒ (5): Any e-tight multicurve must be h-tight by de Graaf and Schrijver [125] (see Lemma 7.1).2317

(5) ⇒ (3): If γ is h-tight and primitive, then by Hass and Scott [135, Lemma 3.4] multicurve γ satisfies2318

simplicity conditions. To elaborate, assume for contradiction that γ violates the simplicity conditions. As γ is2319

h-tight one can push each constituent curve of γ close to its unique geodesic on the surface without even decreases2320

the number of vertices, similar to the algorithm of de Graaf and Schrijver [125]. Therefore all the intersections2321

between lifts of constituent curves of γ remains after the push. The primitiveness of the curve γ guarantees that2322

each lift of any constituent curve does not self-intersect, and two different lifts of the same constituent curve2323

intersects at most once on Σ̂. Between the lifts of two distinct geodesics there is at most one intersection in the2324

universal cover, and thus the same holds for the lifts of two distinct constituent curves of γ.2325

This concludes the proof. �2326

Unfortunately Theorem 7.1 does not imply immediately a relation between number of electrical versus2327

homotopy moves required to tighten a multicurve on surface, because primitive multicurves can have non-primitive2328

smoothings. Still, one would hope that some forms of the smoothing lemma hold on general orientable surface,2329

possibly with assumptions on the applicable smoothings.2330

Conjecture 7.2. Let γ be any connected multicurve on surface Σ, and let γ̌ be a connected smoothing of γ,2331

satisfying µγ̌ = µγ. Then X (γ̌)≤ X (γ) holds.2332

Lemma 7.14. Assume Conjecture 7.2 holds. For every connected multicurve γ, there is a minimum-length2333

sequence of electrical moves that tightens γ and does not contain 0�1 or 1�2 moves.2334

Proof: Consider a minimum-length sequence of electrical moves that reduces an arbitrary connected multicurve γ2335

to a simple closed curve. For any integer i ≥ 0, let γi denote the result of the first i moves in this sequence;2336

in particular, γ0 = γ and γX (γ) is a simple closed curve. Minimality of the reduction sequence implies that2337

X (γi) = X (γ)− i for all i; in particular, X (γi) strictly decreases as i increases. Now let i be an arbitrary index such2338

that γi has one more vertex than γi−1 after applying either a 0�1 or 1�2 move. Then γi−1 is a connected proper2339

smoothing of γi satisfying µγi
= µγi−1

; so Lemma 7.13 and Conjecture 7.2 imply that X (γi−1)≤ X (γi), giving us a2340

contradiction. �2341
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Using Lemma 7.14, we can show that the two different notions of tightness are indeed equivalent, thus proving2342

Conjecture 7.1.2343

Lemma 7.15. Conjecture 7.2 implies Conjecture 7.1.2344

Proof: The only if direction follows directly from Lemma 7.1. Conversely, suppose γ is not e-tight. Lemma 7.142345

implies that γ can be tightened by a finite sequence of electrical moves that never increases the number of vertices.2346

In particular, some finite sequence of 3�3 moves to γ reveals either an empty monogon or an empty bigon. Thus,2347

γ is not h-tight. �2348

Strong smoothing conjecture. We don’t have the result corresponding to Lemma 7.6 in general surfaces, because2349

that requires us to prove the following stronger version of the smoothing lemma.2350

Conjecture 7.3. Let γ be any connected multicurve on surface Σ, and let γ̌ be a connected smoothing of γ. Then2351

X (γ̌) + C ·
∑

σ∈Γ0
µγ̌(σ)≤ X (γ) + C ·

∑

σ∈Γ0
µγ(σ),2352

for some absolute constant C , where Γ0 is some finite collection of simple curves on surface Σ.2353

It is immediate that Conjecture 7.3 implies Conjecture 7.2. Using the strong smoothing conjecture we can2354

prove the analogous result to Lemma 7.6.2355

Lemma 7.16. Assume Conjecture 7.3 holds, then X (γ) + C ·∑σ∈Γ0 µγ(σ)≥ H↓(γ)≥ H(γ) for any closed curve γ.2356

Proof: The second inequality is straightforward, as explained in the start of the section. Let γ be a closed curve.2357

If γ is e-tight, then γ is h-tight as well by Lemma 7.1 so the inequality trivially holds. Otherwise, consider a2358

minimum-length sequence of electrical moves that tightens γ. Conjecture 7.3 implies Conjecture 7.2, so by2359

Lemma 7.14 we can assume that the first move in the sequence is neither 0�1 nor 1�2. If the first move is 1�02360

or 3�3, the theorem immediately follows by induction.2361

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be the result of the2362

corresponding 2�0 homotopy move. The minimality of the sequence implies that X (γ) = X (γ′) + 1, and we2363

trivially have H(γ)≤ H(γ◦) + 1. Because γ consists of one single curve, γ◦ is also a single curve and is therefore2364

connected. The curve γ◦ is also a proper smoothing of γ′. Thus, Lemma 7.13, Conjecture 7.3, and induction on2365

number of vertices imply2366

X (γ) + C ·
∑

σ∈Γ0
µγ(σ) = X (γ′) + C ·

∑

σ∈Γ0
µγ′(σ) + 12367

≥ X (γ◦) + C ·
∑

σ∈Γ0
µγ◦(σ) + 12368

≥ H(γ◦) + 12369

≥ H(γ),2370
2371

which completes the proof. �2372
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7.3 Lower Bounds on Electrical Transformations2373

7.3.1 Plane Graphs2374

Lemma 7.4 immediately implies the following corollary through the medial graph construction; we state the2375

corollary explicitly as it generalizes the result of Truemper’s [242] that any minor of a ∆Y -reducible plane graph2376

is also ∆Y -reducible.2377

Corollary 7.3. For any connected plane graph G, reducing any connected proper minor of G to a single vertex2378

requires strictly fewer facial electrical transformations than reducing G to a single vertex.2379

Recall a plane graph G is unicursal if its medial graph G× is the image of a single closed curve.2380

Theorem 7.2. For every connected plane graph G and every unicursal minor H of G, reducing G to a single vertex2381

requires at least |defect(H×)|/2 facial electrical transformations.2382

Proof: Either H equals G, or Corollary 7.3 states that reducing a proper minor H of G to a single vertex requires2383

strictly fewer facial electrical transformations than reducing G to a single vertex. Note that facial electrical2384

transformations performed on H corresponds precisely to electrical moves performed on H×. Now because2385

γ := H× is unicursal, Lemma 4.1 and Lemma 7.6 implies that X (γ)≥ H(γ)≥ |defect(γ)|/2. �2386

We can also derive explicit lower bounds for the number of facial electrical transformations required to reduce2387

any plane graph of treewidth t to a single vertex. For any positive integers p and q, we define two cylindrical grid2388

graphs; see Figure 7.3.2389

• C(p,q) is the Cartesian product of a cycle of length q and a path of length p−1. If q is odd, then the medial2390

graph of C(p, q) is the flat torus knot T (2p, q).2391

• C ′(p,q) is obtained by connecting a new vertex to the vertices of one of the q-gonal faces of C(p, q), or2392

equivalently, by contracting one of the q-gonal faces of C(p+ 1, q) to a single vertex. If q is even, then the2393

medial graph of C ′(p, q) is the flat torus knot T (2p+ 1, q).2394

Figure 7.3. The cylindrical grid graphs C(4,7) and C ′(3,8) and (in light gray) their medial graphs T (8,7) and T (7,8).

Corollary 7.4. For all positive integers p and q, the cylindrical grid C(p, q) requires Ω(min{p2q, pq2}) facial2395

electrical transformations to reduce to a single vertex.2396
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Proof: First suppose p ≤ q. Because C(p− 1, q) is a minor of C(p, q), we can assume without loss of generality2397

that p is even and p < q. Let H denote the cylindrical grid C(p/2, ap + 1), where a := b(q − 1)/pc ≥ 1. H is a2398

minor of C(p, q) (because ap+ 1≤ q), and the medial graph of H is the flat torus knot T (p, ap+ 1). Lemma 3.12399

implies2400

defect
�

T (p, ap+ 1)
�

= 2a
�

p+ 1
3

�

= Ω(ap3) = Ω(p2q).2401

Theorem 7.2 now implies that reducing C(p, q) requires at least Ω(p2q) facial electrical transformations.2402

The symmetric case p > q is similar. We can assume without loss of generality that q is odd. Let H denote the2403

cylindrical grid C ′(aq, q), where a := b(p− 1)/qc ≥ 1. H is a proper minor of C(p, q) (because aq < p), and the2404

medial graph of H is the flat torus knot T (2aq+ 1, q). Corollary 3.1 implies2405

�

�

�defect
�

T (2aq+ 1, q)
�

�

�

�= 4a
�

q
3

�

= Ω(aq3) = Ω(pq2).2406

Theorem 7.2 now implies that reducing C(p, q) requires at least Ω(pq2) facial electrical transformations. �2407

In particular, reducing any Θ(
p

n)×Θ(pn) cylindrical grid requires at least Ω(n3/2) facial electrical transfor-2408

mations. Our lower bound matches an O(min{pq2, p2q}) upper bound by Nakahara and Takahashi [181]. Because2409

every p× q rectangular grid contains C(bp/3c, bq/3c) as a minor, the same Ω(min{p2q, pq2}) lower bound applies2410

to rectangular grids. In particular, Truemper’s O(p3) = O(n3/2) upper bound for the p × p square grid [242] is2411

tight. Finally, because every plane graph with treewidth t contains an Ω(t)×Ω(t) grid minor [207], reducing any2412

n-vertex plane graph with treewidth t requires at least Ω(t3 + n) facial electrical transformations. Therefore, our2413

result answers the question by Gitler [115] and Archdeacon et al. [12] negatively.2414

An interesting open question is to determine the asymptotically bound to reduce any plane graph of treewidth t.2415

We ambitiously conjecture that the correct answer is in fact Θ(nt). Of course proving this conjecture would be hard2416

because it implies the Feo-Provan conjecture that any plane graph can be reduced using O(n3/2) facial electrical2417

transformations. However even a tight lower bound seems to be non-trivial as there are n-vertex planar graphs of2418

treewidth t that do not contain any Ω(n)×Ω(t) grid minors.2419

Conjecture 7.4. Any n-vertex plane graph of treewidth t can be reduced to a single vertex using O(nt) facial2420

electrical transformations, and the bound is tight in the worst case.2421

7.3.2 Two-Terminal Plane Graphs2422

Most applications of electrical reductions, starting with Kennelly’s classical computation of effective resistance [155],2423

designate two vertices of the input graph as terminals and require a reduction to a single edge between those2424

terminals. In this context, electrical transformations that delete either of the terminals are forbidden: specifically,2425

leaf contractions when the leaf is a terminal, series reductions when the degree-2 vertex is a terminal, and Y�∆2426

transformations when the degree-3 vertex is a terminal.2427

Epifanov [85] was the first to prove that any 2-terminal planar graph can be reduced to a single edge2428

between the terminals using a finite number of electrical transformations, roughly 50 years after Steinitz proved2429

the corresponding result for planar graphs without terminals [230,231]. Epifanov’s proof is non-constructive;2430

algorithms for reducing 2-terminal planar graphs were later described by Feo [99], Truemper [242], and Feo and2431

Provan [100]. (An algorithm in the spirit of Steinitz’s reduction proof can also be derived from results of de Graaf2432

and Schrijver [125].)2433
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An important subtlety that complicates both Epifanov’s proof and its algorithmic descendants is that not every2434

2-terminal planar graph can be reduced to a single edge using only facial electrical transformations. The simplest2435

bad example is the three-vertex graph shown in Figure 7.4; the solid vertices are the terminals. Although this2436

graph has more than one edge, it has no reducible leaves, empty loops, cycles of length 2 or 3, or vertices with2437

degree 2 or 3. We will soon see that this graph cannot be reduced to an edge even if we allow “backward” facial2438

electrical transformations that make the graph more complicated.2439

Figure 7.4. A facially irreducible 2-terminal plane graph.

Existing algorithms for reducing an arbitrary 2-terminal plane graphs to a single edge rely on an additional2440

operation which we call a terminal-leaf contraction, in addition to facial electrical transformations. We discuss this2441

subtlety in more detail in Section 7.3.4.2442

Bullseyes. The graph in Figure 7.4 is just one example of an infinite family of irreducible 2-terminal plane graphs.2443

For any k > 0, let Bk denote the 2-terminal plane graph that consists of a path of length k between the terminals,2444

with a loop attached to each of the k − 1 interior vertices, embedded so that collectively they form concentric2445

circles that separate the terminals. We call each graph Bk a bullseye. For example, B1 is just a single edge; B2 is2446

shown in Figure 7.4; and B4 is shown on the left in Figure 7.5. The medial graph B×k of the kth bullseye is the2447

curve α2k, as we have seen in Section 7.2.3. Because different bullseyes have different medial depths, Lemma 7.72448

implies that no bullseye can be transformed into any other bullseye by facial electrical transformations.2449

Figure 7.5. The bullseye graph B4 and its medial graph α8.

The following corollaries are now immediate from results in Section 7.2.3.2450

Corollary 7.5. Let G be an arbitrary 2-terminal plane graph. Graph G can be reduced to the bullseye Bk using a2451

finite sequence of facial electrical transformations if and only if depth(G×) = 2k.2452

Corollary 7.6. Let G and H be arbitrary 2-terminal plane graphs. Graph G can be transformed to graph H using2453

a finite sequence of facial electrical transformations if and only if depth(G×) = depth(H×).2454

Theorem 7.3. Let G be an arbitrary 2-terminal plane graph, and let γ be any unicursal smoothing of G×. Reduc-2455

ing G to a bullseye requires at least H(γ)− 1
2 depth(γ) facial electrical transformations.2456

In Section 4.3.2, we describe an infinite family of contractible curves in the annulus that requireΩ(n2) homotopy2457

moves to simplify. Because these curves are contractible, they have even depth, and thus are the medial graphs of2458
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2-terminal plane graphs. Euler’s formula implies that every n-vertex curve in the annulus has exactly n+ 2 faces2459

(including the boundary faces) and therefore has depth at most n+ 1.2460

Corollary 7.7. Reducing a 2-terminal plane graph to a bullseye requires Ω(n2) facial electrical transformations in2461

the worst case.2462

7.3.3 Planar Electrical Transformations2463

We extend our earlier Ω(n3/2) lower bound in Section 7.3.1 for reducing plane graphs without terminals using only2464

facial electrical transformations to the larger class of planar electrical transformations. Our extension to non-facial2465

electrical transformations is based on the following surprising observation, shown in Section 3.3: Although the2466

medial graph of G depends on its embedding, the defect of the medial graph of G does not.2467

Each planar electrical transformation in a planar graph G induces the same change in the medial graph G×2468

as a finite sequence of 1- and 2-strand tangle flips (hereafter simply called “tangle flips”) followed by a single2469

electrical move. (See Section 3.3.2 for the definition of tangle flips.) For an arbitrary connected multicurve γ on2470

the sphere, let X̄(γ) denote the minimum number of electrical moves in a mixed sequence of electrical moves2471

and tangle flips that simplifies γ. Similarly, let H̄(γ) denote the minimum number of homotopy moves in a mixed2472

sequence of homotopy moves and tangle flips that simplifies γ. We emphasize that tangle flips are “free” and do2473

not contribute to either X̄ (γ) or H̄(γ).2474

Our lower bound on planar electrical moves follows our earlier lower bound proof for facial electrical moves2475

almost verbatim; the only subtlety is that the embedding of the graph can effectively change at every step of the2476

reduction. We repeat the arguments here to keep the presentation self-contained.2477

Lemma 7.17. X̄ (γ̌) ≤ X̄ (γ) for every connected proper smoothing γ̌ of every connected multicurve γ on the2478

sphere.2479

Proof: Let γ be a connected multicurve, and let γ̌ be a connected proper smoothing of γ. The proof proceeds by2480

induction on X̄ (γ). If X̄ (γ) = 0, then γ is already simple, so the lemma is vacuously true.2481

First, suppose γ̌ is obtained from γ by smoothing a single vertex x . Consider an optimal mixed sequence of2482

tangle flips and electrical moves that simplifies γ. This sequence starts with zero or more tangle flips, followed by2483

a electrical move. Let γ′ be the multicurve that results from the initial sequence of tangle flips; by definition, we2484

have X̄ (γ) = X̄ (γ′). Moreover, applying the same sequence of tangle flips to γ̌ yields a connected multicurve γ̌′2485

such that X̄ (γ̌) = X̄ (γ̌′). Thus, we can assume without loss of generality that the first operation in the sequence is2486

a electrical move.2487

Now let γ′ be the result of this move; by definition, we have X̄ (γ) = X̄ (γ′) + 1. As in the proof of Lemma2488

7.4, there are several subcases to consider, depending on whether the move from γ to γ′ involves the smoothed2489

vertex x , and if so, the specific type of move; see Figure 7.2. In every subcase, by Lemma 7.3 we can apply at most2490

one electrical move to γ̌ to obtain a (possibly trivial) smoothing γ̌′ of γ′, and then apply the inductive hypothesis2491

on γ′ and γ̌′ to prove the statement. We omit the straightforward details.2492

Finally, if γ̌ is obtained from γ by smoothing more than one vertex, the lemma follows immediately by induction2493

from the previous analysis. �2494

Lemma 7.18. For every connected multicurve γ, there is an intermixed sequence of electrical moves and tangle2495

flips that simplifies γ to a simple closed curve, contains exactly X̄ (γ) electrical moves, and does not contain 0�12496

or 1�2 moves.2497
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Proof: Consider an optimal sequence of electrical moves and tangle flips that simplifies γ, and let γi denote the2498

result of the first i moves in this sequence. If any γi has more vertices than its predecessor γi−1, then γi−1 is a2499

connected proper smoothing of γi , and Lemma 7.17 implies a contradiction. �2500

Lemma 7.19. X̄ (γ)≥ H̄(γ) for every closed curve γ on the sphere.2501

Proof: Let γ be a planar closed curve. The proof proceeds by induction on X̄ (γ). If X̄ (γ) = 0, then γ is simple and2502

thus H̄(γ) = 0, so assume otherwise.2503

Consider an optimal sequence of electrical moves and tangle flips that simplifies γ, and let γi be the curve2504

obtained by applying a prefix of the sequence up to and including the first electrical move. The minimality of2505

the sequence implies that X̄ (γ) = X̄ (γ′) + 1. By Lemma 7.18, we can assume without loss of generality that the2506

first electrical move in the sequence is neither 0�1 nor 1�2, and if this first electrical move is 1�0 or 3�3, the2507

theorem immediately follows by induction.2508

The only remaining move to consider is 2�1. Let γ◦ denote the result of applying the same sequence of tangle2509

flips to γ, but replacing the final 2�1 move with a 2�0 move, or equivalently, smoothing the vertex of γ′ left2510

by the final 2�1 move. We immediately have H̄(γ) ≤ H̄(γ◦) + 1. Because γ◦ is a connected proper smoothing2511

of γ′, Lemma 7.17 implies X̄ (γ◦)< X̄ (γ′) = X̄ (γ)− 1. Finally, the inductive hypothesis implies that X̄ (γ◦)≥ H̄(γ◦),2512

which completes the proof. �2513

Lemma 7.20. H̄(γ)≥ |defect(γ)|/2 for every closed curve γ on the sphere.2514

Proof: Each homotopy move decreases |defect(γ)| by at most 2, and Lemmas 3.13 and 3.14 imply that tangle flips2515

do not change |defect(γ)| at all. Every simple curve has defect 0. �2516

Theorem 7.4. Let G be an arbitrary planar graph, and let γ be any unicursal smoothing of G× (defined with2517

respect to any planar embedding of G). Reducing G to a single vertex requires at least |defect(γ)|/2 planar electrical2518

transformations.2519

Proof: The minimum number of planar electrical transformations required to reduce G is at least X̄ (G×). Because γ2520

is a single curve, it must be connected, so Lemma 7.17 implies that X̄ (G×) ≥ X̄ (γ). The theorem now follows2521

immediately from Lemmas 7.19 and 7.20. �2522

The following corollary is now immediate from either Lemma 3.1, Lemma 3.2, or Corollary 3.1.2523

Corollary 7.8. Reducing any n-vertex planar graph to a single vertex requires Ω(n3/2) planar electrical transfor-2524

mations in the worst case.2525

7.3.4 Terminal-Leaf Contractions2526

The electrical reduction algorithms of Feo [99], Truemper [242], and Feo and Provan [100] rely exclusively on2527

facial electrical transformations, plus one additional operation.2528

• Terminal-leaf contraction: Contract the edge incident to a terminal vertex with degree 1. The neighbor of the2529

deleted terminal becomes a new terminal.2530

Terminal-leaf contractions are also called FP-assignments, after Feo and Provan [76,115,116]. Later algorithms for2531

reducing plane graphs with three or four terminals [12,76,116] also use only facial electrical transformations and2532

terminal-leaf contractions.2533
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Formally, terminal-leaf contractions are not electrical transformations, as they can change the target value one2534

wants to compute in application. For example, if the edges in the graph shown in Figure 7.4 represent 1Ω resistors,2535

a terminal-leaf contraction changes the effective resistance between the terminals from 2Ω to 1Ω. However,2536

both Gilter [115] and Feo and Provan [100] observed that any sequence of facial electrical transformations2537

and terminal-leaf contractions can be simulated on the fly by a sequence of planar electrical transformations.2538

Specifically, we simulate the first leaf contraction at either terminal by simply marking that terminal and proceeding2539

as if its unique neighbor were a terminal. Later electrical transformations involving the neighbor of a marked2540

terminal may no longer be facial, but they will still be planar; terminal-leaf contractions at the unique neighbor of2541

a marked terminal become series reductions. At the end of the sequence of transformations, we perform a final2542

series reduction at the unique neighbor of each marked terminal.2543

Unfortunately, terminal-leaf contractions change both the depth of the medial graph and the curve invariants2544

that imply the quadratic homotopy lower bound. As a result, our quadratic lower bound proof breaks down if2545

we allow terminal-leaf contractions. Indeed, we conjecture that any 2-terminal plane graph can be reduced to a2546

single edge using only O(n3/2) facial electrical transformations and terminal-leaf contractions, matching the lower2547

bound proved in Section 7.3.3. (See Section 8.1.)2548
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Chapter 8

Conclusions and Open Problems

Qui rogat, non errat.

— Latin proverb
2549

Let us conclude the thesis with a list of conjectures along with some discussion.2550

8.1 Feo-Provan Conjecture2551

Perhaps the most compelling, and the primary motivation for our work, is to decide whether Θ(n2) is indeed the2552

best possible bound on the number of electrical transformations required to reduce any planar graph without2553

terminals to a single vertex. Like Feo and Provan [100], Gitler [115], and Archdeacon et al. [12], we conjecture2554

that O(n3/2) facial electrical transformations suffice. However, perhaps we are less certain in light of the quadratic2555

lower bound on reducing 2-terminal plane graphs from Section 7.3.2. Similarly, it is an open question whether2556

any 2-terminal plane graph can be reduced to a single edge using O(n3/2) facial electrical transformations and2557

terminal-leaf contractions, as mentioned in Section 7.3.4. Proving these conjectures appears to be challenging.2558

Conjecture 8.1. Any n-vertex plane graph can be reduced to a single vertex using at most O(n3/2) facial electrical2559

transformations. Any n-vertex plane graph with two terminals can be reduced to an edge using at most O(n3/2)2560

facial electrical transformations and terminal-leaf contractions.2561

Once we go beyond facial and planar electrical transformations, none of our lower bound techniques apply,2562

and we do not have any results about non-planar electrical transformations or electrical reduction of non-planar2563

graphs. Indeed, the only lower bound known in the most general setting, for any family of electrically reducible2564

graphs, is the trivial Ω(n). It seems unlikely that planar graphs can be reduced more quickly by using non-planar2565

electrical transformations, but we can’t prove anything. Any non-trivial lower bound for this problem would be2566

interesting.2567

One way to prove the Feo-Provan conjecture is to extend Theorem 5.1 to the medial electrical setting. To do2568

so it is sufficient to provide a way to tighten any tangle of depth O(
p

n) using O(n3/2) electrical moves, similar2569

to Lemma 5.1. One subtle difference between the two types of local operations is that a 2�1 move cannot be2570

realized by homotopy of curves, and therefore the strategy for proving Lemma 5.1 and Lemma 5.1 by contracting2571

monogons and tightening strands no longer works. Lemma 5.1 can be substituted by the algorithm of Feo and2572

Provan [100] because the input is a closed curve; however as we are about to see, their algorithm does not work2573

on tangles.2574
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8.1.1 Feo-Provan’s Algorithm2575

Call an electrical or a homotopy move positive if it decreases the sum of the face depths; in particular, every 1�0,2576

2�0, and 2�1 move is positive. A key technical lemma of Feo and Provan implies that every non-simple curve in2577

the plane admits a positive homotopy move [100, Theorem 1]. Therefore, Feo and Provan’s algorithm requires at2578

most O(DΣ)moves, where DΣ is the sum of face depths of the input curve. Euler’s formula implies that every curve2579

with n crossings has O(n) faces, and each of these faces has depth O(n) in the worst case. Thus, the quadratic2580

upper bound on simplifying planar curves using homotopy moves follows from algorithm of Feo and Provan as2581

well.2582

One major benefit to view Feo and Provan’s algorithm through the lens of medial construction is that the2583

consistency of labeling scheme comes for free once we interpret the labels as depths of the faces in the medial2584

graph. Unfortunately, all the existing proofs of positive-move lemma [100,189] are quite long and complicated.2585

Indeed, like we mentioned in Section 5.1.2, there are infinite classes of loose tangles that do not admit an positive2586

moves. This suggests that any proof to the lemma needs to utilize the fact that the given (multi-)curve is indeed2587

closed in the plane. On top of that, the proof by Feo and Provan is presented at the graph level which complicates2588

the presentation. Here we raise the question in search of a better proof using the language of (multi-)curves.2589

Gitler [115] conjectured that a variant of Feo and Provan’s algorithm that always makes the deepest positive2590

move requires only O(n3/2) moves. This conjecture is supported by the empirical results of Feo [99, Chapter 6].2591

Song [226] observed that if Feo and Provan’s algorithm always chooses the shallowest positive move, it can be2592

forced to make Ω(n2) moves even when the input curve can be simplified using only O(n) moves.2593

8.1.2 Steinitz’s Algorithm2594

Another possible approach is an efficient implementation of Steinitz’s bigon removal algorithm. In general removing2595

a minimal bigon takes Θ(n) steps, so only a quadratic upper bound follows on tightening an arbitrary tangle.2596

It is natural to ask whether Steinitz’s algorithm can be improved, either by carefully choosing which bigon2597

to remove in each stage, by more carefully choosing how to empty each bigon, and/or by more refined analysis.2598

(It is not hard to show that Steinitz’s algorithm can be forced to perform Ω(n2) moves if the bigons are chosen2599

adversarially.) For example, one might repeatedly reduce the bigon containing the smallest number of faces. As2600

we will see in Section 8.1.3, we cannot always hope for a bigon with sublinear number of faces inside. However,2601

we can prove that a bigon with small perimeter does always exist.2602

As electrical moves in general do not preserve the number of strands of a multicurve or a tangle, we need2603

to generalize the definition of tangle in this situation. In this subsection a tangle is a collection of boundary-to-2604

boundary paths γ1,γ2, . . . ,γs and a collection of closed curves κ1,κ2, . . . ,κt in a closed topological disk Σ, which2605

(self-)intersect only pairwise, transversely, and away from the boundary of Σ. We call each individual path γi an2606

open strand and each closed curve κ j a closed strand; collectively we refer to them as strands. A closed strand κ2607

is lingering if κ does not intersect any other strands in the tangle. Throughout the subsection we assume that our2608

tangle does not have lingering closed strands. A tangle is tight if every strand is simple, every pair of open strands2609

intersects at most once, and otherwise all strands are disjoint; otherwise the tangle is loose.2610

Let –IO be a tangle and let β be a bigon in the tangle. Let #on(β) denote the number of intersections between2611

the tangle and the boundary of an ε-neighborhood of the bigon β , for some small enough ε such that the boundary2612

of ε-neighborhood only intersects the two curves that forms the bigon and the extension of the strands of the2613

bigon. Also let #in(β) denote the number of vertices inside the ε-neighborhood of bigon β .2614
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Lemma 8.1. Let n be a fixed integer. Let –IO be any loose tangle with at most n vertices, at most 3
p

n open2615

strands, and no lingering closed strands. Then there is either an empty monogon in –IO, or a minimal bigon β with2616

#on(β)≤ 8
p

n.12617

Proof: Let the length of a (not necessarily simple) subpath η of a planar curve γ, denoted |η|, defined to be the2618

number of vertices of γ on η (counted with multiplicity). We will prove the statement by induction on the number2619

of vertices inside the tangle. First we argue that whenever we found a monogon of length at most 4
p

n then2620

we are done. Because in this case either the monogon is empty, or we can apply the lemma recursively on an2621

ε-neighborhood of the monogon excluding the double point (as a tangle of at most 3
p

n open strands); such a2622

tangle cannot be tight.2623

Consider the following three cases. First, if all strands of tangle –IO has length at most 4
p

n, the any minimal2624

bigon in –IO will have #on(β)≤ 8
p

n.2625

The second case is when there is a closed strand κ of length less than 4
p

n. Now either there is a monogon2626

formed by κ and we are done, or κ is simple. Since all the closed strands are not lingering, there must be another2627

strand of –IO intersecting κ at least twice. In this case we recurse on the interior tangle –IO′ formed by curve κ. If –IO′2628

is not tight then we are done. If –IO′ is tight, let n′ denote the number of vertices in –IO′ and s′ denote the number of2629

strands of –IO′. As all the strands of –IO′ intersects each other at most once, we have n′ ≤ �s′
2

�

and there is a strand η2630

of –IO′ satisfying2631

|η| ≤ 2n′

s′
≤ 2

s′
· s
′(s′ − 1)

2
= s′ − 1≤ 2

p
n,2632

as the length of κ is at most 4
p

n. Again if η has a monogon then we are done. Otherwise, either the tangle –IO′′ is2633

tight thus the bigon is minimal, or we can recurse on the tangle –IO′′ formed by an ε-neighborhood of the bigon σ2634

formed by κ and η excluding the two double points, which has at most (2+ 2)
p

n/2≤ 3
p

n open strands (since2635

|κ| ≤ 4
p

n and η separates κ into two arcs, one of the arcs has length at most 2
p

n). In either case the statement2636

is proved.2637

The third case is when all closed strands in –IO has length at least 4
p

n (there might be no closed strands at all),2638

and one of the (open or closed) strands α in –IO has length at least 4
p

n. As all the closed strands in –IO has length at2639

least 4
p

n, there are at most 0.5
p

n closed strands in –IO. Take an arbitrary subpath of α of length 4
p

n and call it2640

η. We refer to α \η as a semi-strand of –IO. Now either there is an monogon in η of length at most 4
p

n (in which2641

case we are done); or η is a simple curve and there is another (semi-)strand of –IO that intersects η with at least2642

two vertices by pigeonhole principle, as there are in total at most (3+ 0.5)
p

n strands in –IO, either open or closed.2643

Now one can prove that there must be a (semi-)strand λ of –IO such that2644

|λ∩η| ≥ |λ|p
n− 1

+ 1.2645

Assume the contrary, we consider the sum over all (semi-)strands of –IO:2646

|η|=
∑

λ

|λ∩η| ≤ 1p
n− 1

∑

λ

|λ|2647

≤ 1p
n− 1

�

2n− 4
p

n
�

2648

≤ 2
p

n,2649
2650

1The constants here are not optimal. In general, an upper bound c
p

n on the number of open strands for some constant c ≥ 4p
6

will imply

#on(β)≤ (c + (c2 + 8)1/2)
p

n≤ (2c + 4
c )
p

n for some minimal bigon β .
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which is a contradiction as |η|= 4
p

n.2651

Take two points x and y on λ∩η, such that a subpath λ′ of λ from x to y (including both endpoints) has2652

length at most2653
� |λ| − 1
|λ∩η| − 1

�

+ 1≤pn.2654

(The assumption that |λ∩η|> 1 is from the pigeonhole principle.) If λ′ contains a monogon then we are done.2655

Otherwise λ′ is simple and there is a quasi-bigon formed by λ′ and η. As η has length 4
p

n, we again apply the2656

lemma recursively on an ε-neighborhood of such a quasi-bigon excluding the two double points, as a tangle of at2657

most (4+ 1)
p

n/2≤ 3
p

n open strands. �2658

8.1.3 Curves where All Bigons are Large2659

Now we introduce an infinite family of multicurves built on Fibonacci lattices, which we call Fibonacci cubes, in2660

which every bigon and monogon contains Ω(n) faces. Prior work and applications on Fibonacci lattice include2661

discrepancy and numerical integration [261,262]; image processing and memory layout [58,59,101,102]; data2662

structures and lower bounds [26,158].2663

For each integer k, the kth Fibonacci cube Fk is constructed from six identical tilted square lattices on the2664

faces of a cube. Specifically, let L denote the dual of the standard integer lattice, with vertices (x + 1/2, y + 1/2)2665

for all integers x and y, and with edges between horizontal and vertical neighbors. Let Lk denote the two-2666

dimensional Fibonacci lattice generated by the orthogonal integer vectors (Fk−1, Fk) and (Fk,−Fk−1). Each face of2667

Fk contains the restriction of L with the square induced by lattice Lk with vertices (0, 0), (Fk−1, Fk), (Fk,−Fk−1),2668

and (Fk+1, Fk−2), where Fi denotes the ith Fibonacci number. The graph Fk has exactly nk := 6 · F2k−1 vertices and2669

thus exactly 6 · F2k−1 + 2 faces.2670

Figure 8.1. An unfolded Fibonacci cube F6 with two minimal bigons shaded.

Discrete Gauss-Bonnet theorem implies that every bigon in Fk contains exactly two triangular faces, which2671

must lie on the boundary by Steinitz lemma on minimal bigons (see the proof of Lemma 2.1). Any minimal bigon—2672

unfolded into the plane—looks like a rectangle with two opposite corners clipped off (to make the triangular2673

faces). The other two opposite corners of the rectangle are the vertices of the bigon. Thus, the number of vertices2674
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in the interior of any minimal bigon is equal to the area of an axis-aligned rectangle in the plane with two opposite2675

corners in the Fibonacci lattice Lk. (See Figure 8.1.)2676

We use the following elementary but crucial discrepancy property of the Fibonacci lattice [58, Lemma 7] [59,2677

Lemma 5].2678

Lemma 8.2. Any axis-aligned rectangle containing more than one point of the Fibonacci lattice Lk has area at2679

least (Fk−1 + 1)(Fk + 1)≥ F2k−1/
p

5≥ nk/(6
p

5).2680

Theorem 8.1. Every bigon in Fk contains Θ(nk) vertices and therefore Θ(nk) faces.2681

Erickson [90] conjectured that any Fibonacci cube Fk has a constant number of constituent curves, and any2682

constituent curve γ of Fk (which is a single closed curve) satisfies the following property: each face of γ is the2683

union of a constant number of faces of Fk, and the number of vertices of γ is a constant fraction of nk. This implies2684

that any bigon in γ contains a constant fraction of the faces of γ, and therefore also have linear size.2685

8.2 Homotopy Moves on Low-genus Surfaces2686

As we have seen in Section 4.3, Theorem 4.6 implies an Ω(n2) lower bound for tightening curves on any surface2687

except for the sphere, the disk, and the projective plane. Our result in Section 5.1 shows that any planar curve2688

and can be simplified in O(n3/2) moves. Now two cases remain.2689

8.2.1 Tangles2690

If we only consider closed curves on the disk, this is no different than the planar case as our tightening algorithm2691

does not make use of homotopy moves performed on the infinite face. (Although it is not hard to construct2692

examples where the optimal number of moves required depends on whether the curve lies in the sphere or the2693

disk.)2694

In many ways, tangles can be view as curve systems on the disk. (In general, when one talks about curves2695

on surface without boundary, it makes sense to include all the boundary-to-boundary paths.) Our algorithm for2696

simplifying planar curves (Theorem 5.1) generalizes directly to tangles; besides some minor details (say one2697

should remove all the strands without intersections ahead of time), the only missing part is the lemma that proves2698

the existence of useful cycles in tangles, analogous to Lemma 3.10. If one looks closely at the proof, there are2699

no places where we use the assumption that the outermost contour contains the whole curve. Therefore we2700

summarize the result without repeating its proof.2701

Theorem 8.2. Every n-vertex tangle can be tightened in O(n3/2) homotopy moves.2702

If in addition we want to enforce monotonicity by disallowing 0�2 moves, the problem becomes open. In light2703

of the close relation between electrical reduction and monotonic homotopy reduction process we have seen in2704

Section 6.4, we believe that proving the following conjecture is as hard as its electrical counterpart, the Feo-Provan2705

conjecture (see Section 8.1).2706

Conjecture 8.2. Any n-vertex tangle can be tightened monotonically using O(n3/2) homotopy moves.2707
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8.2.2 Projective Plane2708

The only missing case is the projective plane. Using the fact that the oriented double-cover of the projective plane2709

is the sphere, an argument similar to the proof of Theorem 4.6 implies an Ω(n3/2) lower bound on homotopy2710

moves, by plugging in the lower bound for the planar case (Theorem 4.1).2711

We left the task of finding a matching upper bound as an open question to the readers. One would expect a2712

solution follows from extending the useful cycle technique to the projective planar setting.2713

Conjecture 8.3. Any curves on the projective plane can be tightened using at most O(n3/2) homotopy moves.2714

8.3 Monotonic Homotopy Moves on Arbitrary Surfaces2715

Finally, in light of Theorem 6.2 and Lemma 6.10, we conjecture that any multicurve on an arbitrary surface can be2716

tightened monotonically using polynomially many homotopy moves. This conjecture, if true, will generalize both2717

Theorem 6.2 and Conjecture 6.1.2718

Conjecture 8.4. Any multicurve on an arbitrary surface can be tightened monotonically using polynomially many2719

homotopy moves.2720
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