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Abstract

Any generic closed curve in the plane can be transformed into a simple closed curve by a
finite sequence of local transformations called homotopy moves. We prove that simplifying a
planar closed curve with n self-crossings requires Θ(n3/2) homotopy moves in the worst case.
Our algorithm improves the best previous upper bound O(n2), which is already implicit in the
classical work of Steinitz; the matching lower bound follows from the construction of closed
curves with large defect, a topological invariant of generic closed curves introduced by Aicardi
and Arnold. Our lower bound also implies that Ω(n3/2) facial electrical transformations
are required to reduce any plane graph with treewidth Ω(

p
n) to a single vertex, matching

known upper bounds for rectangular and cylindrical grid graphs. More generally, we prove
that transforming one immersion of k circles with at most n self-crossings into another
requires Θ(n3/2 + nk + k2) homotopy moves in the worst case. Finally, we prove that
transforming one noncontractible closed curve to another on any orientable surface requires
Ω(n2) homotopy moves in the worst case; this lower bound is tight if the curve is homotopic
to a simple closed curve.

“It’s hardly fair,” muttered Hugh, “to give us such a jumble
as this to work out!”

— Lewis Carroll, A Tangled Tale, Knot X (1885)

∗Work on this paper was partially supported by NSF grant CCF-1408763. A preliminary version of this paper was presented
at the 32nd International Symposium on Computational Geometry [12]. See http://jeffe.cs.illinois.edu/pubs/tangle.pdf for
the most recent version of this paper.
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1 Introduction

Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence
of the following local operations:

• 1�0: Remove an empty loop.

• 2�0: Separate two subpaths that bound an empty bigon.

• 3�3: Flip an empty triangle by moving one subpath over the opposite intersection point.

Figure 1.1. Homotopy moves 1�0, 2�0, and 3�3.

See Figure 1.1. Each of these operations can be performed by continuously deforming the curve within a
small neighborhood of one face; consequently, we call these operations and their inverses homotopy
moves. Our notation is nonstandard but mnemonic; the numbers before and after each arrow indicate
the number of local vertices before and after the move. Homotopy moves are “shadows” of the classical
Reidemeister moves used to manipulate knot and link diagrams [4,50].

We prove that Θ(n3/2) homotopy moves are sometimes necessary and always sufficient to simplify a
closed curve in the plane with n self-crossings. Before describing our results in more detail, we review
several previous results.

1.1 Past Results

An algorithm to simplify any planar closed curve using at most O(n2) homotopy moves is implicit in
Steinitz’s proof that every 3-connected planar graph is the 1-skeleton of a convex polyhedron [55,56].
Specifically, Steinitz proved that any non-simple closed curve (in fact, any 4-regular plane graph) with
no empty loops contains a bigon (“Spindel”): a disk bounded by a pair of simple subpaths that cross
exactly twice, where the endpoints of the (slightly extended) subpaths lie outside the disk. Steinitz then
proved that any minimal bigon (“irreduzible Spindel”) can be transformed into an empty bigon using a
sequence of 3�3 moves, each removing one triangular face from the bigon, as shown in Figure 1.2. Once
the bigon is empty, it can be deleted with a single 2�0 move. See Grünbaum [30], Hass and Scott [34],
Colin de Verdière et al. [17], or Nowik [47] for more modern treatments of Steinitz’s technique. The
O(n2) upper bound also follows from algorithms for regular homotopy, which forbids 0��1 moves, by
Francis [25], Vegter [61] (for polygonal curves), and Nowik [47].

The O(n2) upper bound can also be derived from an algorithm of Feo and Provan [24] for reducing a
plane graph to a single edge by electrical transformations: degree-1 reductions, series-parallel reductions,
and ∆Y transformations. (We consider electrical transformations in more detail in Section 3.) Any curve
divides the plane into regions, called its faces. The depth of a face is its distance to the outer face in the
dual graph of the curve. Call a homotopy move positive if it decreases the sum of the face depths; in
particular, every 1�0 and 2�0 move is positive. A key technical lemma of Feo and Provan implies that
every non-simple curve in the plane admits a positive homotopy move [24, Theorem 1]. Thus, the sum
of the face depths is an upper bound on the minimum number of moves required to simplify the curve.
Euler’s formula implies that every curve with n crossings has O(n) faces, and each of these faces has
depth O(n).
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Figure 1.2. Top: A minimal bigon. Bottom: 3�3 moves removing triangles from the side or the end of a (shaded) minimal
bigon. All figures are from Steinitz and Rademacher [56].

Gitler [27] conjectured that a variant of Feo and Provan’s algorithm that always makes the deepest
positive move requires only O(n3/2) moves. Song [54] observed that if Feo and Provan’s algorithm
always chooses the shallowest positive move, it can be forced to make Ω(n2) moves even when the input
curve can be simplified using only O(n) moves.

Tight bounds are known for two special cases where some homotopy moves are forbidden. First,
Nowik [47] proved a tight Ω(n2) lower bound for regular homotopy. Second, Khovanov [41] defined
two curves to be doodle equivalent if one can be transformed into the other using 1��0 and 2��0
moves. Khovanov [41] and Ito and Takimura [39] independently proved that any planar curve can be
transformed into its unique equivalent doodle with the smallest number of vertices, using only 1�0 and
2�0 moves. Thus, two doodle equivalent curves are connected by a sequence of O(n) moves, which is
obviously tight.

Looser bounds are also known for the minimum number of Reidemeister moves needed to reduce a
diagram of the unknot [32,42], to separate the components of a split link [36], or to move between two
equivalent knot diagrams [19,35].

1.2 New Results

In Section 2, we derive anΩ(n3/2) lower bound using a numerical curve invariant called defect, introduced
by Arnold [8, 9] and Aicardi [1]. Each homotopy move changes the defect of a closed curve by at
most 2. The lower bound therefore follows from constructions of Hayashi et al. [35,37] and Even-Zohar
et al. [22] of closed curves with defect Ω(n3/2). We simplify and generalize their results by computing the
defect of the standard planar projection of any p×q torus knot where either p mod q = 1 or q mod p = 1.
Our calculations imply that for any integer p, reducing the standard projection of the p× (p+ 1) torus
knot requires at least

�p+1
3

�

≥ n3/2/6−O(n) homotopy moves. Finally, using winding-number arguments,
we prove that in the worst case, simplifying an arrangement of k closed curves requires Ω(n3/2+ nk)
homotopy moves, with an additional Ω(k2) term if the target configuration is specified in advance.

In Section 3, we provide a proof, based on arguments of Truemper [58] and Noble and Welsh [46],
that reducing a unicursal plane graph G—one whose medial graph is the image of a single closed curve—
using facial electrical transformations requires at least as many steps as reducing the medial graph
of G to a simple closed curve using homotopy moves. The homotopy lower bound from Section 2 then
implies that reducing any n-vertex plane graph with treewidth Ω(

p
n) requires Ω(n3/2) facial electrical
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transformations. This lower bound matches known upper bounds for rectangular and cylindrical grid
graphs.

We develop a new algorithm to simplify any closed curve in O(n3/2) homotopy moves in Section 4.
First we describe an algorithm that uses O(D) moves, where D is the sum of the face depths of the
input curve. At a high level, our algorithm can be viewed as a variant of Steinitz’s algorithm that
empties and removes loops instead of bigons. We then extend our algorithm to tangles: collections of
boundary-to-boundary paths in a closed disk. Our algorithm simplifies a tangle as much as possible in
O(D+ ns) moves, where D is the sum of the depths of the tangle’s faces, s is the number of paths, and n
is the number of intersection points. Then, we prove that for any curve with maximum face depth Ω(

p
n),

we can find a simple closed curve whose interior tangle has m interior vertices, at most
p

m paths, and
maximum face depth O(

p
n). Simplifying this tangle and then recursively simplifying the resulting

curve requires a total of O(n3/2) moves. We show that this simplifying sequence of homotopy moves
can be computed in O(1) amortized time per move, assuming the curve is presented in an appropriate
graph data structure. We conclude this section by proving that any arrangement of k closed curves can
be simplified in O(n3/2+ nk) homotopy moves, or in O(n3/2+ nk+ k2) homotopy moves if the target
configuration is specified in advance, precisely matching our lower bounds for all values of n and k.

Finally, in Section 5, we consider curves on surfaces of higher genus. We prove that Ω(n2) homotopy
moves are required in the worst case to transform one non-contractible closed curve to another on the
torus, and therefore on any orientable surface. Results of Hass and Scott [33] imply that this lower
bound is tight if the non-contractible closed curve is homotopic to a simple closed curve.

1.3 Definitions

A closed curve in a surface M is a continuous map γ: S1→ M . In this paper, we consider only generic
closed curves, which are injective except at a finite number of self-intersections, each of which is a
transverse double point; closed curves satisfying these conditions are called immersions of the circle.
A closed curve is simple if it is injective. For most of the paper, we consider only closed curves in the
plane; we consider more general surfaces in Section 5.

The image of any non-simple closed curve has a natural structure as a 4-regular plane graph. Thus,
we refer to the self-intersection points of a curve as its vertices, the maximal subpaths between vertices
as edges, and the components of the complement of the curve as its faces. Two curves γ and γ′ are
isomorphic if their images define combinatorially equivalent maps; we will not distinguish between
isomorphic curves.

A corner of γ is the intersection of a face of γ and a small neighborhood of a vertex of γ. A loop in a
closed curve γ is a subpath of γ that begins and ends at some vertex x , intersects itself only at x , and
encloses exactly one corner at x . A bigon in γ consists of two simple interior-disjoint subpaths of γ with
the same endpoints and enclose one corner at each of those endpoints. A loop or bigon is empty if its
interior does not intersect γ. Notice that a 1�0 move is applied to an empty loop, and a 2�0 move is
applied on an empty bigon.

We adopt a standard sign convention for vertices first used by Gauss [26]. Choose an arbitrary
basepoint γ(0) and orientation for the curve. For each vertex x , we define sgn(x) = +1 if the first
traversal through the vertex crosses the second traversal from right to left, and sgn(x) =−1 otherwise.
See Figure 1.3.

A homotopy between two curves γ and γ′ in surface M is a continuous function H : S1× [0, 1]→ M
such that H(·, 0) = γ and H(·, 1) = γ′. Any homotopy H describes a continuous deformation from γ

to γ′, where the second argument of H is “time”. Each homotopy move can be executed by a homotopy.
Conversely, Alexander’s simplicial approximation theorem [3], together with combinatorial arguments of
Alexander and Briggs [4] and Reidemeister [50], imply that any generic homotopy between two closed
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Figure 1.3. Gauss’s sign convention.

curves can be decomposed into a finite sequence of homotopy moves. Two curves are homotopic, or in
the same homotopy class, if there is a homotopy from one to the other. All closed curves in the plane are
homotopic.

A multicurve is an immersion of one or more disjoint circles; in particular, a k-curve is an immersion
of k disjoint circles. A multicurve is simple if it is injective, or equivalently, if it can be decomposed into
pairwise disjoint simple closed curves. The image of any multicurve in the plane is the disjoint union
of simple closed curves and 4-regular plane graphs. A component of a multicurve γ is any multicurve
whose image is a connected component of the image of γ. We call the individual closed curves that
comprise a multicurve its constituent curves; see Figure 1.4. The definition of homotopy and the
decomposition of homotopies into homotopy moves extend naturally to multicurves.

Figure 1.4. A multicurve with two components and three constituent curves, one of which is simple.

2 Lower Bounds

2.1 Defect

To prove our main lower bound, we consider a numerical invariant of closed curves in the plane
introduced by Arnold [8, 9] and Aicardi [1] called defect. Polyak [49] proved that defect can be
computed—or for our purposes, defined—as follows:

defect(γ) :=−2
∑

xÇy

sgn(x) · sgn(y).

Here the sum is taken over all interleaved pairs of vertices of γ: two vertices x 6= y are interleaved,
denoted x Ç y , if they alternate in cyclic order—x , y, x , y—along γ. (The factor of −2 is a historical
artifact, which we retain only to be consistent with Arnold’s original definitions [8,9].) Even though the
signs of individual vertices depend on the basepoint and orientation of the curve, the defect of a curve is
independent of those choices. Moreover, the defect of any curve is preserved by any homeomorphism
from the plane (or the sphere) to itself, including reflection.

Trivially, every simple closed curve has defect zero. Straightforward case analysis [49] implies that
any single homotopy move changes the defect of a curve by at most 2; the various cases are listed below
and illustrated in Figure 2.1.
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• A 1�0 move leaves the defect unchanged.

• A 2�0 move decreases the defect by 2 if the two disappearing vertices are interleaved, and leaves
the defect unchanged otherwise.

• A 3�3 move increases the defect by 2 if the three vertices before the move contain an even number
of interleaved pairs, and decreases the defect by 2 otherwise.

In light of this case analysis, the following lemma is trivial:

Lemma 2.1. Simplifying any closed curve γ in the plane requires at least |defect(γ)|/2 homotopy moves.

1�0 2�0 3�3

0 1 0

3 1

2

0 0 −2 +2 +2

Figure 2.1. Changes to defect incurred by homotopy moves. Numbers in each figure indicate how many pairs of vertices
are interleaved; dashed lines indicate how the rest of the curve connects.

2.2 Flat Torus Knots

For any relatively prime positive integers p and q, let T(p,q) denote the curve with the following
parametrization, where θ runs from 0 to 2π:

T (p, q)(θ) :=
�

(cos(qθ) + 2) cos(pθ), (cos(qθ) + 2) sin(pθ)
�

.

The curve T(p, q) winds around the origin p times, oscillates q times between two concentric circles,
and crosses itself exactly (p− 1)q times. We call these curves flat torus knots.

Figure 2.2. The flat torus knots T (8, 7) and T (7, 8).
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Hayashi et al. [37, Proposition 3.1] proved that for any integer q, the flat torus knot T (q+ 1, q) has
defect −2

�q
3

�

. Even-Zohar et al. [22] used a star-polygon representation of the curve T (p, 2p+ 1) as the
basis for a universal model of random knots; in our notation, they proved that defect(T(p, 2p+ 1)) =
4
�p+1

3

�

for any integer p. In this section we simplify and generalize both of these results to all flat torus
knots T(p, q) where either q mod p = 1 or p mod q = 1. For purposes of illustration, we cut T(p, q)
along a spiral path parallel to a portion of the curve, and then deform the p resulting subpaths, which
we call strands, into a “flat braid” between two fixed diagonal lines. See Figure 2.3.

Figure 2.3. Transforming T (8,17) into a flat braid.

Lemma 2.2. defect(T (p, ap+ 1)) = 2a
�p+1

3

�

for all integers a ≥ 0 and p ≥ 1.

Proof: The curve T (p, 1) can be reduced to a simple closed curve using only 1�0 moves, so its defect is
zero. For the rest of the proof, assume a ≥ 1.

We define a stripe of T (p, ap+ 1) to be a subpath from some innermost point to the next outermost
point, or equivalently, a subpath of any strand from the bottom to the top in the flat braid representation.
Each stripe contains exactly p− 1 crossings. A block of T(p, ap+ 1) consists of p(p− 1) crossings in
p consecutive stripes; within any block, each pair of strands intersects exactly twice. We can reduce
T(p, ap+ 1) to T(p, (a− 1)p+ 1) by straightening any block one strand at a time. Straightening the
bottom strand of the block requires the following

�p
2

�

moves, as shown in Figure 2.4.

•
�p−1

2

�

3�3 moves pull the bottom strand downward over one intersection point of every other
pair of strands. Just before each 3�3 move, exactly one of the three pairs of the three relevant
vertices is interleaved, so each move decreases the defect by 2.

• (p− 1) 2�0 moves eliminate a pair of intersection points between the bottom strand and every
other strand. Each of these moves also decreases the defect by 2.

Altogether, straightening one strand decreases the defect by 2
�p

2

�

. Proceeding similarly with the other
strands, we conclude that defect(T (p, ap+1)) = defect(T (p, (a− 1)p+ 1))+2

�p+1
3

�

. The lemma follows
immediately by induction. �

Figure 2.4. Straightening one strand in a block of T (8, 8a+ 1).
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Lemma 2.3. defect(T (aq+ 1, q)) =−2a
�q

3

�

for all integers a ≥ 0 and q ≥ 1.

Proof: The curve T(1, q) is simple, so its defect is trivially zero. For any positive integer a, we can
transform T(aq+ 1, q) into T((a− 1)q+ 1, q) by incrementally removing the innermost q loops. We
can remove the first loop using

�q
2

�

homotopy moves, as shown in Figure 2.5. (The first transition in
Figure 2.5 just reconnects the top left and top right endpoints of the flat braid.)

•
�q−1

2

�

3�3 moves pull the left side of the loop to the right, over the crossings inside the loop. Just
before each 3�3 move, the three relevant vertices contain two interleaved pairs, so each move
increases the defect by 2.

• (q−1) 2�0 moves pull the loop over q−1 strands. The strands involved in each move are oriented
in opposite directions, so these moves leave the defect unchanged.

• Finally, we can remove the loop with a single 1�0 move, which does not change the defect.

Altogether, removing one loop increases the defect by 2
�q−1

2

�

. Proceeding similarly with the other loops,
we conclude that defect(T (aq+1, q)) = defect(T ((a−1)q+1, q))−2

�q
3

�

. The lemma follows immediately
by induction. �

Figure 2.5. Removing one loop from the innermost block of T (7a+ 1,7).

Either of the previous lemmas imply the following lower bound, which is also implicit in the work of
Hayashi et al. [37].

Theorem 2.4. For every positive integer n, there are closed curves with n vertices whose defects are
n3/2/3−O(n) and −n3/2/3+O(n), and therefore require at least n3/2/6−O(n) homotopy moves to
reduce to a simple closed curve.

Proof: The lower bound follows from the previous lemmas by setting a = 1. If n is a prefect square, then
the flat torus knot T (

p
n+ 1,

p
n) has n vertices and defect −2

�

p
n

3

�

. If n is not a perfect square, we can
achieve defect −2

�b
p

nc
3

�

by applying 0�1 moves to the curve T (b
p

nc+1, b
p

nc). Similarly, we obtain an
n-vertex curve with defect 2

�b
p

n+1c+1
3

�

by adding loops to the curve T (b
p

n+ 1c, b
p

n+ 1c+1). Lemma
2.1 now immediately implies the lower bound on homotopy moves. �

2.3 Multicurves

Our previous results immediately imply that simplifying a multicurve with n vertices requires at least
Ω(n3/2) homotopy moves; in this section we derive additional lower bounds in terms of the number
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of constituent curves. We distinguish between two natural variants of simplification: transforming a
multicurve into an arbitrary set of disjoint simple closed curves, or into a particular set of disjoint simple
closed curves.

Both lower bound proofs rely on the classical notion of winding number. Let γ be an arbitrary
closed curve in the plane, let p be any point outside the image of γ, and let ρ be any ray from p to
infinity that intersects γ transversely. The winding number of γ around p, which we denote wind(γ, p),
is the number of times γ crosses ρ from right to left, minus the number of times γ crosses ρ from left to
right. The winding number does not depend on the particular choice of ray ρ. All points in the same face
of γ have the same winding number. Moreover, if there is a homotopy from one curve γ to another curve
γ′, where the image of any intermediate curve does not include p, then wind(γ, p) = wind(γ′, p) [38].

Lemma 2.5. Transforming a k-curve with n vertices in the plane into k arbitrary disjoint circles requires
Ω(nk) homotopy moves in the worst case.

Proof: For arbitrary positive integers n and k, we construct a multicurve with k disjoint constituent
curves, all but one of which are simple, as follows. The first k− 1 constituent curves γ1, . . . ,γk−1 are
disjoint circles inside the open unit disk centered at the origin. (The precise configuration of these circles
is unimportant.) The remaining constituent curve γo is a spiral winding n+ 1 times around the closed
unit disk centered at the origin, plus a line segment connecting the endpoints of the spiral; γo is the
simplest possible curve with winding number n+ 1 around the origin. Let γ be the disjoint union of
these k curves; we claim that Ω(nk) homotopy moves are required to simplify γ. See Figure 2.6.

Figure 2.6. Simplifying this multicurve requires Ω(nk) homotopy moves.

Consider the faces of the outer curve γo during any homotopy of γ. Adjacent faces of γo have winding
numbers that differ by 1, and the outer face has winding number 0. Thus, for any non-negative integer w,
as long as the maximum absolute winding number

�

�maxp wind(γo, p)
�

� is at least w, the curve γo has at
least w + 1 faces (including the outer face) and therefore at least w− 1 vertices, by Euler’s formula. On
the other hand, if any curve γi intersects a face of γo, no homotopy move can remove that face until
the intersection between γi and γo is removed. Thus, before the simplification of γo is complete, each
curve γi must intersect only faces with winding number 0, 1, or −1.

For each index i, let wi denote the maximum absolute winding number of γo around any point of γi:

wi :=max
θ

�

�

�wind
�

γo,γi(θ)
�

�

�

� .

Let W =
∑

i wi. Initially, W = k(n+ 1), and when γo first becomes simple, we must have W ≤ k. Each
homotopy move changes W by at most 1; specifically, at most one term wi changes at all, and that term
either increases or decreases by 1. The Ω(nk) lower bound now follows immediately. �

Theorem 2.6. Transforming a k-curve with n vertices in the plane into an arbitrary set of k simple
closed curves requires Ω(n3/2+ nk) homotopy moves in the worst case.
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We say that a collection of k disjoint simple closed curves is nested if some point lies in the interior
of every curve, and unnested if the curves have disjoint interiors.

Lemma 2.7. Transforming k nested circles in the plane into k unnested circles requires Ω(k2) homotopy
moves.

Proof: Let γ and γ′ be two nested circles, with γ′ in the interior of γ and with γ directed counterclockwise.
Suppose we apply an arbitrary homotopy to these two curves. If the curves remain disjoint during the
entire homotopy, then γ′ always lies inside a face of γ with winding number 1; in short, the two curves
remain nested. Thus, any sequence of homotopy moves that takes γ and γ′ to two non-nested simple
closed curves contains at least one 0�2 move that makes the curves cross (and symmetrically at least
one 2�0 move that makes them disjoint again).

Figure 2.7. Nesting or unnesting k circles requires Ω(k2) homotopy moves.

Consider a set of k nested circles. Each of the
�k

2

�

pairs of circles requires at least one 0�2 move and
one 2�0 move to unnest. Because these moves involve distinct pairs of curves, at least

�k
2

�

0�2 moves
and

�k
2

�

2�0 moves, and thus at least k2− k moves altogether, are required to unnest every pair. �

Theorem 2.8. Transforming a k-curve with n vertices in the plane into k nested (or unnested) circles
requires Ω(n3/2+ nk+ k2) homotopy moves in the worst case.

Corollary 2.9. Transforming one k-curve with at most n vertices into another k-curve with at most n
vertices requires Ω(n3/2+ nk+ k2) homotopy moves in the worst case.

Although our lower bound examples consist of disjoint curves, all of these lower bounds apply
without modification to connected multicurves, because any k-curve can be connected with at most k− 1
0�2 moves. On the other hand, any connected k-curve has at least 2k− 2 vertices, so the Ω(k2) terms
in Theorem 2.8 and Corollary 2.9 are redundant.

3 Electrical Transformations

Now we consider a related set of local operations on plane graphs, called facial electrical transforma-
tions, consisting of six operations in three dual pairs, as shown in Figure 3.1.

• degree-1 reduction: Contract the edge incident to a vertex of degree 1, or delete the edge incident
to a face of degree 1

• series-parallel reduction: Contract either edge incident to a vertex of degree 2, or delete either
edge incident to a face of degree 2

• ∆Y transformation: Delete a vertex of degree 3 and connect its neighbors with three new edges,
or delete the edges bounding a face of degree 3 and join the vertices of that face to a new vertex.
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Figure 3.1. Facial electrical transformations in a plane graph G and its dual graph G∗.

Electrical transformations are usually defined more generally as a set of operations performed
on abstract graphs. These operations have been used since the end of the 19th century [40, 53] to
analyze resistor networks and other electrical circuits, but they have since been applied to a number
of other combinatorial problems on planar graphs, including shortest paths and maximum flows [2];
multicommodity flows [23]; and counting spanning trees, perfect matchings, and cuts [16]. We refer to
our earlier preprint [11, Section 1.1] for a more detailed history and an expanded list of applications.
However, all the algorithms we describe below reduce any plane graph to a single vertex using only
facial electrical transformations as defined above.

In light of these applications, it is natural to ask how many facial electrical transformations are
required in the worst case. The earliest algorithm for reducing a plane graph to a single vertex already
follows from Steinitz’s bigon-reduction argument, which we described in the introduction [55, 56].
Steinitz reduced local transformations of plane graphs to local transformations of planar curves by
defining the medial graphs (“Θ-Prozess”), which we consider in detail below. Later algorithms were given
by Truemper [58], Feo and Provan [24], and others. Both Steinitz’s algorithm and Feo and Provan’s
algorithm require at most O(n2) facial electrical transformations; this is the best upper bound known.

Even the special case of regular grids is open and interesting. Truemper [58,59] describes a method
to reduce the p × p grid in O(p3) steps. Nakahara and Takahashi [45] prove an upper bound of
O(min{pq2, p2q}) for the p× q cylindrical grid. Because every n-vertex plane graph is a minor of an
O(n)×O(n) grid [57,60], both of these results imply an O(n3) upper bound for arbitrary plane graphs;
see Lemma 3.1. Feo and Provan [24] claim without proof that Truemper’s algorithm actually performs
only O(n2) electrical transformations. On the other hand, the smallest (cylindrical) grid containing every
n-vertex plane graph as a minor has size Ω(n)×Ω(n) [60]. Archdeacon et al. [7] asked whether the
O(n3/2) upper bound for square grids can be improved to near-linear:

It is possible that a careful implementation and analysis of the grid-embedding schemes can lead to
an O(n

p
n)-time algorithm for the general planar case. It would be interesting to obtain a near-linear

algorithm for the grid. . . . However, it may well be that reducing planar grids is Ω(n
p

n).

Most of these earlier algorithms actually solve a more difficult problem, first considered by Akers [2]
and Lehman [43] and later solved by Epifanov [21], of reducing a planar graph with two special vertices
called terminals to a single edge between the two terminals. In this context, it is forbidden to perform a
leaf reduction when the leaf is a terminal, a series reduction when the degree-2 vertex is a terminal, or
a Y�∆ transformation when the degree-3 vertex is a terminal. Unfortunately, not every two-terminal
plane graph can be reduced to a single edge using only facial electrical transformations; Figure 3.2
shows two examples. However, it is sufficient to allow loop reductions, parallel reductions, and ∆�Y
transformations to be performed on faces that contain a terminal vertex of degree 1 (and nothing
else) [24]. It is an open question whether our lower bound still holds if these additional non-facial
transformations are allowed.
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Figure 3.2. Plane graphs with two terminals that cannot be further reduced using only facial electrical transformations.

3.1 Definitions

The medial graph of a plane graph G, which we denote G×, is another plane graph whose vertices
correspond to the edges of G and whose edges correspond to incidences (with multiplicity) between
vertices of G and faces of G. Two vertices of G× are connected by an edge if and only if the corresponding
edges in G are consecutive in cyclic order around some vertex, or equivalently, around some face in G.
Every vertex in every medial graph has degree 4; thus, every medial graph is the image of a multicurve.
The medial graphs of any plane graph G and its dual G∗ are identical. To avoid trivial boundary cases,
we define the medial graph of an isolated vertex to be a circle.

Facial electrical transformations in any plane graph G correspond to local transformations in the
medial graph G× that are almost identical to homotopy moves. Each degree-1 reduction in G corresponds
to a 1�0 homotopy move in G×, and each∆Y transformation in G corresponds to a 3�3 homotopy move
in G×. A series-parallel reduction in G contracts an empty bigon in G× to a single vertex. Extending our
earlier notation, we call this transformation a 2�1 move. We collectively refer to these transformations
and their inverses as medial electrical moves; see Figure 3.3.

Figure 3.3. Medial electrical moves 1�0, 2�1, and 3�3.

Smoothing a multicurve γ at a vertex x means replacing the intersection of γ with a small neighbor-
hood of x with two disjoint simple paths, so that the result is another multicurve. (There are two possible
smoothings at each vertex; see Figure 3.4.) A smoothing of γ is any graph obtained by smoothing zero
or more vertices of γ, and a proper smoothing of γ is any smoothing other than γ itself. For any plane
graph G, the (proper) smoothings of the medial graph G× are precisely the medial graphs of (proper)
minors of G.

Figure 3.4. Smoothing a vertex.

3.2 Electrical to Homotopy

The main result of this section is that the number of homotopy moves required to simplify a closed curve
is a lower bound on the number of medial electrical moves required to simplify the same closed curve.
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This result is already implicit in the work of Noble and Welsh [46], and most of our proofs closely follow
theirs. We include the proofs here to make the inequalities explicit and to keep the paper self-contained.

For any connected multicurve (or 4-regular plane graph) γ, let X(γ) denote the minimum number of
medial electrical moves required to reduce γ to a simple closed curve, and let H(γ) denote the minimum
number of homotopy moves required to reduce γ to an arbitrary collection of disjoint simple closed
curves.

The following key lemma follows from close reading of proofs by Truemper [58, Lemma 4] and
several others [7,27,45,46] that every minor of a ∆Y-reducible graph is also ∆Y-reducible. Our proof
most closely resembles an argument of Gitler [27, Lemma 2.3.3], but restated in terms of medial
electrical moves to simplify the case analysis.

Lemma 3.1. For any connected plane graph G, reducing any connected proper minor of G to a sin-
gle vertex requires strictly fewer facial electrical transformations than reducing G to a single vertex.
Equivalently, X (γ)< X (γ) for every connected proper smoothing γ of every connected multicurve γ.

Proof: Let γ be a connected multicurve, and let γ be a connected proper smoothing of γ. If γ is already
simple, the lemma is vacuously true. Otherwise, the proof proceeds by induction on X (γ).

We first consider the special case where γ is obtained from γ by smoothing a single vertex x . Let γ′

be the result of the first medial electrical move in the minimum-length sequence that reduces γ to a
simple closed curve. We immediately have X (γ) = X (γ′) + 1. There are two nontrivial cases to consider.

First, suppose the move from γ to γ′ does not involve the smoothed vertex x . Then we can apply the
same move to γ to obtain a new graph γ′; the same graph can also be obtained from γ′ by smoothing x .
We immediately have X (γ)≤ X (γ′)+1, and the inductive hypothesis implies X (γ′)+1< X (γ′)+1 = X (γ).

Now suppose the first move in Σ does involve x . In this case, we can apply at most one medial
electrical move to γ to obtain a (possibly trivial) smoothing γ′ of γ′. There are eight subcases to consider,
shown in Figure 3.5. One subcase for the 0�1 move is impossible, because γ is connected. In the
remaining 0�1 subcase and one 2�1 subcase, the curves γ, γ′, and γ′ are all isomorphic, which implies
X (γ) = X (γ′) = X (γ′) = X (γ)− 1. In all remaining subcases, γ′ is a connected proper smoothing of γ′,
so the inductive hypothesis implies X (γ)≤ X (γ′) + 1< X (γ′) + 1= X (γ).

1→0

2→1 = 1→0

3→3 2→1 =

=

1→2 = =

Figure 3.5. Cases for the proof of the Lemma 3.1; the circled vertex is x .
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Finally, we consider the more general case where γ is obtained from γ by smoothing more than one
vertex. Let eγ be any intermediate curve, obtained from γ by smoothing just one of the vertices that were
smoothed to obtain γ. As γ is a connected smoothing of eγ, the curve eγ itself must be connected too. Our
earlier argument implies that X (eγ)< X (γ). Thus, the inductive hypothesis implies X (γ)< X (eγ), which
completes the proof. �

Lemma 3.2. For every connected multicurve γ, there is a minimum-length sequence of medial electrical
moves that reduces γ to a simple closed curve and that does not contain 0�1 or 1�2 moves.

Proof: Our proof follows an argument of Noble and Welsh [46, Lemma 3.2].
Consider a minimum-length sequence of medial electrical moves that reduces an arbitrary connected

multicurve γ to a simple closed curve. For any integer i ≥ 0, let γi denote the result of the first i moves
in this sequence; in particular, γ0 = γ and γX (γ) is a simple closed curve. Minimality of the reduction
sequence implies that X (γi) = X (γ)− i for all i. Now let i be an arbitrary index such that γi has one
more vertex than γi−1. Then γi−1 is a connected proper smoothing of γi, so Lemma 3.1 implies that
X (γi−1)< X (γi), giving us a contradiction. �

Lemma 3.3. X (γ)≥ H(γ) for every closed curve γ.

Proof: The proof proceeds by induction on X (γ), following an argument of Noble and Welsh [46,
Proposition 3.3].

Let γ be a closed curve. If X (γ) = 0, then γ is already simple, so H(γ) = 0. Otherwise, let Σ be a
minimum-length sequence of medial electrical moves that reduces γ to a simple closed curve. Lemma 3.2
implies that we can assume that the first move in Σ is neither 0�1 nor 1�2. If the first move is 1�0 or
3�3, the theorem immediately follows by induction.

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ be the
result of the corresponding 2�0 homotopy move. The minimality of Σ implies that X (γ) = X (γ′) + 1,
and we trivially have H(γ)≤ H(γ) + 1. Because γ consists of one single curve, γ is also a single curve
and is therefore connected. The curve γ is also a proper smoothing of γ′, so the Lemma 3.1 implies
X (γ)< X (γ′)< X (γ). Finally, the inductive hypothesis implies that X (γ)≥ H(γ), which completes the
proof. �

We call a plane graph G unicursal if its medial graph G× is the image of a single closed curve.

Theorem 3.4. For every connected plane graph G and every unicursal minor H of G, reducing G to a
single vertex requires at least |defect(H×)|/2 facial electrical transformations.

Proof: Either H equals G, or Lemma 3.1 implies that reducing a proper minor H of G to a single
vertex requires strictly fewer facial electrical transformations than reducing G to a single vertex. Note
that facial electrical transformations performed on H corresponds precisely to medial electrical moves
performed on H×. Now because γ := H× is unicursal, Lemma 2.1 and Lemma 3.3 implies that
X (γ)≥ H(γ)≥ |defect(γ)|/2. �

3.3 Cylindrical Grids

Finally, we derive explicit lower bounds for the number of facial electrical transformations required to
reduce any cylindrical grid to a single vertex. For any positive integers p and q, we define two cylindrical
grid graphs; see Figure 3.6.
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• C(p, q) is the Cartesian product of a cycle of length q and a path of length p− 1. If q is odd, then
the medial graph of C(p, q) is the flat torus knot T (2p, q).

• C ′(p,q) is obtained by connecting a new vertex to the vertices of one of the q-gonal faces of
C(p, q), or equivalently, by contracting one of the q-gonal faces of C(p+ 1, q) to a single vertex.
If q is even, then the medial graph of C ′(p, q) is the flat torus knot T (2p+ 1, q).

Figure 3.6. The cylindrical grid graphs C(4,7) and C ′(3, 8) and (in light gray) their medial graphs T (8,7) and T (7, 8).

Corollary 3.5. For all positive integers p and q, the cylindrical grid C(p, q) requires Ω(min{p2q, pq2})
facial electrical transformations to reduce to a single vertex.

Proof: First suppose p ≤ q. Because C(p − 1, q) is a minor of C(p, q), we can assume without loss
of generality that p is even and p < q. Let H denote the cylindrical grid C(p/2, ap + 1), where
a := b(q− 1)/pc ≥ 1. H is a minor of C(p, q) (because ap+ 1≤ q), and the medial graph of H is the flat
torus knot T (p, ap+ 1). Lemma 2.2 implies

defect
�

T (p, ap+ 1)
�

= 2a
�

p+ 1

3

�

= Ω(ap3) = Ω(p2q).

Theorem 3.4 now implies that reducing C(p, q) requires at least Ω(p2q) facial electrical transformations.
The symmetric case p > q is similar. We can assume without loss of generality that q is odd. Let

H denote the cylindrical grid C ′(aq, q), where a := b(p − 1)/qc ≥ 1. H is a proper minor of C(p, q)
(because aq < p), and the medial graph of H is the flat torus knot T (2aq+ 1, q). Lemma 2.3 implies

�

�

�defect
�

T (2aq+ 1, q)
�

�

�

�= 4a
�

q

3

�

= Ω(aq3) = Ω(pq2).

Theorem 3.4 now implies that reducing C(p, q) requires at least Ω(pq2) facial electrical transforma-
tions. �

In particular, reducing any Θ(
p

n)×Θ(
p

n) cylindrical grid requires at least Ω(n3/2) facial electri-
cal transformations. Our lower bound matches an O(min{pq2, p2q}) upper bound by Nakahara and
Takahashi [45]. Because every p× q rectangular grid contains C(bp/3c, bq/3c) as a minor, the same
Ω(min{p2q, pq2}) lower bound applies to rectangular grids. In particular, Truemper’s O(p3) = O(n3/2)
upper bound for the p× p square grid [58] is tight. Finally, because every plane graph with treewidth t
contains an Ω(t)×Ω(t) grid minor [52], reducing any n-vertex plane graph with treewidth t requires at
least Ω(t3+ n) facial electrical transformations.

Like Gitler [27], Feo and Provan [24], and Archdeacon et al. [7], we conjecture that any n-vertex
plane graph can be reduced to a vertex using O(n3/2) facial electrical transformations. More ambitiously,
we conjecture an upper bound of O(nt) for any n-vertex plane graph with treewidth t.
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4 Upper Bound

For any point p, let depth(p,γ) denote the minimum number of times a path from p to infinity crosses γ.
Any two points in the same face of γ have the same depth, so each face f has a well-defined depth,
which is its distance to the outer face in the dual graph of γ; see Figure 4.1. The depth of the curve,
denoted depth(γ), is the maximum depth of the faces of γ; and the potential D(γ) is the sum of the
depths of the faces. Euler’s formula implies that any 4-regular plane graph with n vertices has exactly
n+ 2 faces; thus, for any curve γ with n vertices, we have n+ 1≤ D(γ)≤ (n+ 1) · depth(γ).

4.1 Contracting Simple Loops

Lemma 4.1. Every closed curve γ in the plane can be simplified using at most 3D(γ)− 3 homotopy
moves.

Proof: We prove the statement by induction on the number of vertices in γ. The lemma is trivial if γ is
already simple, so assume otherwise. Let x := γ(θ) = γ(θ ′) be the first vertex to be visited twice by γ
after the (arbitrarily chosen) basepoint γ(0). Let α denote the subcurve of γ from γ(θ) to γ(θ ′); our
choice of x implies that α is a simple loop. Let m and s denote the number of vertices and maximal
subpaths of γ in the interior of α, respectively.

Finally, let γ′ denote the closed curve obtained from γ by removing α. The first stage of our algorithm
transforms γ into γ′ by contracting the loop α via homotopy moves.

1
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1

1

1

1

1
1

1
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2

2

2

2

2
2

2

221

3

3

21
3

2

3

0

Figure 4.1. Transforming γ into γ′ by contracting a simple loop. Numbers are face depths.

We remove the vertices and edges from the interior of α one at a time as follows; see Figure 4.2. If
we can perform a 2�0 move to remove one edge of γ from the interior of α and decrease s, we do so.
Otherwise, either α is empty, or some vertex of γ lies inside α. In the latter case, at least one vertex x
inside α has a neighbor that lies on α. We move x outside α with a 0�2 move (which increases s by 1)
followed by a 3�3 move (which decreases m by 1). Once α is an empty loop, we remove it with a single
1�0 move. Altogether, our algorithm transforms γ into γ′ using at most 3m+ s+ 1 homotopy moves.
Let M denote the actual number of homotopy moves used.

Euler’s formula implies that α contains exactly m+ s + 1 faces of γ. The Jordan curve theorem
implies that depth(p,γ′)≤ depth(p,γ)−1 for any point p inside α, and trivially depth(p,γ′)≤ depth(p,γ)
for any point p outside α. It follows that D(γ′) ≤ D(γ)− (m+ s + 1) ≤ D(γ)− M/3, and therefore
M ≤ 3D(γ)− 3D(γ′). The induction hypothesis implies that we can recursively simplify γ′ using at most
3D(γ′)− 3 moves. The lemma now follows immediately. �

Our upper bound is a factor of 3 larger than Feo and Provan’s [24]; however our algorithm has the
advantage that it extends to tangles, as described in the next subsection.
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x

Figure 4.2. Moving a loop over an interior empty bigon or an interior vertex.

4.2 Tangles

A tangle is a collection of boundary-to-boundary paths γ1,γ2, . . . ,γs in a closed topological disk Σ,
which (self-)intersect only pairwise, transversely, and away from the boundary of Σ. This terminology is
borrowed from knot theory, where a tangle usually refers to the intersection of a knot or link with a
closed 3-dimensional ball [14,18]; our tangles are perhaps more properly called flat tangles, as they
are images of tangles under appropriate projection. (Our tangles are unrelated to the obstructions to
small branchwidth introduced by Robertson and Seymour [51].) Transforming a curve into a tangle is
identical to (an inversion of) the flarb operation defined by Allen et al. [5].

We call each individual path γi a strand of the tangle. The boundary of a tangle is the boundary of
the disk Σ that contains it; we usually denote the boundary by σ. By the Jordan-Schönflies theorem, we
can assume without loss of generality that σ is actually a circle. We can obtain a tangle from any closed
curve γ by considering its restriction to any closed disk whose boundary σ intersects γ transversely away
from its vertices; we call this restriction the interior tangle of σ.

The strands and boundary of any tangle define a plane graph T whose boundary vertices each have
degree 3 and whose interior vertices each have degree 4. Depths and potential of a tangle are defined
exactly as for closed curves: The depth of any face f of T is its distance to the outer face in the dual
graph T ∗; the depth of the tangle is its maximum face depth; and the potential D(T ) of the tangle is the
sum of its face depths.

A tangle is tight if every pair of strands intersects at most once and loose otherwise. Every loose
tangle contains either an empty loop or a (not necessarily empty) bigon. Thus, any tangle with n vertices
can be transformed into a tight tangle—or less formally, tightened—in O(n2) homotopy moves using
Steinitz’s algorithm. On the other hand, there are infinite classes of loose tangles for which no homotopy
move that decreases the potential, so we cannot directly apply Feo and Provan’s algorithm to this setting.

We describe a two-phase algorithm to tighten any tangle. First, we remove any self-intersections in
the individual strands, by contracting loops as in the proof of Lemma 4.1. Once each strand is simple,
we move the strands so that each pair intersects at most once. See Figure 4.3.

Lemma 4.2. Every tangle T with n vertices and s strands, such that every strand is simple, can be
tightened using at most 3ns homotopy moves.

Proof: We prove the lemma by induction on s. The base case when s = 1 is trivial, so assume s ≥ 2.
Fix an arbitrary reference point on the boundary circle σ that is not an endpoint of a strand. For

each index i, let σi be the arc of σ between the endpoints of γi that does not contain the reference point.
A strand γi is extremal if the corresponding arc σi does not contain any other arc σ j .

Choose an arbitrary extremal strand γi . Let mi denote the number of tangle vertices in the interior
of the disk bounded by γi and the boundary arc σi; call this disk Σi. Let si denote the number of
intersections between γi and other strands. Finally, let γ′i be a path inside the disk Σ defining tangle T ,
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Figure 4.3. Tightening a tangle in two phases: First simplifying the individual strands, then removing excess crossings
between pairs of strands.

Figure 4.4. Moving one strand out of the way and shrinking the tangle boundary.

with the same endpoints as γi, that intersects each other strand in T at most once, such that the disk
bounded by σi and γ′i has no tangle vertices inside its interior. (See Figure 4.4 for an example; the red
strand in the left tangle is γi , the red strand in the middle tangle is γ′i , and the shaded disk is Σi .)

We can deform γi into γ′i using essentially the algorithm from Lemma 4.1; the disk Σi is contracted
along with γi in the process. If Σi contains an empty bigon with one side in γi, remove it with a 2�0
move (which decreases si by 1). If Σi has an interior vertex with a neighbor on γi, remove it using at
most two homotopy moves (which increases si by 1 and decreases mi by 1). Altogether, this deformation
requires at most 3mi + si ≤ 3n homotopy moves.

After deforming γi to γ′i , we redefine the tangle by shrinking its boundary curve slightly to exclude γ′i ,
without creating or removing any vertices in the tangle or endpoints on the boundary; see the right of
Figure 4.4. We emphasize that shrinking the boundary does not modify the strands and therefore does
not require any homotopy moves. The resulting smaller tangle has exactly s−1 strands, each of which is
simple. Thus, the induction hypothesis implies that we can recursively tighten this smaller tangle using
at most 3n(s− 1) homotopy moves. �

Corollary 4.3. Every tangle T with n vertices and s strands can be tightened using at most 3D(T )+3ns
homotopy moves.

Proof: As long as T contains at least one non-simple strand, we identify a simple loop α in that strand
and remove it as described in the proof of Lemma 4.1. Suppose there are m vertices and t maximal
subpaths in the interior of α, and let M be the number of homotopy moves required to remove α. The
algorithm in the proof of Lemma 4.1 implies that M ≤ 3m+ t + 1, and Euler’s formula implies that α
contains m+ t + 1 ≥ M/3 faces. Removing α decreases the depth of each of these faces by at least 1
and therefore decreases the potential of the tangle by at least M/3.

Let T ′ be the remaining tangle after all such loops are removed. Our potential analysis for a single
loop implies inductively that transforming T into T ′ requires at most 3D(T )−3D(T ′)≤ 3D(T ) homotopy
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moves. Because T ′ still has s strands and at most n vertices, Lemma 4.2 implies that we can tighten T ′

with at most 3ns additional homotopy moves. �

4.3 Main Algorithm

We call a simple closed curve σ useful for γ if σ intersects γ transversely away from its vertices, and the
interior tangle T of σ has at least s2 vertices, where s := |σ∩ γ|/2 is the number of strands. Our main
algorithm repeatedly finds a useful closed curve whose interior tangle has O(

p
n) depth, and tightens its

interior tangle; if there are no useful closed curves, then we fall back to the loop-contraction algorithm
of Lemma 4.1.

Lemma 4.4. Let γ be an arbitrary non-simple closed curve in the plane with n vertices. Either there is a
useful simple closed curve for γ whose interior tangle has depth O(

p
n), or the depth of γ is O(

p
n).

Proof: To simplify notation, let d := depth(γ). For each integer j between 1 and d, let R j be the set of
points p with depth(p,γ) ≥ d + 1− j, and let R̃ j denote a small open neighborhood of the closure of
R j∪ R̃ j−1, where R̃0 is the empty set. Each region R̃ j is the disjoint union of closed disks, whose boundary
cycles intersect γ transversely away from its vertices, if at all. In particular, R̃d is a disk containing the
entire curve γ.

Fix a point z such that depth(z,γ) = d. For each integer j, let Σ j be the unique component of R̃ j that
contains z, and let σ j be the boundary of Σ j. Then σ1,σ2, . . . ,σd are disjoint, nested, simple closed
curves; see Figure 4.5. Let n j be the number of vertices and let s j := |γ∩σ j|/2 be the number of strands
of the interior tangle of σ j. For notational convenience, we define Σ0 := ∅ and thus n0 = s0 = 0. We
ignore the outermost curve σd , because it contains the entire curve γ. The next outermost curve σd−1
contains every vertex of γ, so nd−1 = n.

z

Figure 4.5. Nested depth cycles around a point of maximum depth.

By construction, for each j, the interior tangle of σ j has depth j+ 1. Thus, to prove the lemma, it
suffices to show that if none of the curves σ1,σ2, . . . ,σd−1 is useful, then d = O(

p
n).

Fix an index j. Each edge of γ crosses σ j at most twice. Any edge of γ that crosses σ j has at least one
endpoint in the annulus Σ j \Σ j−1, and any edge that crosses σ j twice has both endpoints in Σ j \Σ j−1.
Conversely, each vertex in Σ j is incident to at most two edges that cross σ j and no edges that cross σ j+1.
It follows that |σ j ∩ γ| ≤ 2(n j − n j−1), and therefore n j ≥ n j−1+ s j . Thus, by induction, we have

n j ≥
j
∑

i=1

si
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for every index j.
Now suppose no curve σ j with 1≤ j < d is useful. Then we must have s2

j > n j and therefore

s2
j >

j
∑

i=1

si

for all 1 ≤ j < d. Trivially, s1 ≥ 1, because γ is non-simple. A straightforward induction argument
implies that s j ≥ ( j+ 1)/2 and therefore

n = nd−1 ≥
d−1
∑

i=1

i+ 1

2
≥

1

2

�

d + 1

2

�

>
d2

4
.

We conclude that d ≤ 2
p

n, which completes the proof. �

Theorem 4.5. Every closed curve in the plane with n vertices can be simplified in O(n3/2) homotopy
moves.

Proof: Let γ be an arbitrary closed curve in the plane with n vertices. If γ has depth O(
p

n), Lemma 4.1
and the trivial upper bound D(γ)≤ (n+ 1) · depth(γ) imply that we can simplify γ in O(n3/2) homotopy
moves. For purposes of analysis, we charge O(

p
n) of these moves to each vertex of γ.

Otherwise, let σ be an arbitrary useful closed curve chosen according to Lemma 4.4. Suppose
the interior tangle of σ has m vertices, s strands, and depth d. Lemma 4.4 implies that d = O(

p
n),

and the definition of useful implies that s ≤
p

m, which is O(
p

n). Thus, by Corollary 4.3, we can
tighten the interior tangle of σ in O(md +ms) = O(m

p
n) moves. This simplification removes at least

m− s2/2 ≥ m/2 vertices from γ, as the resulting tight tangle has at most s2/2 vertices. Again, for
purposes of analysis, we charge O(

p
n) moves to each deleted vertex. We then recursively simplify the

resulting closed curve.
In either case, each vertex of γ is charged O(

p
n) moves as it is deleted. Thus, simplification requires

at most O(n3/2) homotopy moves in total. �

Polyak’s formula [49] gives a straightforward quadratic upper bound on the defect of any closed
curve in the plane. As an immediate corollary of Theorem 4.5 and Theorem 3.4, we obtain the first
subquadratic bound on the defect of all plane curves, matching the lower bound in Theorem 2.4 up to
constant factors.

Corollary 4.6. For every plane curve γ with n vertices, we have |defect(γ)| = O(n3/2), and this bound is
tight in the worst case.

4.4 Efficient Implementation

Here we describe how to implement our curve-simplification algorithm to run in O(n3/2) time; in fact,
our implementation spends only constant amortized time per homotopy move. We assume that the input
curve is given in a data structure that allows fast exploration and modification of plane graphs, such as a
quad-edge data structure [31] or a doubly-connected edge list [10]. If the curve is presented as a polygon
with m edges, an appropriate graph representation can be constructed in O(m log m+ n) time using
classical geometric algorithms [13,15,44]; more recent algorithms can be used for piecewise-algebraic
curves [20].
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Theorem 4.7. Given a simple closed curve γ in the plane with n vertices, we can compute a sequence
of M = O(n3/2) homotopy moves that simplifies γ in O(M) time.

Proof: We begin by labeling each face of γ with its depth, using a breadth-first search of the dual
graph in O(n) time. Then we construct the depth contours of γ—the boundaries of the regions R̃ j from
the proof of Lemma 4.4—and organize them into a contour tree in O(n) time by brute force. Another
O(n)-time breadth-first traversal computes the number of strands and the number of interior vertices of
every contour’s interior tangle; in particular, we identify which depth contours are useful. To complete
the preprocessing phase, we place all the leafmost useful contours into a queue. We can charge the
overall O(n) preprocessing time to the Ω(n) homotopy moves needed to simplify the curve.

As long as the queue of leafmost useful contours is non-empty, we extract one contour σ from this
queue and simplify its interior tangle T as follows. Suppose T has m interior vertices.

Following the proof of Theorem 4.5, we first simplify every loop in each strand of T . We identify
loops by traversing the strand from one endpoint to the other, marking the vertices as we go; the first
time we visit a vertex that has already been marked, we have found a loop α. We can perform each
of the homotopy moves required to shrink α in O(1) time, because each such move modifies only a
constant-radius boundary of a vertex on α. After the loop is shrunk, we continue walking along the
strand starting at the most recently marked vertex.

The second phase of the tangle-simplification algorithm proceeds similarly. We walk around the
boundary of T , marking vertices as we go. As soon as we see the second endpoint of any strand γi , we
pause the walk to straighten γi . As before, we can execute each homotopy move used to move γi to γ′i in
O(1) time. We then move the boundary of the tangle over the vertices of γ′i , and remove the endpoints
of γ′i from the boundary curve, in O(1) time per vertex.

The only portions of the running time that we have not already charged to homotopy moves are the
time spent marking the vertices on each strand and the time to update the tangle boundary after moving
a strand aside. Altogether, the uncharged time is O(m), which is less than the number of moves used
to tighten T , because the contour σ is useful. Thus, tightening the interior tangle of a useful contour
requires O(1) amortized time per homotopy move.

Once the tangle is tight, we must update the queue of useful contours. The original contour σ is
still a depth contour in the modified curve, and tightening T only changes the depths of faces that
intersect T . Thus, we could update the contour tree in O(m) time, which we could charge to the moves
used to tighten T ; but in fact, this update is unnecessary, because no contour in the interior of σ is
useful. We then walk up the contour tree from σ, updating the number of interior vertices until we find
a useful ancestor contour. The total time spent traversing the contour tree for new useful contours is
O(n); we can charge this time to the Ω(n) moves needed to simplify the curve. �

4.5 Multicurves

Finally, we describe how to extend our O(n3/2) upper bound to multicurves. Just as in Section 2.3, we
distinguish between two variants, depending on whether the target of the simplification is an arbitrary
set of disjoint cycles or a particular set of disjoint cycles. In both cases, our upper bounds match the
lower bounds proved in Section 2.3.

First we extend our loop-contraction algorithm from Lemma 4.1 to the multicurve setting. Recall
that a component of a multicurve γ is any multicurve whose image is a component of the image of γ,
and the individual closed curves that comprise γ are its constituent curves. The main difficulty is that
one component of the multicurve might lie inside a face of another component, making progress on the
larger component impossible. To handle this potential obstacle, we simplify the innermost components
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of the multicurve first, and we move isolated simple closed curves toward the outer face as quickly as
possible. Figure 4.6 sketches the basic steps of our algorithm when the input multicurve is connected.

Figure 4.6. Simplifying a connected multicurve: shrink an arbitrary simple loop or cycle, recursively simplify any inner
components, translate inner circle clusters to the outer face, and recursively simplify the remaining non-simple components.

Lemma 4.8. Every n-vertex k-curve γ in the plane can be transformed into k disjoint simple closed
curves using at most 3D(γ) + 4nk homotopy moves.

Proof: Let γ be an arbitrary k-curve with n vertices. If γ is connected, we either contract and delete
a loop, exactly as in Lemma 4.1, or we contract a simple constituent curve to an isolated circle, using
essentially the same algorithm. In either case, the number of moves performed is at most 3D(γ)−3D(γ′),
where γ′ is the multicurve after the contraction. The lemma now follows immediately by induction.

We call a component of γ an outer component if it is incident to the unbounded outer face of γ, and
an inner component otherwise. If γ has more than one outer component, we partition γ into subcurves,
each consisting of one outer component γo and all inner components located inside faces of γo, and
we recursively simplify each subcurve independently; the lemma follows by induction. If any outer
component is simple, we ignore that component and simplify the rest of γ recursively; again, the lemma
follows by induction.

Thus, we can assume without loss of generality that our multicurve γ is disconnected but has only
one outer component γo, which is non-simple. For each face f of γo, let γf denote the union of all
components inside f . Let n f and k f respectively denote the number of vertices and constituent curves
of γf . Similarly, let no and ko respectively denote the number of vertices and constituent curves of the
outer component γo.

We first recursively simplify each subcurve γf ; let κ f denote the resulting cluster of k f simple closed
curves. By the induction hypothesis, this simplification requires at most 3D(γf ) + 4n f k f homotopy
moves. We translate each cluster κ f to the outer face of γo by shrinking κ f to a small ε-ball and then
moving the entire cluster along a shortest path in the dual graph of γo. This translation requires at most
4nok f homotopy moves; each circle in κ f uses one 2�0 move and one 0�2 move to cross any edge of
γo, and in the worst case, the cluster might cross all 2n0 edges of γo. After all circle clusters are in the
outer face, we recursively simplify γo using at most 3D(γo) + 4noko homotopy moves.
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The total number of homotopy moves used in this case is
∑

f

3D(γf ) + 3D(γo) +
∑

f

4n f k f +
∑

f

4nok f + 4noko.

Each face of γo has the same depth as the corresponding face of γ, and for each face f of γo, each face of
the subcurve γf has lesser depth than the corresponding face of γ. It follows that

∑

f

D(γf ) + D(γo)≤ D(γ).

Similarly,
∑

f n f + no = n and
∑

f k f + ko = k. The lemma now follows immediately. �

To reduce the leading term to O(n3/2), we extend the definition of a tangle to the intersection of a
multicurve γ with a closed disk whose boundary intersects the multicurve transversely away from its
vertices, or not at all. Such a tangle can be decomposed into boundary-to-boundary paths, called open
strands, and closed curves that do not touch the tangle boundary, called closed strands. Each closed
strand is a constituent curve of γ. A tangle is tight if every strand is simple, every pair of open strands
intersects at most once, and otherwise all strands are disjoint.

Theorem 4.9. Every k-curve in the plane with n vertices can be transformed into a set of k disjoint
simple closed curves using O(n3/2+ nk) homotopy moves.

Proof: Let γ be an arbitrary k-curve with n vertices. Following the proof of Lemma 4.8, we can assume
without loss of generality that γ has a single outer component γo, which is non-simple.

When γ is disconnected, we follow the strategy in the previous proof. Let γf denote the union of
all components inside any face f of γo. For each face f , we recursively simplify γf and translate the
resulting cluster of disjoint circles to the outer face; when all faces are empty, we recursively simplify γo.
The theorem now follows by induction.

When γ is non-simple and connected, we follow the useful closed curve strategy from Theorem 4.5.
We define a closed curve σ to be useful for γ if the interior tangle of σ has its number of vertices at least
the square of the number of open strands; then the proof of Lemma 4.4 applies to connected multicurves
with no modifications. So let T be a tangle with m vertices, s ≤

p
m open strands, ` closed strands, and

depth d = O(
p

n). We straighten T in two phases, almost exactly as in Section 4.2, contracting loops
and simple closed strands in the first phase, and straightening open strands in the second phase.

In the first phase, contracting one loop or simple closed strand uses at most 3D(T )−3D(T ′) homotopy
moves, where T ′ is the tangle after contraction. After each contraction, if T ′ is disconnected—in
particular, if we just contracted a simple closed strand—we simplify and extract any isolated components
as follows. Let T ′o denote the component of T ′ that includes the boundary cycle, and for each face f of
T ′o, let γ f denote the union of all components of T ′ inside f . We simplify each multicurve γ f using the
algorithm from Lemma 4.8—not recursively!—and then translate the resulting cluster of disjoint circles
to the outer face of γ. See Figure 4.7. Altogether, simplifying and translating these subcurves requires at
most 3D(T ′)− 3D(T ′′) + 4n

∑

f k f homotopy moves, where T ′′ is the resulting tangle.
The total number of moves performed in the first phase is at most 3D(T) + 4m` = O(m

p
n+ n`).

The first phase ends when the tangle consists entirely of simple open strands. Thus, the second phase
straightens the remaining open strands exactly as in the proof of Lemma 4.2; the total number of moves
in this phase is O(ms) = O(m

p
n). We charge O(

p
n) time to each deleted vertex and O(n) time to

each constituent curve that was simplified and translated outward. We then recursively simplify the
remaining multicurve, ignoring any outer circle clusters.

Altogether, each vertex of γ is charged O(
p

n) time as it is deleted, and each constituent curve of γ is
charged O(n) time as it is translated outward. �
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Figure 4.7. Whenever shrinking a loop or simple closed strand disconnects the tangle, simplify each isolated component
and translate the resulting cluster of circles to the outer face of the entire multicurve.

With O(k2) additional homotopy moves, we can transform the resulting set of k disjoint circles into
k nested or unnested circles.

Theorem 4.10. Any k-curve with n vertices in the plane can be transformed into k nested (or unnested)
simple closed curves using O(n3/2+ nk+ k2) homotopy moves.

Corollary 4.11. Any k-curve with at most n vertices in the plane can be transformed into any other
k-curve with at most n vertices using O(n3/2+ nk+ k2) homotopy moves.

Theorems 2.6 and 2.8 and Corollary 2.9 imply that these upper bounds are tight in the worst case
for all possible values of n and k. As in the lower bounds, the O(k2) terms are redundant for connected
multicurves.

More careful analysis implies that any k-curve with n vertices and depth d can be simplified
in O(n min{d, n1/2} + k min{d, n}) homotopy moves, or transformed into k unnested circles using
O(n min{d, n1/2}+ k min{d, n}+ k min{d, k}) homotopy moves. Moreover, these upper bounds are tight,
up to constant factors, for all possible values of n, k, and d. We leave the details of this extension as an
exercise for the reader.

5 Higher-Genus Surfaces

Finally, we consider the natural generalization of our problem to closed curves on orientable surfaces of
higher genus. Because these surfaces have non-trivial topology, not every closed curve is homotopic to a
single point or even to a simple curve. A closed curve is contractible if it is homotopic to a single point.
We call a closed curve tight if it has the minimum number of self-intersections in its homotopy class.

5.1 Lower Bounds

Although defect was originally defined as an invariant of planar curves, Polyak’s formula defect(γ) =
−2
∑

xÇy sgn(x) sgn(y) extends naturally to closed curves on any orientable surface; homotopy moves
change the resulting invariant exactly as described in Figure 2.1. Thus, Lemma 2.1 immediately
generalizes to any orientable surface as follows.

Lemma 5.1. Let γ and γ′ be arbitrary closed curves that are homotopic on an arbitrary orientable
surface. Transforming γ into γ′ requires at least |defect(γ)− defect(γ′)|/2 homotopy moves.

The following construction implies a quadratic lower bound for tightening noncontractible curves on
orientable surfaces with any positive genus.
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Lemma 5.2. For any positive integer n, there is a closed curve on the torus with n vertices and defect
Ω(n2) that is homotopic to a simple closed curve but not contractible.

Proof: Without loss of generality, suppose n is a multiple of 8. The curve γ is illustrated on the left in
Figure 5.1. The torus is represented by a rectangle with opposite edges identified. We label three points
a, b, and c on the vertical edge of the rectangle and decompose the curve into a simple red path from a
to b, a simple green path from b to c, and a simple blue path from c to a. The red and blue paths each
wind vertically around the torus, first n/8 times in one direction, and then n/8 times in the opposite
direction.

b

c

a

n/8{n/8{n/8{ n/8{

b

c

a

b

c

a

b

c

a

Figure 5.1. A curve γ on the torus with defect Ω(n2) and a simple curve homotopic to γ.

As in previous proofs, we compute the defect of γ by describing a sequence of homotopy moves that
simplifies the curve, while carefully tracking the changes in the defect that these moves incur. We can
unwind one turn of the red path by performing one 2�0 move, followed by n/8 3�3 moves, followed
by one 2�0 move, as illustrated in Figure 5.2. Repeating this sequence of homotopy moves n/8 times
removes all intersections between the red and green paths, after which a sequence of n/4 2�0 moves
straightens the blue path, yielding the simple curve shown on the right in Figure 5.1. Altogether, we
perform n2/64+ n/2 homotopy moves, where each 3�3 move increases the defect of the curve by 2 and
each 2�0 move decreases the defect of the curve by 2. We conclude that defect(γ) =−n2/32+ n. �

Figure 5.2. Unwinding one turn of the red path.

Theorem 5.3. Tightening a closed curve with n crossings on a torus requires Ω(n2) homotopy moves in
the worst case, even if the curve is homotopic to a simple curve.
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5.2 Upper Bounds

Hass and Scott proved that any non-simple closed curve on any orientable surface that is homotopic to a
simple closed curve contains either a simple (in fact empty) contractible loop or a simple contractible
bigon [33, Theorem 1]. It follows immediately that any such curve can be simplified in O(n2) moves
using Steinitz’s algorithm; Theorem 5.3 implies that the upper bound is tight for non-contractible curves.

For the most general setting, where the given curve is not necessarily homotopic to a simple closed
curve, we are not even aware of a polynomial upper bound! Steinitz’s algorithm does not work here;
there are curves with excess self-intersections but no simple contractible loops or bigons [33]. Hass
and Scott [34] and De Graaf and Schrijver [28] independently proved that any closed curve on any
surface can be simplified using a finite number of homotopy moves that never increase the number
of self-intersections. Both proofs use discrete variants of curve-shortening flow; for sufficiently well-
behaved curves and surfaces, results of Grayson [29] and Angenent [6] imply a similar result for
differential curvature flow. Unfortunately, without further assumptions about the precise geometries
of both the curve and the underlying surface, the number of homotopy moves cannot be bounded by
any function of the number of crossings; even in the plane, there are closed curves with three crossings
for which curve-shortening flow alternates between a 3�3 move and its inverse arbitrarily many times.
Paterson [48] describes a combinatorial algorithm to compute a tightening sequence of homotopy moves,
without ever increasing the number of vertices, but does not offer an analysis of the algorithm’s running
time.

We conjecture that arbitrary curves (or even multicurves) on any surface can be simplified using at
most O(n2) homotopy moves.
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