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Abstract

We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the perturbation
stability assumption. An instance is α-stable if the underlying optimal clustering continues to remain optimal
even when all pairwise distances are arbitrarily perturbed by a factor of at most α. Our main contribution is in
presenting efficient exact algorithms for α-stable clustering instances whose running times depend near-linearly
on the size of the data set when α ≥ 2+

p
3. For k-center and k-means problems, our algorithms also achieve

polynomial dependence on the number of clusters, k, when α≥ 2+
p

3+ ε for any constant ε > 0 in any fixed
dimension. For k-median, our algorithms have polynomial dependence on k for α > 5 in any fixed dimension;
and for α≥ 2+

p
3 in two dimensions. Our algorithms are simple, and only require applying techniques such as

local search or dynamic programming to a suitably modified metric space, combined with careful choice of data
structures.

1 Introduction

Clustering is a fundamental problem in unsupervised learning and data summarization, with wide-ranging
applications that span myriad areas. Typically, the data points are assumed to lie in a Euclidean space, and the
goal in center-based clustering is to open a set of k centers to minimize the objective cost, usually a function over
the distance from each data point to its closest center. The k-median objective minimizes the sum of distances; the
k-means minimizes the sum of squares of distances; and the k-center minimizes the longest distance. In the worst
case, all these objectives are NP-hard even in 2D [52,54].

A substantial body of work has focused on developing polynomial-time approximation algorithms and analyzing
natural heuristics for these problems. Given the sheer size of modern data sets, such as those generated in genomics
or mapping applications, even a polynomial-time algorithm is too slow to be useful in practice—just computing
all pairs of distances can be computationally burdensome. What we need is an algorithm whose running time is
near-linear in the input size and polynomial in the number of clusters.

Because of NP-hardness results, we cannot hope to compute an optimal solution in polynomial time, but in the
worst case an approximate clustering can be different from an optimal clustering. We focus on the case when the
optimal clustering can be recovered under some reasonable assumptions on the input that hold in practice. Such
methodology is termed “beyond worst-case analysis” and has been adopted by recent work [2,10,25]. In recent
years, the notion of stability has emerged as a popular assumption under which polynomial-time optimal clustering
algorithms have been developed. An instance of clustering is called stable if any “small perturbation” of input
points does not change the optimal solution. This is natural in real datasets, where often, the optimal clustering
is clearly demarcated, and the distances are obtained heuristically. Different notions of stability differ in how
“small perturbation” is defined, though most of them are related. In this paper, we focus on the notions of stability
introduced in Bilu and Linial [25] and Awasthi, Blum, and Sheffet [16]. A clustering instance is α-perturbation
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resilient or α-stable if the optimal clustering does not change when all distances are perturbed by a factor of at
most α. Similarly, a clustering instance is α-center proximal if any point is at least a factor of α closer to its own
optimal center than any other optimal center. Awasthi, Blum, and Sheffet showed that α-stability implies α-center
proximity [16]. This line of work designs algorithms to recover the exact optimal clustering—the ground truth—in
polynomial time for α-stable instances.

This paper also focuses on recovering the optimal clustering for stable clustering instances. But instead of
focusing on polynomial-time algorithms and optimizing the value of α, we ask the question: Can algorithms
be designed that compute exact solutions to stable instances of Euclidean center-based clustering that run in time
near-linear in the input size? We note that an (1+ ε)-approximation solution, for an arbitrarily small constant
ε > 0, may differ significantly from an optimal solution (the ground truth) even for stable instances, so one cannot
hope to use an approximation algorithm to recover the optimal clustering.

1.1 Our Results

In this paper, we make progress on the above question, and present near-linear time algorithms for finding
optimal solutions of stable clustering instances with moderate values of α. In particular, we show the following
meta-theorem:

Theorem 1.1. Let X be a set of n points in Rd for some constant d, let k ≥ 1 be an integer, and let α≥ 2+
p

3 be
a parameter. If the k-median, k-means, or k-center clustering instance for X is α-stable, then the optimal solution
can be computed in Õ(n poly k+ f (k)) time.

In the above theorem, the Õ notation suppresses logarithmic terms in n and the spread of the point set. The
function f (k) depends on the choice of algorithm, and we present the exact dependence below. We also omit terms
depending solely on the dimension, d. Furthermore, the above theorem is robust in the sense that the algorithm is
not restricted to choosing the input points as centers (discrete setting), and can potentially choose arbitrary points
in the Euclidean plane as centers (continuous setting, sometimes referred to as the Steiner point setting)—indeed,
we show that these notions are identical under a reasonable assumption on stability.

At a more fine-grained level, we present several algorithms that require mild assumptions on the stability
condition. In the results below, as well as throughout the paper, we present our results both for the Euclidean
plane, as well as generalizations to higher (but fixed number of) dimensions.

Dynamic Programming. In Section 3, we present a dynamic programming algorithm that computes the optimal
clustering in O(nk2 + n polylog n) time for α-stable k-means, k-median, and k-center in any fixed dimension,
provided that α≥ 2+

p
3+ ε for any constant ε > 0. For d = 2, it suffices to assume that α≥ 2+

p
3.

Local Search. In Sections 4 and 5, we show that the standard 1-swap local-search algorithm, which iteratively
swaps out a center in the current solution for a new center as long as the resulting total cost improves,
computes an optimal clustering for α-stable instances of k-median assuming α > 5. We also show that it can
be implemented in O(nk2 log3 n log∆) for d = 2 and in O(nk2d−1 polylog n log∆) for d > 2; ∆ is the spread
of the point set.1

Coresets. In the Section 6, we use multiplicative coresets to compute the optimal clustering for k-means, k-median
and k-center in any fixed dimension, when α≥ 2+

p
3. The running time is O(nk2 + f (k)) where f (k) is an

exponential function of k.

Remark 1.2. While the current analysis of the dynamic programming based algorithm suggests that it is better
than the local-search and coreset based approaches, the latter are of independent interest—our local-search
analysis is considerably simpler than the previous analysis [40], and coresets have mostly been used to compute
approximate, rather than exact, solutions. We also note that our analysis of the local-search algorithm is probably
not tight. Furthermore, variants of all three approaches might work for smaller values of α. We note that the
value of α assumed in the above results in larger than what is known for polynomial-time algorithm (e.g. α≥ 2 in
Angelidakis et al. [12]) and that in some applications the input may not satisfy our assumption, but our results
are a big first step toward developing near-linear time algorithms for stable instances. We are not aware of any
previous near-linear time algorithms for computing optimal clustering even for larger values of α. We leave the
problem of reducing the assumption on α as an important open question.

1The spread of a point set is the ratio between the longest and shortest pairwise distances.
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Techniques. The key difficulty with developing fast algorithms for computing the optimal clustering is that
some clusters could have a very small size compared to others. This issue persists even when the instances are
stable. Imagine a scenario where there are multiple small clusters, and an algorithm must decide whether to merge
these into one cluster while splitting some large cluster, or keep them intact. Now imagine this situation happening
recursively, so that the algorithm has multiple choices about which clusters to recursively split. The difference in
cost between these options and the size of the small clusters can be small enough that any (1+ ε)-approximation
can be agnostic, while an exact solution cannot. As such, work on finding exact optima use techniques such as
dynamic programming [12] or local search with large number of swaps [28,40] in order to recover small clusters.
Other work makes assumptions lower-bounding the size of the optimal clusters or the spread of their centers [36].

Our main technical insight for the first two results is simple in hindsight, yet powerful: For a stable instance,
if the Euclidean metric is replaced by another metric that is a good approximation, then the optimal clustering
does not change under the new metric and in fact the instance remains stable albeit with a smaller stability
parameter. In particular, we replace the Euclidean metric with an appropriate polyhedral metric—that is, a convex
distance function where each unit ball is a regular polyhedron—yielding efficient procedures for the following two
primitives:

• Cost of 1-swap. Given a candidate set of centers S, maintain a data structure that efficiently updates the
total cost if center x ∈ S is replaced by center y /∈ S.

• Cost of 1-clustering. Given a partition of the data points, maintain a data structure where the cost of
1-clustering (under any objectives) can be efficiently updated as partitions are merged.

We next combine the insight of changing the metrics with additional techniques. For local search, we build on
the approach in [28,33,40] that shows local search with t-swaps for large enough constant t finds an optimal
solution for stable instances in polynomial time for any fixed-dimension Euclidean space. None of the prior analysis
directly extends as is to 1-swap, which is critical in achieving near-linear running time—note that even when t = 2
there is a quadratic number of candidate swaps per step.

For the dynamic programming algorithm, we use the following insight: In Euclidean spaces, for α≥ 2+
p

3,
the longest edge of the minimum spanning tree over the input points partitions the data set in two, such that any
optimal cluster lies completely in one of the two sides of the partition. Combined with the change of metrics one
can achieve near-linear running time.

1.2 Related Work

All of k-median, k-means, and k-center are widely studied from the perspective of approximation algorithms and
are known to be hard to approximate [38]. Indeed, for general metric spaces, k-center is hard to approximate to
within a factor of 2− ε [46]; k-median is hard to (1+ 2/e)-approximate [47]; and k-means is hard to (1+ 8/e)-
approximate in general metrics [31], and is hard to approximate within a factor of 1.0013 in the Euclidean
setting [51]. Even when the metric space is Euclidean, k-means is still NP-hard when k = 2 [9,34], and there is
an nΩ(k) lower bound on running time for k-median and k-means in 4-dimensional Euclidean space under the
exponential-time hypothesis [29].

There is a long line of work in developing (1+ ε)-approximations for these problems in Euclidean spaces.
The holy grail of this work has been the development of algorithms that are near-linear time in n, and several
techniques are now known to achieve this. This includes randomly shifted quad-trees [13], coresets [4,17,39,43,44],
sampling [50], and local search [28,30,32], among others.

There are many notions of clustering stability that have been considered in literature [1,8,15,19,20,24,37,49,
56]. The exact definition of stability we study here was first introduced in Awasthi et al. [16]; their definition
in particular resembles the one of Bilu and Linial [25] for max-cut problem, which later has been adapted to
other optimization problems [11,12,21,53,55]. Building on a long line of work [16,18,22,23], which gradually
reduced the stability parameter, Angelidakis et al. [12] present a dynamic programming based polynomial-time
optimal algorithm for discrete 2-stable instances for all center-based objectives.

Chekuri and Gupta [27] show that a natural LP-relaxation is integral for the 2-stable k-center problem. Recent
work by Cohen-Addad [33] provides a framework for analyzing local search algorithms for stable instances. This
work shows that for an α-stable instance with α > 3, any solution is optimal if it cannot be improved by swapping
d2/(α−3)e centers. Focusing on Euclidean spaces of fixed dimensions, Friggstad et al. [40] show that a local-search



Clustering under Perturbation Stability in Near-Linear Time 3

algorithm with O(1)-swaps runs in polynomial time under a (1+δ)-stable assumption for any δ > 0. However,
none of the algorithms for stable instances of clustering so far have running time near-linear in n, even when the
stability parameter α is large, points lie in R2, and the underlying metric is Euclidean.

On the hardness side, solving (3−δ)-center proximal k-median instances in general metric spaces is NP-hard
for any δ > 0 [16]. When restricted to Euclidean spaces in arbitrary dimensions, Ben-David and Reyzin [24]
showed that for every δ > 0, solving discrete (2−δ)-center proximal k-median instances is NP-hard. Similarly,
the clustering problem for discrete k-center remains hard for α-stable instances when α < 2, assuming standard
complexity assumption that NP 6= RP [22]. Under the same complexity assumption, discrete α-stable k-means
is also hard when α < 1+δ0 for some positive constant δ0 [40]. Deshpande et al. [36] showed it is NP-hard to
(1+ ε)-approximate (2−δ)-center proximal k-means instances.

2 Definitions and Preliminaries

Clustering. Let X = {p1, . . . , pn} be a set of n points in Rd , and let δ : Rd ×Rd → R≥0 be a distance function
(not necessarily a metric satisfying triangle inequality). For a set Y ⊆ Rd , we define δ(p, Y) :=miny∈Y δ(p, y). A
k-clustering of X is a partition of X into k non-empty clusters X1, . . . , Xk. We focus on center-based clusterings
that are induced by a set S := {c1, . . . , ck} of k centers; each X i is the subset of points of X that are closest to ci in
S under δ, that is, X i :=

�

p ∈ X | δ(p, ci)≤ δ(p, c j)
	

(ties are broken arbitrarily). Assuming the nearest neighbor
of each point of X in S is unique (under distance function δ), S defines a k-clustering of X . Sometimes it is more
convenient to denote a k-clustering by its set of centers S.

The quality of a clustering S of X is defined using a cost function $(X , S); cost function $ depends on the
distance function δ, so sometimes we may use the notation $δ to emphasize the underlying distance function. The
goal is to compute S∗ := argminS $(X , S) where the minimum is taken over all subsets S ⊂ Rd of k points. Several
different cost functions have been proposed, leading to various optimization problems. We consider the following
three popular variants:

• k-median clustering: the cost function is $(X , S) =
∑

p∈X δ(p, S).

• k-means clustering: the cost function is $(X , S) =
∑

p∈X (δ(p, S))2.

• k-center clustering: the cost function is $(X , S) =maxp∈X δ(p, S).

In some cases we wish S to be a subset of X , in which case we refer to the problem as the discrete k-clustering
problem. For example, the discrete k-median problem is to compute arg minS⊆X ,|S|=k

∑

p∈X δ(p, S). The discrete
k-means and discrete k-center problems are defined analogously.

Given point set X , distance function δ, and cost function $, we refer to (X ,δ, $) as a clustering instance. If $
is defined directly by the distance function δ, we use (X ,δ) to denote a clustering instance. Note that a center of a
set of points may not be unique (e.g. when δ is defined by the L1-metric and $ is the sum of distances) or it may
not be easy to compute (e.g. when δ is defined by the L2-metric and $ is the sum of distances).

Stability. Let X be a point set in Euclidean space Rd . For α≥ 1, a clustering instance (X ,δ, $δ) is α-stable
if for any perturbed distance function δ̃ (not necessary a metric) satisfying δ(p, q)≤ δ̃(p, q)≤ α ·δ(p, q) for all
p, q ∈ Rd , any optimal clustering of (X ,δ, $δ) is also an optimal clustering of (X , δ̃, $δ̃). Note that the cluster
centers as well as the cost of optimal clustering may be different for the two instances. We exploit the following
property of stability, which follows directly from its definition.

Lemma 2.1. Let (X ,δ) be an α-stable clustering instance with α > 1. Then the optimal clustering O of (X ,δ) is
unique.

Proof: Assume for contradiction that there are two optimal clusterings O and O′. There must be a point p in X
that belongs to a cluster centered at c in O but is assigned to a different center c′ in O′. Consider the perturbed
distance δ̃ by scaling inter-cluster distances in O by an α factor while preserving all intra-cluster distances. Then

α ·δ(p, c)≤ α ·δ(p, c′) = δ̃(p, c′)≤ δ̃(p, c) = δ(p, c),

where the first inequality is by definition of clustering O, the second inequality is by definition of clustering O′

still being optimal under δ̃ by α-stability, and the two equalities are follows from how the perturbed distance is
defined. This give a contradiction as long as α > 1. �
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Metric approximations. The next lemma, which we rely on heavily throughout the paper, is the observation
that a change of metric preserves the optimal clustering as long as the new metric is a β-approximation of the
original metric satisfying β < α.

Lemma 2.2. Given point set X , let δ and δ′ be two metrics satisfying δ(p, q)≤ δ′(p, q)≤ β ·δ(p, q) for all p and
q in X for some β . Let (X ,δ) be an α-stable clustering instance with α > β . Then the optimal clustering of (X ,δ)
is also the optimal clustering of (X ,δ′), and vice versa. Furthermore, (X ,δ′) is an (α/β)-stable clustering instance.

Proof: Because (X ,δ) is α-stable for α > β , the optimal clustering of (X ,δ) is also an optimal clustering of
(X ,δ′) by taking δ′ to be the perturbed distance. Now, for an arbitrary perturbed distance δ̃′ satisfying δ′(p, q)≤
δ̃′(p, q)≤ (α/β) ·δ′(p, q) for all p, q ∈ X , one has

δ(p, q)≤ δ′(p, q)≤ δ̃′(p, q)≤
α

β
·δ′(p, q)≤ α ·δ(p, q),

and therefore the optimal clustering O of (X ,δ) and (X ,δ′) is must be an optimal clustering of (X , δ̃′), proving
that (X ,δ′) is (α/β)-stable. Providing α > β , the optimal clustering of (X ,δ′) is again unique by Lemma 2.1; in
other words, the optimal clustering of (X ,δ′) is by definition equal to the optimal clustering of (X ,δ). �

Polyhedral metric. In light of the metric approximation lemma, we would like to approximate the Euclidean
metric without losing too much stability, using a collection of convex distance functions generalizing the L∞-metric
in Euclidean space. Let N ⊆ Sd−1 be a centrally-symmetric set of γ unit vectors (that is, if u ∈ N then −u ∈ N)
such that for any unit vector v ∈ Sd−1, there is a vector u ∈ N within angle arccos(1− ε) = O(

p
ε). The number

of vectors needed in N is known to be O(ε−(d−1)/2). We define the polyhedral metric δN : Rd ×Rd → R≥0 to be
δN(p,q) :=maxu∈N 〈p− q, u〉.

Since N is centrally symmetric, δN is symmetric and thus a metric. The unit ball under δN is a convex
polyhedron, thus the name polyhedral metric. By construction, an easy calculation shows that for any p and
q in Rd , ‖p − q‖ ≥ δN (p, q) ≥ (1 − ε) · ‖p − q‖. By scaling each vector in N by a 1 + ε factor, we can ensure
that (1+ ε) · ‖p − q‖ ≥ δN (p, q) ≥ ‖p − q‖. By taking ε to be small enough, the optimal clustering for α-stable
clustering instance (X ,‖·‖, $) is the same as that for (X ,δN , $) by Lemma 2.2, and the new instance (X ,δN , $) is
(1− ε)α-stable if the original instance (X ,‖·‖, $) is α-stable.

Center proximity. A clustering instance (X ,δ) satisfies α-center proximity property [16] if for any distinct
optimal clusters X i and X j with centers ci and c j and any point p ∈ X i , one has α ·δ(p, ci)< δ(p, c j). Awasthi, Blum,
and Sheffet showed that any α-stable instance satisfies α-center proximity [16, Fact 2.2] (also [12, Theorem 3.1]
under metric perturbation). Optimal solutions of α-stable instances satisfy the following separation properties.2

• α-center proximity implies that (α− 1) ·δ(p, ci)< δ(p, q) for any p ∈ X i and any q 6∈ X i . For α≥ 2, a point
is closer to its own center than to any point of another cluster.3

• For α≥ 2+
p

3, α-center proximity implies that δ(p, p′)< δ(p, q) for any p, p′ ∈ X i and any q 6∈ X i . In other
words, from any point p in X , any intra-cluster distance to a point p′ is shorter than any inter-cluster distance
to a point q.3

We make use of the following stronger intra-inter distance property on α-stable instances, which allows us to
compare any intra-distance between two points in X i and any inter-distance between a point in X i and a point in
X j .

Lemma 2.3. Let (X ,δ) be an α-stable instance, α > 1, and let X1 be a cluster in an optimal clustering with
q ∈ X \ X1 and p, p′, p′′ ∈ X1. If δ is a metric, then δ(p, p′)≤ δ(p′′, q) for α≥ 2+

p
5. If δ is the Euclidean metric

in Rd , then δ(p, p′)≤ δ(p′′, q) for α≥ 2+
p

3.

Proof. See Appendix A.1.
Finally, we note that it is enough to consider the discrete version of the clustering problem for stable instances.

2We give an additional list of known separation properties in Appendix A.1.
3They are known as weak center proximity [22] and strict separation property [20,24] respectively.
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Lemma 2.4. For any α-stable instance (X ,δ, $δ) with α≥ 2+
p

3, any continuous optimal k-clustering is a discrete
optimal k-clustering and vice versa.

Proof: Consider O to be an optimal solution of an arbitrary α-stable instance (X ,δ) in the continuous setting;
denote the centers in O as o1, . . . , ok. Define solution O′ to be the set of centers nn1, . . . , nnk, where nni is defined
to be the nearest point of oi in X . By definition O′ is a discrete solution as all centers nni lie in X . We now argue
that O′ is in fact an optimal solution of the k-clustering instance (X ,δ).

First we show that nni must be a point that was assigned to oi in clustering O. Assume for contradiction that
nni was in a different cluster with center o j . Let p be an arbitrary point in cluster Oi . By center proximity one
has δ(p, nni)> (α− 1) ·δ(p, oi). But then this implies (α− 1) ·δ(p, oi)< δ(p, nni)≤ δ(p, oi) +δ(oi , nni), that is,
δ(p, oi)≤ (α− 2) ·δ(p, oi)< δ(oi , nni) given α≥ 3, a contradiction.

Now again take an arbitrary point p in some arbitrary cluster Oi . Compare the distances δ(p, nni) and δ(p, nn j)
for any other center nn j in O′. By [24, Theorem 8] for α > 2+

p
3 any intra-cluster distance is smaller than any

inter-cluster distance. Thus, δ(p, nni)< δ(p, nn j) since nni lies in Oi and nn j lies in Oj . Therefore the clustering
formed by the centers in O′ is identical to the clustering of O, thus proving that O′ is an optimal solution of
(X ,δ). �

3 Efficient Dynamic Programming

We now describe a simple, efficient algorithm for computing the optimal clustering for the k-means, k-center,
and k-median problem assuming the given instance is α-stable for α≥ 2+

p
3. Roughly speaking, we make the

following observation: if there are at least two clusters, then the two endpoints of the longest edge of the minimum
spanning tree of X belong to different clusters, and no cluster has points in both subtrees of the minimum spanning
tree delimited by the longest edge. We describe the dynamic programming algorithm in Section 3.1 and then
describe the procedure for computing cluster costs in Section 3.2. We summarize the results in this section by the
following theorem.

Theorem 3.1. Let X be a set with n points lying in Rd and k ≥ 1 an integer. If the k-means, k-median, or k-center
instance for X under the Euclidean metric is α-stable for α≥ 2+

p
3+ ε for any constant ε > 0, then the optimal

clustering can be computed in O(nk2 + n polylog n) time. For d = 2 the assumption can be relaxed to α≥ 2+
p

3.

3.1 Fast Dynamic Programming

The following lemma is the key observation for our algorithm.

Lemma 3.2. Let (X ,δ, $) be an α-stable k-clustering instance with α ≥ 2 +
p

3 and k ≥ 2, and let T be the
minimum spanning tree of X under metric δ. Then (1) The two endpoints u and v of the longest edge e in T do
not belong to the same cluster; (2) each cluster lies in the same connected component of T \ {e}.

Proof: Assume for contradiction that the longest spanning tree edge uv belongs to the same cluster X i in the
optimal k-clustering O. Since k > 1, there is at least one other cluster X j of O with a spanning tree edge x y
connecting X i to X j . Given α≥ 2+

p
3, d(u, v)< d(x , y) by Lemma 2.3, a contradiction. The second statement

follows from Angelidakis et al. [12, Lemma 4.1]. �

Algorithm. We fix the metric δ and the cost function $. For a subset Y ⊆ X and for an integer j between 1
and k− 1, let µ(Y ; j) denote the optimal cost of an j-clustering on Y (under δ and $). Recall that our definition
of j-clustering required all clusters to be non-empty, so it is not defined for |Y |< j. For simplicity, we assume that
µ(Y ; j) =∞ for |Y |< j. Let T be the minimum spanning tree on X under δ, let uv be the longest edge in T ; let
Xu and X v be the set of vertices of the two components of T \ {uv}. Then µ(X ; k) satisfies the following recurrence
relation:

µ(X ; k) =







µ(X ; 1) if k = 1,

∞ if k > |X |,
min1≤i<k {µ(Xu; i) +µ(X v; k− i)} if |X |> 1 and k > 1.

(1)
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Using recurrence (1), we compute µ(X ; k) as follows. Let R be a recursion tree, a binary tree where each node v
in R is associated with a subtree Tv of T . If v is the root of R, then Tv = T . Recursion tree R is defined recursively
as follows. Let X v ⊆ X be the set of vertices of T in Tv . If |X v | = 1, then v is a leaf. Each interior node v of T is also
associated with the longest edge ev of Tv . Removal of ev decomposes Tv into two connected components, each of
which is associated with one of the children of v. After having computed T , R can be computed in O(n log n) time
by sorting the edges in decreasing order of their costs.4

For each node v ∈ R and for every i between 1 and k− 1, we compute µ(X v; i) as follows. If v is a leaf, we
set µ(X v; 1) = 0 and µ(X v; i) =∞ otherwise. For all interior nodes v, we compute µ(X v; 1) using the algorithms
described in Section 3.2. Finally, if v is an interior node and i > 1, we compute µ(X v; i) using the recurrence
relation (1). Recall that if w and z are the children of v, then µ(Xw;`) and µ(Xz; r) for all ` and r have been
computed before we compute µ(X v; i).

Let τ(n) be the time spent in computing T plus the total time spent in computing µ(X v , 1) for all nodes v ∈ R.
Then the overall time taken by the algorithm is O(nk2 +τ(n)). What is left is to compute the minimum spanning
tree T and all µ(X v , 1) efficiently.

3.2 Efficient Implementation

In this section, we show how to obtain the minimum spanning tree and compute µ(X v; 1) efficiently for 1-mean,
1-center, and 1-median when X ⊆ Rd . We can compute the Euclidean minimum spanning tree T in O(n log n) time
in R2 [59]. We can then compute µ(X v; 1) efficiently either under Euclidean metric (for 1-mean), or switch to the
L1-metric and compute µ(X v; 1) efficiently using Lemma 2.2 (for 1-center and 1-median).

There are two difficulties in extending the 2D data structures to higher dimensions. No near-linear time
algorithm is known for computing the Euclidean minimum spanning tree for d ≥ 3, and we can work with the
L1-metric only if α≥

p
d (Lemma 2.2). We address both of these difficulties by working with a polyhedral metric

δN . Let α ≥ 2+
p

3+ Ω(1) be the stability parameter. By taking the number of vectors in N (defined by the
polyhedral metric) to be large enough, we can ensure that (1− ε)‖p− q‖ ≤ δN (p, q)≤ ‖p− q‖ for all p, q ∈ Rd .
By Lemma 2.2, X is an α-stable instance under δN for α≥ 2+

p
3. We first compute the minimum spanning tree

of X in O(n polylog n) time under δN using the result of Callahan and Kosaraju [26], and then compute µ(X v , 1).

Data structure. We compute µ(X v; 1) in a bottom-up manner. When processing a node v of R, we maintain a
dynamic data structure Ψv on X v from which µ(X v; 1) can be computed quickly. The exact form of Ψv depends on
the cost function to be described below. Before that, we analyze the running time τ(n) spent on computing every
µ(X v; 1). Let w and z be the two children of v. Suppose we have Ψw and Ψz at our disposal and suppose |Xw| ≤ |Xz |.
We insert the points of Xw into Ψz one by one and obtain Ψv from which we compute µ(X v; 1). Suppose Q(n) is the
update time of Ψv as well as the time taken to compute µ(X v; 1) from Ψv . The total number of insert operations
performed over all nodes of R is O(n log n) because we insert the points of the smaller set into the larger set at
each node of R [45, 58]. Hence τ(n) = O(Q(n) · n log n). We now describe the data structure for each specific
clustering problem.

1-mean. We work with the L2-metric. Here the center of a single cluster consisting of X v is the centroid
σv :=

�

∑

p∈X v
p
�

/|X v |, and µ(X v; 1) =
∑

p∈X v
‖p‖2 − |X v | · ‖σv‖2. At each node v, we maintain

∑

p∈X v
p and

∑

p∈X v
‖p‖2. Point insertion takes O(1) time so Q(n) = 1.

1-center. As mentioned in the beginning of the section, we can work with the L1-metric for d = 2. We wish
to find the smallest L1-disc (a diamond) that contains X v . Let e+ = (1,1) and e− = (−1,1). Then the radius ρv of
the smaller L1-disc containing X v is

ρv =
1
2

max
§

max
p∈X v

〈p, e+〉 −min
p∈X v

〈p, e+〉,max
p∈X v

〈p, e−〉 −min
p∈X v

〈p, e−〉
ª

. (2)

We maintain the four terms maxp∈X v
〈p, e+〉, minp∈X v

〈p, e+〉, maxp∈X v
〈p, e−〉, and minp∈X v

〈p, e−〉 at v. A point
can be inserted in O(1) time and ρv can be computed from these four terms in O(1) time. Therefore, Q(n) = O(1).

4Tree R is nothing but the minimum spanning tree constructed by Kruskal’s algorithm.
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1-center in higher dimensions For d > 2, we work with a polyhedral metric δN with N = 2O(d). For a node
v, we need to compute the smallest ball B(X v) under δN that contains X v . We need a few geometric observations
to compute the smallest enclosing ball efficiently.

For each u ∈ N , let Hu be the halfspace 〈x , u〉 ≤ 1, that is, the halfspace bounded by the hyperplane tangent to
Sd−1 at u and containing the origin. Define Q :=

⋂

u∈N Hu. A ball of radius λ centered at p under δN is P +λQ.
For a vector u ∈ N , let pu := arg maxp∈xv

〈p, u〉 be the maximal point in direction u. Set X v :=
�

pu | u ∈ N
	

. The
following simple lemma is the key to computing B(X v).

Lemma 3.3. Any δN -ball that contains X v also contains X v .

By Lemma 3.3, it suffices to compute B(X v). The next observation is that B(X v) has a basis of size d + 1, i.e.
there is a subset Y of d + 1 points of X v such that B(Y ) = B(X v) = B(X v). One can try all possible subsets of X v in
O(γd+1) = 2O(d2) time.5 We note that X v can be maintained under insertion in O(γ) = 2O(d) time, and we then
re-compute B(X v) in 2O(d2) time. Hence, Q(n) = O(1).

1-median. Similar to 1-center, we work with the polyhedral metric. Fix a node v of T . For a point x ∈ Rd , let
Fv(x) =

∑

p∈X v
δN (x , p) which is a piecewise-linear function. Our goal is to compute ξ∗v = argminx∈Rd Fv(x). Our

data structure is a dynamic range-tree [3] used for orthogonal range searching that can insert a point in O(log n)
time. Using multi-dimensional parametric search [5], ξ∗v can be computed in O(poly log n) time after each update.

1-median in higher dimensions For simplicity, we describe the data structure for d = 2. It extends to high
dimensions in a straightforward manner.

u0

u1u2

u3

u4 u5

w0

w1

w2

w3

w4

w5

C1

1

Figure 3.1. Polyhedral metric defined by N = {u0, . . . u5}, with C1 corresponding to Ψ1.

Fix a node v. We describe the data structure for maintaining ξ∗v under insertion of points 6 Let N =
{u0, . . . , ur−1} ⊂ S1 be the set of unit vectors that define the metric δN . We partition the plane into a family
C = {C0, . . . , Cr−1} of r cones such that for a point p ∈ Ci , δN (p, 0) = 〈p, ui〉. Ci is defined by unit vectors wi−1, wi ,
where w j is the unit vector in direction (u j−1+u j)|2; see Figure 3.1. For a point x ∈ R2 and j < r, let C j(x) = C j+ x .
Then,

Fv(x) =
r−1
∑

i=1

∑

p∈Ci(x)∩X v

δN (p, x) =
r−1
∑

i=0

∑

p∈Ci(x)∩X v

〈p− x , ui〉

=
r−1
∑

i=0

∑

p∈Ci(x)∩X v

〈p, ui〉 −
r
∑

i=0

|Ci(x)∩ X v | · 〈x , ui〉.

5A more complex algorithm can compute B(X v) in γ · 2O(d) = 2O(d) time, but we ignore this improvement.
6We note that ξ∗v may not be unique. The minimum may be realized of a convex polygon.
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We note that Fv(x) is a piecewise-linear convex function. We construct a separate data structure Ψi for each i
so that for any x ∈ R2, Ψi computes αi(x) =

∑

p∈Ci(x)∩X v
〈p, ui〉 and βi(x) = |Ci(x)∩ X v |. Ψi is basically a dynamic

2D range tree in which the coordinates of a point are described with wi−1, wi as the coordinate axes; see [35].
Ψi requires O(n log n) space, a query can be answered in O(log2 n) time, and a point can be inserted in O(log2 n)
amortized time. Hence, the overall query and update time is O(r log2 n). We note that αi ,βi for i < r can be used
to compute the linear function Lv,x that represents x (recall that Fv is piecewise linear). Let Ψ = (Ψ0, . . . ,Ψr−1)
denote the overall data structure, and let Q0(x) be the above query procedure on Ψ.

Using Ψ,Q0(·), and multi-dimensional parametric search, we compute ξ∗v as follows. For a line ` in R2, let
ξ∗v,` = arg minx∈` Fv(x). We first describe how to compute ξ∗v,`. Let q be a point on `. By invoking Q0(q) on Ψ,
we can compute Fv(q) as well as Lv,q. Using Lv,q, we can determine whether q = ξ∗v,l , q lies to left of ξ∗v,l , or q
lies to the right of ξ∗v,l . We refer to this as the “decision” procedure. In order to compute ξ∗v , we simulate Q0
generically on ξ∗v,l without knowing its value and using Q0 on known points as the decision procedure at each step
of this generic procedure. More precisely, at each step, a Ψi compares the wi−1 or wi-coordinate, say wi-coordinate
ξv,x , with a real value ∆. Let q be the intersection point of ` and the line wi =∆. By invoking Q0(q) on Ψ, we
can determine in O(r log2 n) time whether q lies to the left or right of ξ∗v , which in turn determines whether the
wi-coordinate of ξ∗v,` is smaller or greater than ∆. (If q = ξ∗x ,`, then we have found ξ∗x ,`). Hence, each step of

the decision procedure can be determined in O(r log2 n) time. The total time taken by the generic procedure is
O(r2 log4 n). The parametric search technique ensures that the generic procedure will query with ξ∗v,` as one of
the steps, so the decision procedure will detect this and return ξ∗v,`.

Let Q1(`) denote the above procedure to compute ξ∗v,`. By simulating Q0 on ξ∗v generically but now using Q1

as the decision procedure, we can compute ξ∗v in O(r3 log6 n) time. Hence, we can maintain ξ∗v in O(log6 n) time
under insertion of a point. In higher dimensions, Q0 takes O(logd n) time in Rd . So the parametric search will take
O(logd(d+1) n) time to compute ξ∗v .

4 k-Median: Single-Swap Local Search

We customize the standard local-search framework for the k-clustering problem [32,33,41]. In order to recover
the optimal solution, we must define near-optimality more carefully. Let (X ,δ) be an instance of α-stable k-median
in R2 for α > 5. By Lemma 2.4, it suffices to consider the discrete k-median problem In Section 4, we describe a
simple local-search algorithm for finding the optimal clustering of (X ,δ). In Section 4 we show that the algorithm
terminates within O(k log(n∆)) iterations. We obtain the following.

Theorem 4.1. Let (X ,δ) be an α-stable instance of the k-median problem for some α > 5 where X is a set of n
points in R2 equipped with Lp-metric δ. The 1-swap local search algorithm terminates with the optimal clustering
in O(k log(n∆)) iterations.

Local-search algorithm. The local-search algorithm maintains a k-clustering induced by a set S of k cluster
centers. At each step, it finds a pair of points x ∈ X and y ∈ S such that $(X , S + x − y) is minimized. If
$(X , S+ x − y)≥ $(X , S), it stops and returns the k-clustering induced by S. Otherwise it replaces S with S+ x − y
and repeats the above step. The pair (x , y) will be referred to as a 1-swap.

Local-search analysis. The high-level structure of our analysis follows Friggstad et al. [41], however new
ideas are needed for 1-swap. In this subsection, we denote a k-clustering by the set of its cluster centers. Let S be
a fixed k-clustering, and let O be the optimal clustering. For a subset Y ⊆ X , we use $(Y) and $∗(Y) to denote
$(Y, S) and $(Y, O), respectively. Similarly, for a point p ∈ X , we use nn(p) and nn∗(p) to denote the nearest
neighbor of p in S and in O, respectively; define δ(p) to be δ(p, S) and δ∗(p) to be δ(p, O). We partition X into
four subsets as follows:

• X00 :=
�

p ∈ X | nn(p) ∈ S \O, nn∗(p) ∈ O \ S
	

;

• X01 :=
�

p ∈ X | nn(p) ∈ S \O, nn∗(p) ∈ S ∩O
	

;

• X10 :=
�

p ∈ X | nn(p) ∈ S ∩O, nn∗(p) ∈ O \ S
	

;
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Figure 4.1. Illustration of candidate swaps S in R2. The blue dots belong to set S, the red dots belong to set O; the only purple dot is in S ∩O.
The thick gray segments indicate pairs inside the stars; each star has exact one blue dot as its center. The black pairs are the candidate swaps.
Notice that the partitions of S and O form connected components.

• X11 :=
�

p ∈ X | nn(p) ∈ S ∩O, nn∗(p) ∈ S ∩O
	

.

Observe that for any point p in X11, nn(p) = nn∗(p) and $(p) = $∗(p); for any point p in X01, one has $(p)≤ $∗(p);
and for any point p in X10, one has $(p)≥ $∗(p). Costs δ(p) and δ∗(p) are not directly comparable for point p in
X00. A k-clustering S is C -good for some parameter C ≥ 0 if $(X )≤ $∗(X ) + C · $∗(X00).

Lemma 4.2. Any C-good clustering S for an α-stable clustering instance (X ,δ, $) must be optimal for α≥ C + 1.

Proof: Define a perturbed distance function δ̃ : X × X → R≥0 with respect to the given clustering S as follows:

δ̃(p′, p) :=

¨

α ·δ(p′, p) if p 6= nn(p′),
δ(p′, p) otherwise.

Note that δ̃ is not symmetric. Let $̃(·, ·) denote the cost function under the perturbed distance function δ̃. The
optimal clustering under perturbed cost function is the same as the original optimal clustering O by the stability
assumption. Since nn(p) = nn∗(p) if and only if p ∈ X11, the cost of O under the perturbed cost can be written as:

$̃(X , O) = α · $(X00, O) +α · $(X01, O) +α · $(X10, O) + $(X11, O).

By definition of perturbed distance δ̃, $̃(X , S) = $(X , S). Now, by the assumption that clustering S is C-good,

$̃(X , S) = $(X , S)≤ $(X , O) + C · $(X00, O)
≤ (C + 1) · $(X00, O) + $(X01, O) + $(X10, O) + $(X11, O)

≤ $̃(X , O);

the last inequality follows by taking α≥ C + 1. This implies that S is an optimal clustering for (X , δ̃), and thus is
equal to O. �

Next, we prove a lower bound on the improvement in the cost of a clustering that is not C-good after performing
a 1-swap. Following Arya et al. [14], define the set of candidate swaps S as follows: For each center i in S,
consider the star Σi centered at i defined as the collection of pairs Σi := {(i, j) ∈ S × O | nn( j) = i}. Denote
center( j) to be the center of the star where j belongs; in other words, center( j) = i if j belongs to Σi .

For i ∈ S, let Oi := { j ∈ O | center( j) = i} be the set of centers of O in star Σi . If |Oi | = 1, then we add the
only pair (i, j) ∈ Σi to the candidate set S . Let S

∅
:= {i ∈ S | Oi =∅}. Let O>1 contain centers in O that belong to

a star of size greater than 1. We pick |O>1| pairs from S∅ ×O>1 such that each point of O>1 is matched only once
and each point of S∅ is matched at most twice and add them to S ; this is feasible because |S∅| ≥ |O>1|/2. Since
each center in O belongs to exactly one pair of S , |S |= k. By construction, if |Σi | ≥ 2, then i does not belong to
any candidate swap. See Figure 4.1.

Lemma 4.3. For each point p in X01, X10, or X11, the set of candidate swaps S satisfies
∑

(i, j)∈S

(δ(p)−δ′(p))≥ δ(p)−δ∗(p); (3)
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and for each point p in X00, the set of candidate swaps S satisfies

∑

(i, j)∈S

(δ(p)−δ′(p))≥ (δ(p)−δ∗(p))− 4δ∗(p), (4)

where $′ is the cost function on X defined with respect to S′ := S − i + j, and δ′(p) is the distance between p and
its nearest neighbor in S′.

Proof: For point p in X11, both nn(p) and nn∗(p) are in S′, so δ′(p) = δ(p) = δ∗(p). For point p in X01,
δ(p)≤ δ∗(p); when nn(p) is being swapped out by some in 1-swap S′, nn∗(p) must be in S′. For point p in X10,
δ(p)≥ δ∗(p); center nn(p) will never be swapped out by any 1-swap in S , so δ′(p)≤ δ(p). By construction of
S , there is exactly one choice of S′ that swaps nn∗(p) in; for that particular swap we have δ′(p) = δ∗(p). In all
three cases one has inequality (3). Our final goal is to prove inequality (4). Consider a swap (i, j) in S . There are
three cases to consider:

• j = nn∗(p). There is exactly one swap for which j = nn∗(p). In this case δ(p) ≤ δ∗(p), therefore δ(p)−
δ′(p)≥ δ(p)−δ∗(p).

• j 6= nn∗(p) and i 6= nn(p). Since nn(p) ∈ S′, δ′(p)≤ δ(p). Therefore δ(p)−δ′(p)≥ 0.

• j 6= nn∗(p) and i = nn(p). By construction, there are most two swaps inS that may swap out nn(p). We claim
that i 6= center(nn∗(p)). Indeed, if i = center(nn∗(p)), then by construction, Σi = {(i, nn∗(p))} because the
center of star of size greater than one is never added to a candidate swap. But this contradicts the assumption
that j 6= nn∗(p). The claim implies that center(nn∗(p)) ∈ S′ and thus δ′(p) ≤ δ(p, center(nn∗(p))). We
obtain a bound on δ(p, center(nn∗(p))) as follows:

δ(p, center(nn∗(p)))≤ δ(p, nn∗(p)) +δ(nn∗(p), center(nn∗(p)))
≤ δ∗(p) +δ(nn∗(p), nn(p))≤ δ∗(p) + (δ∗(p) +δ(p)) = δ(p) + 2δ∗(p).

Therefore, δ(p)−δ′(p)≥ δ(p)−δ(p, center(nn∗(p))). Putting everything together, we obtain:

∑

S′∈S

(δ(p)−δ′(p))≥ (δ(p)−δ∗(p)) + 0+ 2(δ(p)−δ(p)− 2δ∗(p)) = δ(p)− 5δ∗(p).

�

Using Lemma 4.3, we can prove the following.

Lemma 4.4. Let S be a k-clustering of (X ,δ) that is not C-good for some fixed constant C > 4+ ε with arbitrarily
small ε > 0. There is always a 1-swap S′ such that $′(X )− $∗(X )≤ (1− ε/(1+ ε)k) · ($(X )− $∗(X )), where $′ is
the cost function defined with respect to S′.

Proof: By Lemma 4.3 one has $(X )−$′(X )≥ ($(X )−$∗(X )−Ψ(X00))/k for some 1-swap S′ and its corresponding
cost function $′(·). Since S is not C-good, $(X )− $∗(X )> C · $∗(X00). Rearranging and plugging the definition of
Ψ(·), we have

$′(X )− $∗(X )≤ $(X )− $∗(X )− ($(X )− $∗(X )−Ψ(X00))/k
≤ $(X )− $∗(X )− ($(X )− $∗(X )− 4 · $∗(X00))/k
≤ $(X )− $∗(X )− ($(X )− $∗(X ) + (M − 1) · ($(X )− $∗(X ))− 4M · $∗(X00))/Mk

≤
�

1−
ε

(1+ ε)k

�

· ($(X )− $∗(X )),

where the last inequality holds by taking M to be arbitrarily large (say M > 1+ 1/ε). �
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Figure 5.1. L1 Voronoi diagram V , quadrant decomposition Ṽ , and trapezoid decomposition V ‖.

5 Efficient Implementation of Local Search

We describe an efficient implementation of each step of the local-search algorithm in this section. By Lemma 2.2,
it suffices to implement the algorithm using a polyhedral metric δN . We show that each step of 1-swap can be
implemented in O(nk2d−1 polylog n) time under the assumption that α > 5. We obtain the following:

Theorem 5.1. Let (X ,δ) be an α-stable instance of the k-median problem where X ⊂ Rd and δ is the Euclidean met-
ric. For α > 5, the 1-swap local search algorithm computes the optimal k-clustering of (X ,δ) in O(nk2d−1 polylog n)
time.

For simplicity, we present a slightly weaker result for d = 2 using the L1-metric, as it is straightforward to
implement and more intuitive. Using the L1-metric requires α > 5

p
2. The extension to higher dimensional

Euclidean space using the polyhedral works for α > 5.

Voronoi diagram under L1 norm. First, we fix a point x ∈ X \S to insert and a center y ∈ S to drop. Define
S′ := S + x − y. We build the L1 Voronoi diagram V of S′. The cells of V may not be convex, but they are
star-shaped: for any c ∈ S′ and for any point x ∈ Vor(c), the segment cx lies completely in Vor(c). Furthermore, all
line segments on the cell boundaries of V must have slopes belonging to one of the four possible values: vertical,
horizontal, diagonal, or antidiagonal.

Next, decompose each Voronoi cell Vor(c) into four quadrants centered at c. Denote the resulting subdivision
of V as Ṽ . We compute a trapezoidal decomposition V ‖ of the diagram Ṽ by drawing a vertical segment from
each vertex of Ṽ in both directions until it meets an edge of V ; V ‖ has O(k) trapezoids, see Figure 5.1. For each
trapezoid τ ∈ V ‖, let Xτ := X ∩τ. The cost of the new clustering S′ can be computed as $(X , S′) =

∑

τ∈V ‖ $(Xτ, S′).

Range-sum queries. Now we discuss how to compute $(Xτ, S′). Each trapezoid τ in cells Vor(c) is associated
with a vector u(τ) ∈ {±1}2, depending on which of the four quadrants τ belongs to with respect to the axis-parallel
segments drawn passing through the center c of the cell. If τ lies in the top-right quadrant then u(τ) = (1,1).
Similarly if τ lies in the top-left (resp. bottom-left, bottom-right) then u(τ) = (−1,1) (resp. (−1,−1), (1,−1)).

$(Xτ, S′) =
∑

x∈Xτ

‖x − c‖1 =
∑

x∈Xτ

〈x − c, u(τ)〉=
∑

x∈Xτ

〈x , u(τ)〉 − |Xτ| · 〈c, u(τ)〉. (5)

We preprocess X into a data structure that answers the following query:

• TRAPEZOIDSUM(τ, u): Given a trapezoid τ and a vector u ∈ {±1}2, return |X ∩τ| as well as
∑

x∈X∩τ〈x , u〉.

The above query can be viewed as a 3-oriented polygonal range query [35]. We construct a 3-level range
tree Ψ on X . Omitting the details (which can be found in [35]), Ψ can be constructed in O(n log2 n) time
and uses O(n log2 n) space. Each node ξ at the third level of Ψ is associated with a subset Xξ ⊆ X . We store
w(ξ, u) :=

∑

x∈Xξ
〈x , u〉 for each u ∈ {±1}2 and |Xξ| at ξ. For a trapezoid τ, the query procedure identifies in

O(log3 n) time a set Ξτ of O(log3 n) third-level nodes such that X ∩τ= ∪ξ∈ΞτXξ and each point of X ∩τ appears
as exactly one node of Ξτ. Then

∑

x∈Xτ
〈x , u〉=

∑

ξ∈Ξτ
w(ξ, u) and |Xτ|=

∑

ξ∈Ξτ
|Xξ|.
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1-SWAP(X , S):
input: Point set X and centers S
for each point x ∈ X \ S and center y ∈ S:

S′← S + x − y
V ← L1 Voronoi diagram of S′

Ṽ ← decompose each cell Vor(c) into four quadrants centered at c
V ‖← trapezoidal decomposition of Ṽ
for each trapezoid τ ∈ V ‖:

$(Xτ, S′)← TRAPEZOIDSUM(τ, u(τ))
$(X , S′)←

∑

τ∈V ‖ $(Xτ, S′)
return (x , y) with the lowest $(X , S + x − y)

Figure 5.2. Efficient implementation of 1-swap under 1-norm.

With the information stored at the nodes in Ξτ, TRAPEZOIDSUM(τ, u) query can be answered in O(log3 n) time.
By performing TRAPEZOIDSUM(τ, u(τ)) query for all τ ∈ V ‖, $(Xτ, S′) can be computed in O(k log3 n) time since
V ‖ has a total of O(k) trapezoids.

We summarize the implementation of 1-swap algorithm in Figure 5.2. The 1-swap procedure considers at most
nk different k-clusterings. Therefore we obtain the following.

Lemma 5.2. Let (X ,δ, $) be a given clustering instance where δ is the L1 metric, and let S be a given k-clustering.
After O(n log n) time preprocessing, we find a k-clustering S′ := S + x − y minimizing $(X , S′) among all choices
of (x , y) in O(nk2 log3 n) time.

5.1 Cost of 1-swap in higher dimensions

The 1-SWAP algorithm can be extended to higher dimensions using the theory of geometric arrangements [6,7,57].
The details are rather technical, so we only sketch the proofs here. As in Section 3.2, instead of working with
the L1 metric, we work with a polyhedral metric. Let the centrally-symmetric set N ⊆ Sd−1 and the convex
polyhedron Q be defined as in Section 3.2. The set N partitions Rd into a set of O(1) polyhedral cones denoted by
C :=

�

C1, . . . , Cγ
	

, each with 0 as its apex so that all points (when viewed as vectors) in a cone have the same
vector u of N as the nearest neighbor under the cosine distance, i.e. the polyhedral distance δN (0, u) is realized by
u. The total complexity of C is O(γ) = O(1).

We show that X can be preprocessed into a data structure so that $(X , S), the cost of the k-clustering induced
by any k-point subset S of X under δN can be computed in O(k2d polylog(n)) time.

Let S ⊂ X be a set of k points. We compute the Voronoi diagram VD(S) of S under the distance function
δN . More precisely, for a point c ∈ S, let fc : Rd → R≥0 be the function fc(x) := δN (c, x). The graph of fc is a
polyhedral cone in Rd+1 whose level set for the value λ is the homothet copy of Q, c +λQ. Voronoi diagram VD(S)
is the minimization diagram of function fc over every point c in S; that is, the projection of the lower envelope
f (x) :=minc fc(x) onto the hyperplane Xd+1 = 0 (identified with Rd). We further decompose each Voronoi cell
Vor(c) of VD(S) by drawing the family of cones in C from c; put it differently, by drawing the cone c + C j for
1≤ j ≤ k, within the cell Vor(c). Each cell τ in the refined subdivision of Vor(c) has the property that for all points
x ∈ τ, δN (x , c) is realized by the vector of N—by u j if x ∈ c + C j . Let Ṽ denote the resulting refinement of VD(S).

Finally, we compute the vertical decomposition of each cell in Ṽ , which is the extension of the trapezoidal
decomposition to higher dimensions; see [48,57] for details. Let V ‖ denote the resulting convex subdivision of Rd .
It is known that V ‖ has O(k2d−2) cells, that it can be computed in O(k2d−2) time, and that each cell of V ‖ is convex
and bounded by at most 2d facets, namely it is the intersection of at most 2d halfspaces. Using the same structure
of the distance function δN , we can show that there is a set U of O(γd) = O(1) unit vectors such that each facet of
a cell in V ‖ is normal to a vector in U , and that U depends only on N and not on S.

With these observations at hand, we preprocess X into a data structure as follows: we fix a 2d-tuple ū :=
(u1, . . . , u2d) ∈ U2d . Let Rū be the set of all convex polyhedra formed by the intersection of at most 2d halfspaces
each of which is normal to a vector in ū. Using a multi-level range tree (consisting of 2d levels), we preprocess X
in O(n log2d n) time into a data structure Ψū of size O(n log2d−1 n) for each ū, so that for a query cell τ ∈ Rū and
for a vector u ∈ N , we can quickly compute the total weight w(τ, u) =

∑

p∈X∩τ〈p, u〉 in O(log2d n) time.
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For a given S, we compute the cost $(X , S) as follows. We first compute VD(S) and V ‖(S). For each cell
τ ∈ V ‖(S) lying in Vor(c), let u(τ) ∈ N be the vector u j such that τ ⊆ c + C j . As in the 2d case,

$(X , S) =
∑

c

∑

p∈Vor(c)

δN (p, c) =
∑

c

∑

τ∈V ‖(S)∩Vor(c)

∑

p∈X∩τ
〈p− c, u(τ)〉

=
∑

c

∑

τ∈V ‖(S)∩Vor(c)

 

∑

p∈X∩τ
〈p, u(τ)〉 − |X ∩τ| · 〈c, u(τ)〉

!

.

Fix a cell τ ∈ V ‖(S)∩Vor(c). Suppose τ ∈ Rū. Then by querying the data structure Ψū with τ and u(τ), we can
compute w(τ, u) =

∑

p∈X∩τ〈p, u(τ)〉 in O(logd n) time. Repeating this procedure over all cells of V ‖(S), $(X , S)
can be computed in O(k2d−1 log2d n) time, after an initial preprocessing of O(n log2d n) time.

6 Coresets and an Alternative Linear Time Algorithm

In this section we provide an alternative way to compute the optimal k-clustering, where the objective can be
any of k-center, k-means, or k-median. Here we are aiming for a running time linear in n, but potentially with
exponential dependence on k. With such a goal we can further relax the stability requirement using the idea
of coresets. When there is strict separation between clusters (when α ≥ 2+

p
3), we can recover the optimal

clustering. We note that this provides a significant improvement to the stability parameter needed for k-median
over the local search approach, albeit with worse running time dependence on k.

Coresets. Let (X ,δ) be a clustering instance. The radius of a cluster X i is the maximum distance between
its center and any point in X i . Let S be a given k-clustering of (X ,δ), with clusters X1, . . . , Xk, centers c1, . . . , ck,
and radius r1, . . . , rk, respectively. Let O be the optimal k-clustering of (X ,δ), with clusters X ∗1, . . . , X ∗k , centers
c∗1, . . . , c∗k and radius r∗1 , . . . , r∗k , respectively. Let B(c, r) denote the ball centered at c with radius r under δ.

A point set Q ⊆ X is a multiplicative ε-coreset of X if every k-clustering S of Q satisfies

X ⊆
⋃

i

B (ci , (1+ ε) · ri) .

Lemma 6.1. Let (X ,δ) be a (1 + ε)-stable clustering instance with optimal k-clustering O. A multiplicative
ε-coreset of X contains at least one point from each cluster of O.

Proof: Let Q be a multiplicative ε-coreset of X . We start by defining a k-clustering SQ of Q. For each point q in Q,
assign q to its cluster in the optimal clustering O. This results in some clustering with at most k clusters. Insert
additional empty clusters to create a valid k-clustering SQ of Q.

Assume that Q does not contain any points from some optimal cluster X ∗i of O. Consider the center point c∗i of
X ∗i . By the fact that Q is a multiplicative ε-coreset, c∗i must be contained in a ball resulting from the expansion of
each cluster of SQ by an ε-fraction of its radius. In notation, let the cluster of SQ whose expansion covers c∗i be X j ,
with center c j and radius r j . Then one has δ(c j , c∗i )≤ (1+ ε) · r j .

Because SQ is constructed by restricting the optimal clustering O on Q, cluster X j is a subset of some optimal
cluster in O: X j ⊆ X ∗j . This implies r j ≤ r∗j . Additionally, c j and c∗i lie in different optimal clusters, as c j is in Q and
therefore does not lie in X ∗i . So by (1+ ε)-center proximity:

δ(c j , c∗i )> (1+ ε) ·δ(c j , c∗j ) = (1+ ε) · r
∗
j ≥ (1+ ε) · r j ,

contradicting to δ(c j , c∗i )≤ (1+ ε) · r j . Therefore, Q must contain at least one point from each optimal cluster. �

Algorithm. We first compute a constant approximation to the clustering problem instance (X ,δ). We then
recursively construct a multiplicative coreset of size O(k!/εdk) [4,44]. By taking ε = 1, the coreset has size O(k!)
and for 2-stable instances, the multiplicative 2-coreset Q contains at least one point from every optimal cluster by
Lemma 6.1. After obtaining this coreset, we then need to reconstruct the optimal clustering. By [24, Corollary 9],
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when our instance satisfies strict separation (α≥ 2+
p

3), taking any point from each optimal cluster induces the
optimal partitioning of X . To find k such points, each from a different optimal cluster, we try all possible k subsets
of Q as the candidate k centers. For each set of centers we compute its cost (under polygonal metric) using the
cost computation scheme of Section 5, then take the clustering with minimum cost. Finally, recompute the optimal
centers using any 1-clustering algorithm on each cluster of O.

It is known constant approximation to any of the k-means, k-median, or k-center instance can be computed in
O(nk) time [42] and even in Õ(n) time [30,44] in constant-dimensional Euclidean spaces. Thus computing the
multiplicative 2-coreset takes O(nk2 + k!) time [43]. Using the cost computation scheme from Section 5, after
O(n log2d n) preprocessing time, the cost of each clustering can be computed in Õ(k2d−1) time. There are at most
O((k!)k) possible choices of center set of size k.

We conclude the section with the following theorem.

Theorem 6.2. Let X be a set with n points lying in Rd and k ≥ 1 an integer. If the k-means, k-median, or k-center
instance for X under the Euclidean distance is α-stable for α≥ 2+

p
3 then the optimal clustering can be computed

in Õ(nk2 + k2d−1 · (k!)k) time.
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A Appendix

A.1 Stability Properties

Properties of α-center proximity. Let (X ,δ) be a clustering instance satisfying α-center proximity, where δ is a
metric and α > 1. Let X1 be a cluster with center c1 in an optimal clustering. Let p, p′, p′′ ∈ X1 and q ∈ X \ X1 with
c2 the center of q’s cluster. Then,

(1) (α− 1) ·δ(p, c1)< δ(p, q);

(2) (α− 1) ·δ(p, c1)< δ(c1, c2);

(3) (α− 1) ·δ(c1, c1)< (α+ 1) ·δ(p, q);

(4) (α− 1) ·δ(p, p′)< 2α
α−1 ·δ(p, q); δ(p, p′)< δ(p, q) for α≥ 2+

p
3

(5) (α− 1) ·δ(p′, p′′)< 2(α+1)
α−1 ·δ(p, q). δ(p′, p′′)< δ(p, q) for α≥ 2+

p
5

Proof:
(1) δ(p, q)≤ (α− 1) ·δ(p, c1) yields the following contradiction.

α ·δ(q, c2)< δ(q, c1)≤ δ(p, c1) +δ(p, q)≤ α ·δ(p, c1) ⇒ δ(q, c2)< δ(p, c1)
α ·δ(p, c1)< δ(p, c2)≤ δ(q, c2) +δ(p, q)≤ δ(q, c2) + (α− 1) ·δ(p, c1) ⇒ δ(p, c1)< δ(q, c2)

(2) Follows from α ·δ(p, c1)< δ(p, c2)≤ δ(p, c1) +δ(c1, c2).

(3) Follows by δ(c1, c2)≤ δ(c1, p) +δ(p, q) +δ(q, c2)
(1)
<
�

2
α−1 + 1

�

·δ(p, q) = α+1
α−1 ·δ(p, q).

(4) Follows by

(α− 1) ·δ(p, p′) ≤ (α− 1) ·δ(p, c1) + (α− 1) ·δ(p′, c1)
(1),(2)
< δ(p, q) +δ(c1, c2)

(3)
< δ(p, q) +

α+ 1
α− 1

·δ(p, q) =
2α
α− 1

·δ(p, q).

(5) Follows by

(α− 1) ·δ(p′, p′′)≤ (α− 1) ·δ(p′, c1) + (α− 1) ·δ(p′′, c1)
(2)
< 2 ·δ(c1, c2)

(3)
<

2(α+ 1)
α− 1

·δ(p, q).

�

Proof (Proof of Lemma 2.3): Let c1 and c2 be the centers of cluster X1 and q’s cluster, respectively.
(i) First we show that δ(c1, c2)<

α+1
α−1 ·δ(p

′′, q):

δ(p′′, q)≥ δ(q, c1)−δ(p′′, c1)
≥ δ(c1, c2)−δ(q, c2)−δ(p′′, c1)

> δ(c1, c2)−
�

δ(q, p′′) +δ(p′′, q)
�

/(α− 1).

Rearranging the inequality proves the claim.
Now α ·δ(p, c1)< δ(p, c2)≤ δ(p, c1)+δ(c1, c2), which implies that (α−1) ·δ(p, c1)< δ(c1, c2). It follows that

δ(p, p′)≤ δ(p, c1) +δ(p
′, c1)

< 2 ·δ(c1, c2)/(α− 1)

<
2(α+ 1)
(α− 1)2

·δ(p′′, q)

≤ δ(p′′, q),

where the last inequality holds when α≥ 2+
p

5.
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(ii) Let us assume δ(c1, c2) = 1. We know that δ(p, c2) > α · δ(p, c1) for all p ∈ X1. The set of points p with
δ(p, c2) = α ·δ(p, c1) is known as Apollonian Circle A1 (with c1 inside, but not centered at c1!), see Fig. A.1. X1
must be contained inside this circle A1, or sphere in higher dimensions. Similarly, there is a sphere A2 enclosing q’s
cluster (relative to X1).

We take the classical fact that these are circles as given, but we want to understand the involved parameters.
Of course, the circle A1 has to be centered on the line ` through c1 and c2. Let a and b be the intersections of
A1 with `, with b on the segment c1c2. δ(c1, b) = αδ(c2, b) = α(1− δ(c1, b)), hence δ(c1, b) = 1

α+1 . Similarly,
δ(c1, a) = αδ(c2, a) = α(1+δ(c1, a)), hence δ(c1, a) = 1

α−1 . This sets the diameter of A1 to 1
α+1 +

1
α−1 =

2α
α2−1 , and

the distance between A1 and A2 to 1− 2 · 1
α+1 =

α−1
α+1 . It follows that δ(p′, p′′)/δ(p′′′, q)< 2α

α2−1/
α−1
α+1 =

2α
(α−1)2 .

�

Figure A.1. The Apollonian Circles (with parameter α) for clusters centered at c1 and c2.
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