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Abstract4

We study vertex sparsification for distances, in the setting of planar graphs with distortion: Given5

a planar graph G (with edge weights) and a subset of k terminal vertices, the goal is to construct an6

ε-emulator, which is a small planar graph G′ that contains the terminals and preserves the distances7

between the terminals up to factor 1+ ε.8

We construct the first ε-emulators for planar graphs of near-linear size Õ(k/εO(1)). In terms of k,9

this is a dramatic improvement over the previous quadratic upper bound of Cheung, Goranci and10

Henzinger, and breaks below known quadratic lower bounds for exact emulators (the case when11

ε = 0). Moreover, our emulators can be computed in (near-)linear time, which lead to fast (1+ ε)-12

approximation algorithms for basic optimization problems on planar graphs, including multiple-source13

shortest paths, minimum (s, t)-cut, graph diameter, and offline dynamic distace oracle.14
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1 Introduction53

Graph compression describes a paradigm of transforming a large graph G to a smaller graph G′ that54

preserves, perhaps approximately, certain graph features such as distances or cut values. The algorithmic55

utility of graph compression is apparent — the compressed graph G′ may be computed as a preprocessing56

step, reducing computational resources for subsequent processing and queries. This general paradigm57

covers famous examples like spanners, Gomory-Hu trees, and cut/flow/spectral edge-sparsifiers, in which58

case G′ has the same vertex set as G, but fewer edges. Sometimes the compression is non-graphical and59

comprises of a small data structure instead of a graph G′; famous examples are distance oracles and60

distance labeling.61

We study another well-known genre of compression, called vertex sparsification, whose goal is for G′62

to have a small vertex set. In this setting, the input graph G has a collection of k designated vertices63

T , called the terminals. The compressed graph G′ should contain, besides the terminals in T , a small64

number of vertices and preserve a certain feature among the terminals. Specifically, we are interested in65

preserving the distances between terminals up to multiplicative factor α≥ 1 in an edge-weighted graph66

(where the weights are interpreted as lengths). Formally, given a graph G with terminals T ⊆ V (G), an67

emulator for G with distortion α≥ 1 is a graph G′ that contains the terminals, i.e., T ⊆ V (G′), satisfying68

∀x , y ∈ T, distG(x , y)≤ distG′(x , y)≤ α · distG(x , y), (1)69

where distG denotes the shortest-path distance in G (and similarly for G′). In the important case when70

α = 1+ε = eΘ(ε) for 0≤ ε ≤ 1, we simply say G′ is an ε-emulator.1 Notice that G′ need not be a subgraph71

or a minor of G (in such two settings G′ is known as a spanner and a distance-approximating minor).72

We focus on the case where G is known to be planar, and thus require also G′ to be planar (which73

excludes the trivial solution of a complete graph on T). This requirement is natural and also important74

for applications, where fast algorithms for planar graphs can be run on G′ instead of on G. Such a75

requirement that G′ has structural similarity to G is usually formalized by assuming that both G and G′76

belong to F for a fixed graph family F (e.g., all planar graphs). If F is a minor-closed family, one can77

further impose the stronger requirement that G′ is a minor of G, and this clearly implies that G′ is in F.78

Vertex sparsifiers commonly exhibit a tradeoff between accuracy and size, which in our case of an79

emulator G′, are the distortion α and the number of vertices of G′. Let us briefly overview the known80

bounds for planar graphs. At one extreme of this tradeoff we have the “exact” case, where distortion is81

fixed to α = 1 and we wish to bound the (worst-case) size of the emulator G′ [CGH16, CGMW18, GHP20].82

For planar graphs, the known size bounds are O(k4) [KNZ14] and Ω(k2) [KZ12, CO20].2 At the other83

extreme, we fix the emulator size to |V (G′)| = k, i.e., zero non-terminals, and we wish to bound84

the (worst-case) distortion α [BG08, CXKR06, KKN15, Che18, FKT19]. For planar graphs, the known85

distortion bounds are O(log k) [Fil18] and lower bound 2 [Gup01].86

Our primary interest is in minimizing the size-bound when the distortion α is 1+ ε, i.e., ε-emulators,87

a fascinating sweet spot of the tradeoff. The minimal loss in accuracy is a boon for applications, but it is88

usually challenging as one has to control the distortion over iterations or recursion. For planar graphs,89

the known size bounds for a distance-approximating minor are Õ((k/ε)2) [CGH16] and Ω(k/ε) [KNZ14].90

Improving the upper bound from quadratic to linear in k is an outstanding question that offers a bypass91

to the aforementioned Ω(k2) lower bound for exact emulators (α = 1). In fact, no subquadratic-size92

emulators for planar graphs are known to exist even when we allow the emulators to be arbitrary graphs,93

except for when the input is unweighted [CGMW18] or for trivial cases like trees.94

1Our definition in Section 2 differs slightly (allowing two-sided errors), affecting our results only in some hidden constants.
2For fixed distortion α = 1, every graph G in fact admits a minor of size O(k4) [KNZ14], but for some planar graphs

(specifically grids) every minor [KNZ14] or just planar emulator [KZ12, CO20] must have Ω(k2) vertices.
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Notation. Throughout the paper, we consider undirected graphs with non-negative edge weights, and95

denote n = |V (G)| and k = |T |. A plane graph refers to a planar graph together with a specific embedding96

in the plane. We suppress poly-logarithmic terms by writing Õ(t) = t · poly log t, and multiplicative97

factors that depend on ε by writing Oε(t) = O( f (ε) · t). We write log∗ t for the iterated logarithm of t.98

1.1 Main Result99

We design the first ε-emulators for planar graphs that have near-linear size; furthermore, these emulators100

can be computed in near-linear time. These two efficiency parameters can be extremely useful, and we101

indeed present a few applications in Section 1.2.102

Theorem 1.1. For every n-vertex planar graph G with k terminals and parameter 0 < ε < 1, there103

is a planar ε-emulator graph G′ of size |V (G′)| = Õ(k/εO(1)). Furthermore, such an emulator can be104

computed deterministically in time Õ(n/εO(1)).105

The result dramatically improves over the previous Õ((k/ε)2) upper bound of Cheung, Goranci and106

Henzinger [CGH16]. Moreover, it breaks below the aforementioned lower bound Ω(k2) for exact emula-107

tors (α = 1) [KZ12, KNZ14, CO20]. Unsurprisingly, our result is unlikely to extend to all graphs, because108

for some (bipartite) graphs, every minor with fixed distortion α < 2 must have Ω(k2) vertices [CGH16].109

See Section 1.1 for comparison to prior work.110

Distortion Size (lower/upper) Requirement Reference

1 Ω(k2) planar [KZ12, CO20]

1 O(k4) minor [KNZ14]

1+ ε Ω(k/ε) minor [KNZ14]

1+ ε Õ((k/ε)2) minor [CGH16]

1+ ε Õ(k/polyε) planar Theorem 1.1

O(log k) k minor [Fil18]

Table 1. Distance emulators for planar graphs.

1.2 Algorithmic Applications111

We present a few applications of our emulators to the design of fast (1+ ε)-approximation algorithms for112

standard optimization problems on planar graphs.113

Our first application is to construct an approximate version of the multiple-source shortest paths114

data structure, called ε-MSSP: Preprocess a plane graph G and a set of terminals T on the outerface115

of G, so as to quickly answer distance queries between terminal pairs within (1+ ε)-approximation.116

The preprocessing time of our data structure is Oε(n), which for any fixed ε > 0 is faster than Klein’s117

O(n log n)-time algorithm [Kle05] for the exact setting when ε = 0. Both algorithms have the same query118

time O(log n).119

Theorem 1.2. Given a parameter 0< ε < 1, an n-vertex plane graph G with the range of edge weights120

bounded by nO(1),3 and a set of terminals T all lying on the boundary of G with |T | ≤ O(n/ logC n) for121

some large enough constant C , one can preprocess an ε-MSSP data structure on G with respect to T in122

time Oε(n), that answers queries in time O(log n).123

3Our algorithm can also handle general weights with a slightly slower Oε(n poly(log∗ n)) preprocessing time.
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Our second application is an Oε(n)-time algorithm to compute (1+ε)-approximate minimum (s, t)-cut124

in planar graphs, which for fixed ε > 0 is faster than the O(n log log n)-time exact algorithm by Italiano,125

Nussbaum, Sankowski, and Wulff-Nilsen [INSW11].126

Theorem 1.3. Given an n-vertex planar graph G with two distinguished vertices s, t ∈ V (G) and a127

parameter 0< ε < 1, computing (1+ ε)-approximate minimum (s, t)-cut in G takes Oε(n) time.128

Our third application is an Oε(n log n)-time algorithm to compute a (1+ ε)-approximate diameter129

in planar graphs, which for fixed 0< ε < 1 is faster than the O(n log2 n+ ε−5n log n)-time algorithm of130

Chan and Skrepetos [CS19] (which itself improves over Weimann and Yuster [WY16]).131

Theorem 1.4. Given an n-vertex planar graph G and a parameter 0 < ε < 1, one can compute a132

(1+ ε)-approximation to its diameter in time Oε(n log n).133

Finally, one important open problems in the field of dynamic algorithms is the existence of efficient134

(1 + ε)-approximate distance oracle on planar graphs. Abboud and Dahlgaard [AD16] provided an135

Ω(n1/2−o(1)) lower bound on the query and update time for such oracles in the exact setting. Recently,136

Chen et al. [CGH+20] showed that if one can efficiently construct a (1+ ε)-distance-approximating minor137

of size Õ(k) for a planar graph with n nodes and k terminals in O(n poly(log n,ε−1)) time, then there is138

an offline dynamic (1+ ε)-approximate distance oracle with O(poly log n) query and update time.139

Here we show that while our ε-emulator is not strictly a (1+ ε)-distance-approximating minor, the140

same distance oracle can still be constructed. This demonstrates that an efficient (1+ ε)-approximate141

distance oracle on planar graphs exists.142

Theorem 1.5. There is an offline dynamic (1+ ε)-approximate distance oracle for any planar graph of143

size n with O(poly log n) query and update time.144

1.3 Technical Contributions145

A central technical contribution of this paper is to carry out a spread reduction for the all-terminal-pairs146

shortest path problem when the input graph can be embedded in the plane and the terminals all lie on147

the outerface; the spread is defined to be the ratio between the largest and the smallest distances between148

terminals. Spread reduction is a crucial preprocessing step for many optimization problems, particularly149

in Euclidean spaces or on planar graphs [SA12, BG13, KKN15, CFS19, ?], that replaces an instance with150

a large spread with one or multiple instances with a bounded spread. In many cases, one can reduce the151

spread to be at most polynomial in the input size. However, we are not aware of previous work that152

achieves such a reduction in our context, where many pairs of distances have to be preserved all at once.153

In fact, even after considerable work we only managed to reduce the spread to be sub-exponential.154

We now provide a bird-eye’s view of our emulator construction. The emulator problem on plane155

graphs with an arbitrary set of terminals can be reduced to the same problem on plane graphs, but156

with the strong restriction that all the terminals lies on a constant number of faces, known as holes (cf.157

Section 5), using a separator decomposition that splits the number of vertices and terminals evenly; such158

a decomposition (called the r-division) can be computed efficiently [Fre87, KMS13]. From there we159

can further slice the graph open into another plane graph with all the terminals on a single face, which160

without loss of generality we assume to be the outerface. We refer to it as a one-hole instance.161

To construct an emulator for a one-hole instance G we adapt a recursive split-and-combine strategy162

(cf. Section 3). We will attempt to split the input instance into multiple one-hole instances along some163

shortest paths that distribute the terminals evenly (cf. Lemma 3.3). Every time we slice the graph G164

open along a shortest path P, we compute a small collection of vertices on P called the portals, that165
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approximately preserve the distances from terminals in G to the vertices on P. The portals are duplicated166

during the slicing along P and added to the terminal set (i.e., become terminals) at each piece incident to167

P, to ensure that further processing will (approximately) preserve their distances as well. We emphasize168

that the naive idea of placing portals at equally-spaced points along P is not sufficient, as some terminals169

in G might be arbitrarily close to P. Instead, we place portals at exponentially-increasing intervals from170

both ends of P. After splitting the original instance into small enough pieces by recursively slicing along171

shortest paths and computing the portals, we compute exact emulators for each piece using any of the172

polynomial-size construction [KNZ14, CO20]. Next we glue these small emulators back along the paths173

by identifying multiple copies of the same portal into one vertex. See Figure 1.174

(a) A one-hole instance, a set of paths (shown
in red, green and purple curves), and portals
(shown as red boxes). Slicing the instance
open along these paths gives us smaller pieces.

(b) The one-hole instance obtained from glu-
ing together the emulators for the small pieces
at the portals (shown as red boxes).

Figure 1. Illustration of the split-and-combine process for a one-hole instance.

Let U be the set of terminals in the current piece, and let r := |U |. We need the portals to be175

dense enough so that only a small error term, of the form r−δ (meaning that the distortion increases176

multiplicatively by 1+ r−δ) will be added to the distortion of the emulator after the gluing, as this will177

eventually guarantee (through more details like the stopping condition of the recursion) that the final178

distortion is 1+ ε and the final emulator size has polynomial dependency on ε−1. At the same time,179

the number of portals cannot be too large, as they are added to the terminal set, causing the number180

of terminals per piece to go down slowly and creating too many pieces, and in the end the size of the181

combined emulator might be too big. It turns out that the sweet spot is to take roughly Lr := r/ log2 r182

portals. Calculations show that in such case the portals preserve distances up to an additive error term183

logΦ/Lr , where Φ is the spread of the terminal distances (cf. Claim 4.4). When Φ≤ 2r0.9
, we will get the184

polynomially-small Õ(r−0.1) error term needed for the gluing (cf. Section 4.3). However, even when the185

original input has a polynomial spread to start with, in general we cannot control the spread of all the186

pieces occurring during the split-and-combine process, because portals are added to the terminal sets.187

Therefore a new idea is needed.188

When Φ > 2r0.9
, we need to tackle the spread directly. We perform a hierarchical clustering of the189

terminals (cf. Section 4.4). At each level i, we connect two clusters of terminals from the previous level190

i − 1 using an edge if their distance is at most r2i; then we group each connected component into a191

single cluster. The key to the spread reduction is the idea of expanding clusters. A cluster S is expanding192

if its parent cluster Ŝ is at least ∼er−0.7
-factor bigger. Intuitively, if all clusters are expanding, then the193

number of levels in the hierarchical clustering must be at most r0.7, and therefore the spread must be at194
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most sub-exponential. So in the high-spread case some non-expanding cluster must exist.195

• If such non-expanding cluster S is of moderate size (that is, in between r/5 and 4r/5) (cf. Sec-196

tion 4.4.1), we construct a collection of non-crossing shortest paths between terminals in S (non-197

crossing means that no two paths with endpoint pairs (s1, s2) and (t1, t2) have their endpoints198

in an interleaving order (s1, t1, s2, t2) on the outerface) in which no two paths intersect except199

at their endpoints. Again compute portals on the paths from every terminal in Ŝ \ S, but now200

using εr -covers [Tho04] for εr := r−0.1, and split along the paths to create sub-instances. Because201

the cluster is non-expanding and has moderate size, the number of terminals in Ŝ \ S is at most202

(er−0.7
− 1)|S| ≤ r0.3, and thus the number of portals is O(r0.3/εr) ≤ O(r0.4), which is a gentle203

enough increase in the number of terminals. The hard part is to argue that the portals created204

are sufficient for the recombined instance to be an emulator. This can be done by observing that205

terminal pairs among U \ Ŝ are far apart, and similarly when one terminal is from S and the other206

is from U \ Ŝ; hence only terminal pairs involving Ŝ \ S have to be dealt with using properties of207

εr -covers (cf. Claim 4.9).208

• If there are no non-expanding clusters with moderate size (cf. Section 4.4.2), we find a non-209

expanding cluster S̃ of lowest level that contains most of the terminals, and construct a collection of210

non-crossing shortest paths between terminals in S̃ like the previous case. However this time, after211

computing the r−0.1-covers and splitting along the paths, there might be one instance containing212

too many terminals. In this case, we find every non-expanding cluster S of maximal level; such213

clusters must all lie within Õ(r0.7) levels from S̃ because we cannot have nested expanding clusters214

for Õ(r0.7) consecutive levels. The Monge property guarantees that the shortest paths generated215

by the union of these maximal-level non-expanding clusters must be non-crossing because all216

such clusters are disjoint (cf. Observation 4.7). Now if we split the graph based on the path set217

generated, each resulting instance either has moderate size, or must have small spread, and we218

safely fall back to the earlier cases.219

Applications. A widely adopted pipeline in designing efficient algorithms for distance-related opti-220

mization problems on planar graphs in recent years consists of the following steps:221

1. Decompose the input planar graph into small pieces each of size at most r with a small number of222

boundary vertices and O(1) holes, called an r-division (see Frederickson [Fre87] and Klein-Mozes-223

Sommer [KMS13];224

2. Process each piece so that all-pairs shortest paths between boundary vertices within a piece225

can be extracted efficiently by the multiple-source shortest paths algorithm for planar graphs226

(Klein [Kle05]);227

3. Further process each piece into a compact data structure that supports efficient min-weight-edge228

queries and updates (SMAWK [AKM+87], Fakcharoenphol and Rao [FR06]);229

4. Compute shortest paths in the original graph in a problem-specific fashion, now with each piece230

replaced with the compact data structure, using a modified Dijkstra algorithm (Fakcharoenphol231

and Rao [FR06]).232

The conceptual role of our planar emulators is an alternative to Step 3. The reason for the development233

of the aforementioned machinery and complex algorithms is to get around the size lower bound in234

representing the all-pairs distances for the pieces. The benefit of replacing the data structure with a235

single planar emulator is that the whole graph stays planar. One can then simply replace Step 4 with236

the standard Dijkstra algorithm (or even better, with the O(n)-time algorithm for planar graphs by237
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Henzinger et al. [HKRS97]). More importantly, one can recurse on the resulting graph when appropriate,238

and compress the graph further and further with small additive errors slowly accumulated (cf. Section 5.3).239

This allows us to construct near-linear-size ε-emulator in Oε(n poly log∗ n) time and even Oε(n) time240

using a precomputed look-up table for pieces that are tiny compared to n when the spread of the input241

graph is bounded by a polynomial, which can easily be achieved by standard spread reduction techniques242

for many optimization problems.243

1.4 Related Work244

In addition to emulators, there are other lines of research on graph compression preserving distance245

information. Among them the most studied objects are spanners and preservers (when the sparsifier is246

required to be a subgraph of the input graph) and distance oracles (a data structure that reports exact or247

approximate distances between pairs of vertices). We refer the reader to the excellent survey [ABS+20].248

There are also rich lines of works for constructing vertex sparsifiers that preserve cut/flow values249

(known as cut/flow sparsifiers) exactly [HKNR98, CSWZ00, KR13, KR14, KPZ17, GHP20, KR20] or250

approximately [Moi09, CLLM10, Chu12, AGK14, EGK+14, MM16, GR16, GRST21].251

2 Preliminaries252

All logarithms are to the base of 2. All graphs are simple and undirected. Let G be a connected graph.253

A vertex v ∈ V (G) is called a cut vertex of G if the graph G \ {v} is disconnected. The cut vertices of254

a plane graph G can be computed in time O(|V (G)|+ |E(G)|). Let G be a graph with an edge-weight255

function w: E(G)→ R+. The weight of a path P is defined as w(P) :=
∑

e∈E(P)w(e). The shortest-path256

distance between two vertices u and v is denoted by distG(u, v). For a subset S of vertices in G, we257

define diamG(S) :=maxu,u′∈S distG(u, u′). For a pair of disjoint subsets of vertices (S, S′) in G, we define258

distG(S, S′) :=minu∈S,u′∈S′ distG(u, u′).259

Emulators. Throughout, we consider graph G equipped with a special set of vertices T , called terminals.260

We refer to the pair (G, T ) as an instance. Let (G, T ) and (H, T ) be a pair of instances with the same set261

of terminals, and let ε ∈ [0, 1]. We say that H is an ε-emulator for G with respect to T , or equivalently,262

instance (H, T ) is an ε-emulator for instance (G, T ) if263

∀x , y ∈ T, e−ε · distG(x , y)≤ distH(x , y)≤ eε · distG(x , y). (2)264

Throughout, we use Equation (2) as the definition of an ε-emulator instead of Equation (1); but since265

we restrict our attention to ε < 1, the two definitions are equivalent up to scaling ε by a constant266

factor. By definition, if (H, T ) is an ε-emulator for (G, T ), then (G, T ) is also an ε-emulator for (H, T ).267

Moreover, if (G, T ) is an ε-emulator for (G′, T ) and (G′, T ) is an ε′-emulator for (G′′, T ), then (G, T ) is268

an (ε + ε′)-emulator for (G′′, T ).269

Most instance (G, T ) considered in this paper are planar instances where graph G is a connected plane270

graph. We say that a planar instance (G, T ) is an h-hole instance for an integer h> 0 if the terminals lie271

on at most h faces in the embedding of G. The faces incident to some terminals are called holes. Notice272

that in a one-hole instance (G, T ), we can safely assume all the terminals in T lie on the outerface G. By273

definition, a 0-emulator preserves distances exactly, i.e., distG(x , y) = distG′(x , y) for all x , y ∈ T .274

Theorem 2.1 (Chang-Ophelders [CO20, Theorem 1]). Given one-hole instance (G, T )with n := |V (G)|275

and k := |T |, one can compute a 0-emulator (G′, T ) for (G, T ) of size |V (G′)| ≤ k2. The running time of276

the algorithm is O((n+ k2) log n).277
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Crossing pairs and the Monge property. Let (G, T ) be a one-hole instance. Assume that no terminal278

in T is a cut vertex of G, every terminal appears exactly once as we traverse the boundary of the outerface.279

Let (t1, t2), (t ′1, t ′2) be two terminal pairs whose four terminals are all distinct. We say that the pairs280

(t1, t2), (t ′1, t ′2) are crossing if the clockwise order in which these terminals appear on the boundary is281

either (t1, t ′1, t2, t ′2) or (t1, t ′2, t2, t ′1); otherwise we say that they are non-crossing. A collection M of pairs282

of terminals in T is called non-crossing if every two pairs in M is non-crossing. Sometimes we abuse the283

language and say that a set of shortest paths P in G is non-crossing when the collection of endpoint pairs284

for the paths is non-crossing. The Monge property4 states that, for every one-hole instance (G, T) and285

every crossing pairs of terminals (t1, t2) and (t ′1, t ′2),286

distG(t1, t2) + distG(t
′
1, t ′2)≥ distG(t

′
1, t2) + distG(t1, t ′2).287

Well-structured sets of shortest paths. Consider a graph G and a collection P of shortest paths in G.288

We say that the set P is well-structured if for every pair of paths (P, P ′) in P, P ∩ P ′ is a single subpath289

of both P and P ′. It is not hard to see that every collection of shortest paths in G is well-structured if290

the shortest path between any two vertices in G is unique. Such condition can be enforced with high291

probability if we perturb the edge-weights in G slightly and apply the isolation lemma [MVV87]. If292

randomization is to be avoided, one can use a lexicographic perturbation by redefining the edge weights293

to be a vector [Cha52, DOW55, HM94], or the leftmost rule when choosing a shortest path [EK13] when294

G is a plane graph. A deterministic lexicographic perturbation scheme that guarantees the uniqueness of295

shortest paths in an n-vertex plane graph can be computed in O(n) time [EFL18]. Therefore from here296

on we assume that all the planar graphs we consider have unique shortest path between every pair of297

vertices, and every collection of shortest paths is well-structured. The proof of the following lemma is298

provided in Appendix A.1.299

Lemma 2.2. Given a one-hole instance (G, T ) and a non-crossing collection M of pairs of terminals in300

T , one can compute a well-structured set P of shortest paths, one for each pair of terminals in T in301

O(|E(G)| · log |M|) time.302

ε-covers. We use the notion of ε-covers [KS98, Tho04]. Let ε ∈ (0, 1) be a parameter. Let G be a graph303

and let P be a shortest path in G connecting some pair of vertices. Consider now a vertex v in G that304

does not belong to path P. An ε-cover of v on P is a subset S of vertices in P such that, for each vertex305

x ∈ V (P), taking the detour from v to some y ∈ S then to x is a (1+ ε)-approximation to the shortest306

path from v to x , i.e., there exists y ∈ S for which distG(v, y) + distG(y, x)≤ (1+ ε) · distG(v, x). Small307

ε-cover of size O(1/ε) is known to exist.308

Theorem 2.3 (Thorup [Tho04, Lemma 3.4]). Let ε ∈ (0,1) be a constant. For every shortest path P309

in some graph G and every vertex v /∈ P, there is an ε-cover of v on P with size O(1/ε). Moreover, such310

an ε-cover can be computed in O(|E(G)|) time.311

We emphasize that choosing O(1/ε) “portals” at equal distance on the path P as in Klein-Subramanian [KS98]312

is not sufficient, because the distance from v to P might be much smaller than the length of P. The313

linear-time construction is not stated in Lemma 3.4 of [Tho04], but it can be inferred from their proof.314

In fact, we will use the following construction that allows us to efficiently compute the union of ε-covers315

of a subset Y of vertices along the boundary of plane graph; the proof is a simple divide-and-conquer316

similar to Reif [Rei81], which we omit here.317

4Technically, this is known as the cyclic Monge property [CO20].
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Lemma 2.4. Let ε ∈ (0, 1) be a constant and G is a plane graph. Given a subset Y of vertices that lie on318

the same face of G and a shortest path P connecting a pair of vertices in G, we can compute the union of319

ε-covers of each vertex in Y on P in O(|E(G)| · log |Y |) time.320

3 Emulators for One-Hole Instances321

In this section and the next one we design a near-linear time algorithm for constructing ε-emulators for322

one-hole instances, as stated in Theorem 3.1. We say that an ε-emulator (G′, T ) for a one-hole instance323

(G, T ) is aligned if (G′, T ) is also a one-hole instance, and the circular orderings of the terminals on the324

outerfaces of G and of G′ are identical.325

Theorem 3.1. Given a parameter ε ∈ (0,1) and a one-hole instance (G, T) with |T | = k, one can326

compute an aligned ε-emulator for (G, T ) of size |V (G′)|= Õ(k/εO(1)) in Õ
�

(n+ k2)/εO(1)
�

time.327

We complement the upper bound in Theorem 3.1 with an Ω(k/ε) lower bound on the size of aligned328

ε-emulators for one-hole instances. This lower bound generalizes the Ω(k/ε) lower bound of [KNZ14],329

which holds for one-hole instances too, but only when the emulator is a minor of G (and is thus clearly330

an aligned emulator).331

Theorem 3.2. For every k ≥ 2 and (4/k)< ε < 1, there is a one-hole instance (G, T ) with |T | = k, such332

that every aligned ε-emulator (G′, T ) for (G, T ) must have size Ω(k/ε).333

All emulators we consider are aligned and therefore we omit the word “aligned” from now on. We334

describe the algorithm and proof for Theorem 3.1 in Section 3.1, with the help of the core decomposition335

lemma (cf. Lemma 3.3). The proof to Lemma 3.3 itself is deferred to Section 4. The proof of Theorem 3.2336

is provided in Appendix A.2, since it is not relevant to the proof of Theorem 1.1.337

3.1 The Algorithm and its Analysis338

Let (G, T ) be the input one-hole instance. The algorithm for Theorem 3.1 consists of two stages. In the339

first stage, we iteratively decomposes (G, T ) into smaller one-hole instances; and in the second stage, we340

compute emulators for these small instances and then combines them into an emulator for (G, T ).341

Throughout the algorithm we maintain a collection H of one-hole instances, that is initialized to342

be H = {(G, T)}. Set λ∗ := c∗ log2 k/ε20, where k := |T | and c∗ > 0 is a large enough constant. In the343

first stage, we repeatedly replace a one-hole instance (H, U) ∈H where |U |> λ∗ with smaller one-hole344

instances obtained by applying the algorithm from Lemma 3.3 to (H, U), until every one-hole instance345

(H, U) in H satisfy |U | ≤ λ∗. The core of our construction is the following lemma.346

Lemma 3.3. Given one-hole instance (H, U) with r := |U |, one can compute a collection of one-hole347

instances {(H1, U1), . . . , (Hs, Us)}, such that348

• U ⊆
�⋃

1≤i≤s Ui

�

;349

• |Ui| ≤ 9r/10 for each 1≤ i ≤ s;350

•
∑

1≤i≤s |Ui| ≤ O(r); and351

• for any parameter 100< λ≤ log2 r,
∑

i:|Ui |>λ |Ui| ≤ r ·
�

1+O(1/λ)
�

.352

Moreover, given an ε-emulator (Zi , Ui) for each (Hi , Ui), algorithm COMBINE computes for (H, U) an353
�

ε +O( log4 r
r0.1 )

�

-emulator (Z , U) of size |V (Z)| ≤
∑

1≤i≤s |V (Zi)|. The running time of both algorithms is354

at most O
�

(|V (H)|+ r2) · log r · log |V (H)|
�

.355
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We prove this lemma in Section 4, and in the remainder of this subsection we use it to complete the356

proof of Theorem 3.1.357

We associate with the decomposition process a partitioning tree T. Its nodes are all the one-hole358

instances that ever appear in the collection H. Its root node is the initial one-hole instance (G, T ), and359

every tree node (H, U) has children nodes corresponding to the new instances (H1, U1), . . . , (Hs, Us)360

generated by Lemma 3.3. The leaves of T are those that are in H at the end of the first stage. (To avoid361

ambiguity, we refer to elements in V (T) as nodes and elements in V (H) as vertices.)362

We now describe the second stage of the algorithm. For each one-hole instance (H, U) in H at the363

end of the first stage, compute a 0-emulator (Z , U) for (H, U) using the algorithm from Theorem 2.1.5364

We then iteratively process the non-leaf nodes in T inductively in a bottom-up fashion: Given a non-leaf365

node (H, U) with children (H1, U1), . . . , (Hs, Us), let (Zi , Ui) be the emulator computed for (Hi , Ui) by366

induction. Apply algorithm COMBINE from Lemma 3.3 to the emulators (Z1, U1), . . . , (Zs, Us) to obtain367

an emulator (Z , U) for instance (H, U). After all nodes in T have been processed, output the emulator368

(G′, T ) constructed for the root node (G, T ).369

We proceed to show that the instance (G′, T) computed by the above algorithm satisfies all the370

properties required in Theorem 3.1.371

Size Bound. We first show that |V (G′)|= Õ(k/εO(1)). We denote by H the collection obtained at the372

end of the first stage. Note that |V (G′)| ≤
∑

(H,U)∈H O(|U |2) ≤ O(max(H,U)∈H |U |) ·
∑

(H,U)∈H |U |. As373

max(H,U)∈H |U | ≤ λ∗ = O(log2 k/εO(1)), it now suffices to bound the total number of terminals in all374

resulting one-hole instances in H by Õ(k/εO(1)), which we do next via a charging scheme. Let (H, U) be375

a node in T with children (H1, U1), . . . , (Hs, Us).376

• For instances (Hi , Ui) with |Ui| ≤ λ∗ (which will all be in H at the end of the first stage), charge377

every vertex in Ui to vertices in U . Since
∑

i |Ui| ≤ O(|U |), each vertex of U gets a charge of O(1)378

this way. We call these charge inactive.379

• For instances (Hi , Ui) with |Ui|> λ∗, let U ′ be the set of all new vertices, i.e., they appear in some380

set Ui but not in U; we have |U ′| ≤ O(|U |/ log2 |U |) by Lemma 3.3. Charge every vertex in U ′381

uniformly to vertices in U , so each vertex gets O(1/ log2 |U |) charge. We call these charge active.382

The total inactive charge on each vertex of T is O(log k) because T has height O(log k). As for the total383

active charge to each vertex in T , a quick calculation shows that it is at most O(1/(log(10/9)λ−1))≤ 1/2.384

(For a complete proof see Appendix A.3.) Note that this only accounts for the direct active charge. For385

example, some terminal does not belong to the initial one-hole instance (G, T), that was first actively386

charged to the terminals in T , can in turn be actively charged by some other terminals later. We call387

such charge indirect active charge. The total direct and indirect active charge for each terminal in T is at388

most 1/2+ (1/2)2 + · · · ≤ 1.389

Altogether, each terminal in T is charged O(log k). Therefore, the total number of terminals in all390

resulting instances in H is bounded by O(k log k), which, combined with previous discussion, implies391

that |V (G′)| ≤ Õ(k/εO(1)).392

Correctness. It remains to show that (G′, T ) is an ε-emulator for (G, T ). Recall that we have associated393

with the algorithm in first stage a partitioning tree T. We now define, for each tree node (H, U), a value394

ε(H,U) as follows. If (H, U) is a leaf node, we define ε(H,U) := 0. Otherwise, (H, U) is a non-leaf node395

5This step can use any 0-emulator that has size poly k and can be constructed in time Õ(n+ poly k), and we conveniently
use Theorem 2.1.
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with child nodes in T be (H1, U1), . . . , (Hs, Us). Denote r := |U |, and let c > 0 be a large enough constant396

that is greater than the constants hidden in all big-O notations in Lemma 3.3 and c < (c∗)1/20. We define397

ε(H,U) :=
c log4 r

r0.1
+max{ε(H1,U1), . . . ,ε(Hs ,Us)}.398

From the properties of the algorithm COMBINE, it is easy to verify that for each node (H, U) in T, the399

one-hole instance (Z , U) we construct is an ε(H,U)-emulator for (H, U).400

We now show that ε(G,T ) ≤ ε. Observe that there are integers r1, . . . , rt with r1 ≤ k, rt ≥ λ∗, such401

that for each 1≤ i ≤ t − 1, ri ≥ (10/9) · ri+1, ε(G,T ) =
∑

1≤i≤t c log4 ri/(r0.1
i ). A quick calculation gives402

us ε(G,T ) ≤ c · (logλ∗)4/(λ∗)0.1. (For a complete proof see Appendix A.3.) Since c is a constant, and403

recall that λ∗ = c∗/ε20 where c∗ > c20 is large enough, so ε(G,T ) ≤ c · (logλ∗)4/(λ∗)0.1 < ε, and therefore404

(G′, T ) is an ε-emulator for (G, T ).405

Running Time. Every time we implement the algorithm from Lemma 3.3 to split some instance in406

(H, U) ∈H with n′ := |H| and r := |U |, the running time is O
�

(n′+ r2) log r log n′
�

. We charge its running407

time (and also the time for COMBINE) to vertices in H as follows:408

• charge the O(n′ log r log n′) term uniformly to vertices in H (each gets O(log k log n) charge);409

• charge the O(r2 log r log n′) term uniformly to terminals in U (each gets O(k log k log n) charge).410

Since the depth of the partitioning tree T is at most O(log k), each non-terminal vertex in G gets in total411

O(log2 k log n) charge, and each terminal in the resulting collection H at the end of the first stage gets in412

total O(k log2 k log n) charge. Therefore, the total running time of the algorithm is413

O(log2 k log n) · n+O(k log2 k log n) · Õ(k/εO(1)) = Õ
�

(n+ k2)/εO(1)
�

.414

4 Construct Emulator using SPLIT and GLUE: Proof of Lemma 3.3415

In this subsection we provide the proof of Lemma 3.3. We first introduce the basic graph operations416

SPLIT and GLUE in Section 4.1. Then we describe the algorithm and its analysis.417

4.1 Splitting and Gluing418

In this subsection we introduce building blocks for the divide-and-conquer: procedures SPLIT and GLUE.419

We will decompose a single one-hole instance (H, U) into many small one-hole instances using procedure420

SPLIT, compute emulators for each of them, and then glue the collection of small emulators together421

into an emulator for (H, U) using procedure GLUE. We now introduce the procedures in more detail.422

Splitting. The input to procedure SPLIT consists of423

• a one-hole instance (H, U);424

• a non-crossing set P of shortest paths in H connecting pairs of terminals in U; and425

• a subset Y of vertices on the union of shortest paths in P; set Y must contain all endpoints of paths426

in P and all vertices with degree at least three in the graph
⋃

P∈P P (we call them branch vertices).427
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The output of procedure SPLIT is a collection of one-hole instances constructed as follows. Consider428

a plane embedding of H where all the terminals in U lying on the outerface of H. We slice6 H open along429

each path P in P by duplicating every vertex and edge of P to create another path P ′ identical to P. The430

set of edges incident to each vertex on P are split into two sides naturally based on their cyclic order431

around the vertex. We index the collection of subgraphs of H obtained by the slicing of H along P by432

R. Let R be an index in R that corresponds to the subgraph HR. The plane embedding of H naturally433

induces a planar embedding of HR. Define UR to be the set of all vertices of HR that is either a terminal434

in HR \ P or a vertex in Y . All vertices of UR appear on the outerface of HR, and so (HR, UR) is a one-hole435

instance. The output of procedure SPLIT is simply the collection {(HR, UR) | R ∈ R} that contains, for436

each subgraph HR obtained by slicing H, a one-hole instance defined in the above way. See Figure 2 for437

an illustration. Note that each vertex y ∈ Y may now belong to multiple instances in H. We call them438

copies of y .439

Figure 2. An illustration of splitting a one-hole instance along a path set P. Left: Graph H, together with terminals in set U
(in blue), paths in set P (in different colors), and vertices of Y (red boxes). Right: An output instance (that corresponds to the
left bottom region of H) by procedure Split.

Gluing. We now describe procedure GLUE. Assume that we have applied procedure SPLIT to a one-hole440

instance (H, U), a non-crossing set P of shortest paths, and a vertex subset Y to obtain a collection441

H = {(HR, UR) | R ∈ R} of one-hole instances. The input to procedure GLUE consists of442

• one emulator (ZR, UR) for each one-hole instance (HR, UR) in H; and443

• the same vertex subset Y given as the input to procedure SPLIT.444

The output of procedure GLUE is an emulator (Z , U) for (H, U), which is constructed as follows. Graph Z445

is obtained by taking the union of all graphs in {ZR | R ∈ R}, and identifying, for each vertex y ∈ Y , all446

copies of y. Graph Z is naturally a plane graph by inheriting the embeddings of all ZRs. (See Figure 3447

for an illustration.) By the assumption that Y contains all the endpoints of paths in P, every vertex in U448

shows up uniquely on the outerface of Z . Therefore, (Z , U) is a one-hole instance. Moreover, it is easy to449

observe that |V (Z)| ≤
∑

R∈R |V (ZR)|.450

6The slicing operation, which can be traced back to Reif [Rei81] (when describing the minimum-cut algorithm by Itai-
Shiloach [IS79]), is sometimes referred to as cutting [?] or incision [MNNW18] in the literature.
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Figure 3. An illustration of gluing one-hole instances at outer-boundaries. Identified vertices of U are shown in blue) and
identified vertices of Y \ U are shown in red boxes.

One can verify that both procedures SPLIT and GLUE can be implemented in O(|V (H)|) time. Now451

we now summarize the behavior of the procedures with the following claims. The proofs of Claim 4.1452

and Claim 4.2 are deferred to Appendix A.4 and A.5 respectively.453

Claim 4.1. Let H be the output of procedure SPLIT applied to a valid input ((H, U),P, Y ), then454

1. the number of branch vertices is at most O(|U |); and455

2. if we denote by Y ∗ the subset of all branch vertices in Y , then for every parameter λ≥ 100,456
∑

(HR,UR)∈H: |UR|≥λ |UR| ≤ |U | ·
�

1+O(1/λ)
�

+O(|Y \ Y ∗|).457

Claim 4.2. Let H be output collection of procedure SPLIT when applied to a valid input ((H, U),P, Y ).458

Let (Ĥ, U) be output of procedure GLUE when applied to the collection H and set Y . For each instance459

(HR, UR) ∈H, let (ZR, UR) be an ε-emulator for (HR, UR), and let (Z , U) be the output of procedure GLUE460

when applied to the collection {(ZR, UR)}R and set Y . Then (Z , U) is an ε-emulator for (Ĥ, U).461

4.2 Remove All Cut Vertices in U462

Before we proceed with the main ingredient for proving Lemma 3.3, first we describe a reduction on463

the input instance (H, U) so that no vertex in U is a cut vertex of graph H. The impatient readers may464

skipped ahead to Section 4.3.465

We first compute the set U ′ of all cut vertices of H in U , and along the way the maximal 2-vertex-466

connected subgraphs Ĥ1, . . . , Ĥt of H that each contains at least two terminals of U . For each i ∈ {1, . . . , t},467

we denote Ûi := U ∩ V (Ĥi), so (Ĥi , Ûi) is a one-hole instance. Moreover, from Claim 4.2, if we are given468

an ε-emulator for instance (Ĥi , Ûi) for each i, then by simply gluing them at terminals in U ′, we can469

obtain an ε-emulator for instance (H, U). We use the following claim in order to bound
∑

1≤i≤t |Ûi| and470
∑

|Ûi |≥λ |Ûi|.471

Claim 4.3.
∑

1≤i≤t |Ûi| ≤ O(|U |), and
∑

|Ûi |≥λ |Ûi| ≤ |U | · (1+O(1/λ)).472

Proof: Recall that r := |U |. Consider the following tree T′: The node set of tree T′ is U ′ ∪ V ′, where473

V ′ := {vi | 1 ≤ i ≤ t}. The edge set of tree T′ contains, for each 1 ≤ i ≤ t and each node u′ ∈ U ′, an474
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edge (u′, vi) if u′ ∈ Ûi. Since vertices of U ′ are cut vertices of H, it is easy to verify that the graph T′475

constructed above is a tree, and moreover, all leaves of T′ lie in V ′.476

We partition set V ′ into three subsets: V ′1 contains all leaf nodes of T′, V ′2 contains all nodes of degree477

2 in T′, and V ′≥3 contains all nodes of degree at least 3 in T′. Observe that, for each node vi ∈ V ′1 , since478

|Ûi| ≥ 2, at least one terminal in Ûi does not belong to any other set in {Û1, . . . , Ût}. Therefore, |V ′1 | ≤ r.479

Since T′ is a tree, |V ′≥3| ≤ |V
′

1 | ≤ r. Since for every node in V ′2 , both its neighbors lie in U ′, we get that480

|V ′2 | ≤ |U
′| ≤ r. Altogether, |V (T′)| ≤ O(r). Note that for every terminal u′ ∈ U ′, the number of sets Ûi481

that contains u is exactly degT′(u
′). Therefore,482

∑

1≤i≤t

|Ûi| ≤ |U \ U ′|+
∑

u′∈U ′
degT′(u

′)≤ |U |+O(|V (T′)|) = O(r).483

We now upper bound
∑

|Ûi |≥λ |Ûi| via a charging scheme. We root the tree T′ at an arbitrary node of V ′,484

and process the nodes in U ′ one-by-one as follows. Consider a node u′ ∈ U ′ such that all its child nodes485

are leaves in T′. We denote by v1, . . . , vs the child nodes of u′. For each 1≤ i ≤ s, if |Ûi| ≥ λ, we charge486

u′ (as one unit) uniformly to vertices of Ûi \ {u′}, so each terminal in Ûi \ {u′} is charged at most 2/λ487

units. We delete nodes u′ and v1, . . . , vs from T′ and recurse on the remaining tree, until the tree contains488

no nodes of U ′. It is easy to observe that the value of
∑

|Ûi |≥λ |Ûi| is at most r plus the total charge. We489

now show that the total charge is O(1/λ). In fact, every terminal in U is directly charged at most 2/λ.490

Note that it is possible that some terminal in U ′ was first charged to some other terminals in U ′, and was491

later (indirectly) charged for other terminals in U ′. It is easy to observe that, the total direct and indirect492

charge is bounded by 2/λ+ (2/λ)2 + · · · ≤ 4/λ. Therefore,
∑

|Ûi |≥λ |Ûi| ≤ r · (1+O(1/λ)). �493

Note that we can simply return the collection {(Ĥi , Ûi) | 1 ≤ i ≤ t} of one-hole instances as the494

output, and it is easy to verify from the algorithm and Claim 4.3 that the output satisfies all properties495

required in Lemma 3.3 (where the algorithm COMBINE is simply the procedure GLUE), unless some set496

Ûi contains more than (9/10)r terminals. However, from Claim 4.3, there is at most one such large497

instance. Assume without loss of generality that (Ĥ1, Û1) is the unique large instance. We claim that, if498

Lemma 3.3 holds for instance (Ĥ1, Û1), then Lemma 3.3 holds for the input instance (H, U). In fact, we499

apply the algorithm from Lemma 3.3 to instance (Ĥ1, Û1) and obtain a collection H̃′, and we can simply500

return the collection H̃ := H̃′ ∪ {(Ĥi , Ûi) | 2≤ i ≤ t}. It is easy to verify from the above discussion that501

all conditions of Lemma 3.3 hold for the collection H̃ as an output for the original instance (H, U).502

From now on we focus on proving Lemma 3.3 for the unique large instance (Ĥ1, Û1). For convenience,503

we rename this large instance by (H, U), denote r := |U |, and treat it as the original input instance. From504

our algorithm, no vertex in U is a cut vertex of graph H, so if we traverse the outerface of H, then every505

terminal of U appears exactly once.506

4.3 The Small Spread Case507

Let (H, U) be a planar instance. The spread7 of the instance (H, U) is defined to be508

Φ(H, U) :=
maxu,u′∈U distH(u, u′)

minu,u′∈U distH(u, u′)
.509

For convenience, we denote Φ := Φ(H, U). We distinguish between the following two cases, depending510

on whether Φ is small or large. In this subsection we assume Φ≤ 2r0.9 log2 r . The large spread case will be511

discussed in Section 4.4.512

7sometimes also referred to as aspect ratio
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We will employ the procedure SPLIT in order to decompose the one-hole instance (H, U) into smaller513

instances. Throughout this case, we use parameters514

Lr := r/100 log2 r and εr := logΦ/Lr ,515

so εr = O((log r)4/r0.1).516

Balanced terminal pairs. Denote U := {u1, . . . , ur}, where the terminals are indexed according to the517

order in which they appear on the outerface. We say that a pair of terminals (ui , u j) (with i < j) is a518

c-balanced pair for some parameter 1/2< c < 1, if and only if j − i ≤ c · r and i + r − j ≤ c · r. In other519

words, the terminals ui and u j separate the outer boundary into two segments, each contains at most520

c-fraction (and therefore at least (1− c)-fraction) of the terminals.521

We first compute the (3/4)-balanced pair u, u′ of terminals in U that, among all (3/4)-balanced pairs522

of terminals in U , minimizes the distance between them in H. We compute the u-u′ shortest path P in H.523

Let the set Y contain the endpoints of P, together with the following vertices of P: for each 1≤ i ≤ Lr ,524

1. among all vertices v of P with distP(v, u)≤ eiεr , the vertex that maximizes its distance to u;525

2. among all vertices v of P with distP(v, u)≥ eiεr , the vertex that minimizes its distance to u;526

3. among all vertices v of P with distP(v, u′)≤ eiεr , the vertex that maximizes its distance to u′;527

4. among all vertices v of P with distP(v, u′)≥ eiεr , the vertex that minimizes its distance to u′.528

In other words, if we think of path P as a line, and then mark, for each 1 ≤ j ≤ Lr , the point on the529

line that is at distance eiεr from u, and the point on the line that is at distance eiεr from u′, then set Y530

contains, for all marked points, the vertices of P that are closest to it from both sides. By definition,531

|Y | ≤ 4Lr .532

We apply the procedure SPLIT to the one-hole instance (H, U), the path set {P} and the vertex set Y533

defined above. Let (H1, U1) and (H2, U2) be the instances we get. We then simply return the collection534

{(H1, U1), (H2, U2)} as the output of our algorithm.535

Analysis of the small spread case. We now show that the output of the algorithm in this case satisfies536

the properties required in Lemma 3.3. First, from the definition of procedure SPLIT, every terminal in U537

continues to be a terminal in at least one instance in {(H1, U1), (H2, U2)}. Moreover, since the pair (u, u′)538

of terminals is (3/4)-balanced, and |Y | ≤ 4Lr = r/(25 log2 r), so |U1| ≤ (3/4)r+ r/(25 log2 r)≤ (9/10)r,539

and similarly |U2| ≤ (9/10)r. Second, note that |U1|+ |U2| ≤ |U |+ 2|Y | ≤ r · (1+O(Lr/r)) = r · (1+540

O( 1
log2 r

)) = r · (1+O(1/λ)), as λ≤ log2 r.541

We now construct an algorithm COMBINE that satisfies the required properties. Let (H ′1, U1) be542

an ε-emulator for (H1, U1) and let (H ′2, U2) be an ε-emulator for (H2, U2). The algorithm COMBINE543

simply applies the procedure GLUE to the collection {(H ′1, U1), (H ′2, U2)} and set Y . Let (H ′, U ′) be the544

one-hole instance that it outputs. It is easy to verify that U ′ = U . The algorithm COMBINE simply returns545

the instance (H ′, U). It remains to show that the output of algorithm COMBINE satisfies the required546

properties. Note that the collection {(H1, U1), (H2, U2)} and the set Y also constitute a valid input for547

procedure GLUE. Let (Ĥ, Û) be the instance output by GLUE when applied to {(H1, U1), (H2, U2)} and Y .548

It is easy to verify that Û = U . We use the following claim.549

Claim 4.4. Instance (Ĥ, U) is a (3εr)-emulator for instance (H, U).550

We provide the proof of Claim 4.4 right after we complete the analysis for the small spread case. From551

Claim 4.2, (H ′, U) is an ε-emulator for (Ĥ, U). From Claim 4.4, instance (Ĥ, U) is a (3εr)-emulator for552

instance (H, U). Altogether, (H ′, U) is an (ε + 3εr) = (ε +O( log4 r
r0.1 ))-emulator for (H, U). This completes553

the proof of Lemma 3.3 in the small spread case.554
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Proof of Claim 4.4. We will show that, for each pair u1, u2 of terminals in U ,

distH(u1, u2)≤ distĤ(u1, u2)≤ e3εr · distH(u1, u2).

From the procedure SPLIT, H1 is the subgraph of H whose image lies in the region surrounded by555

the image of P and the segment of outer-boundary of H from u clockwise to u′ (including the boundary),556

and H2 is the subgraph of H whose image lies in the region surrounded by the image of P and the557

segment of outer-boundary of H from u anti-clockwise to u′ (including the boundary), and path P is558

entirely contained in both H1 and H2. We denote by Ĥ1 the copy of H1 in graph Ĥ, and we define graph559

Ĥ2 similarly, so V (Ĥ1) ∩ V (Ĥ2) = Y . We denote by P1, P2 the copies of path P in graphs Ĥ1 and Ĥ2,560

respectively. See Figure 4 for an illustration.561

Figure 4. An illustration graphs Ĥ, H1, and H2. Left: Graphs H1 (top) graph H2 (bottom) viewed as individual graphs. Right:
Subgraphs Ĥ obtained by gluing graphs H1 and H2. Vertices in Y \ {u, u′} are shown in purple.

We first show that for each pair u1, u2 ∈ U , distH(u1, u2)≤ distĤ(u1, u2). Consider a pair u1, u2 ∈ U .562

Assume first that u1, u2 both belong to H1 (the case where u1, u2 both belong to H2 is symmetric). Clearly,563

in graph Ĥ, there is a u1-u2 shortest path Q that lies entirely in Ĥ1. From the construction of Ĥ, the same564

path belongs to H1, and therefore distH(u1, u2) ≤ distĤ(u1, u2). Assume now that u1 ∈ V (H1) \ {u, u′}565

and u2 ∈ V (H2) \ {u, u′} (the case where u2 ∈ V (H1) \ {u, u′} and u1 ∈ V (H2) \ {u, u′} is symmetric). It566

is easy to see that, in graph Ĥ, there exists a u1-u2 shortest path that is the sequential concatenation of567

1. a path Q1 in Ĥ1 connecting u1 to some vertex x1 ∈ V (P1), that is internally disjoint from P1;568

2. a subpath R1 of P1 connecting x1 to a vertex y ∈ Y ;569

3. a subpath R2 of P2 connecting y to a vertex x2; and570

4. a path Q2 in Ĥ2 connecting x2 to u2, that is internally disjoint from P2.571

Consider the path in H formed by the sequential concatenation of (i) the copy of Q1 in H1; (ii) the572

subpath R of P connecting the copy of x1 in P to the copy of x2 in P; and (iii) the copy of Q2 in H2.573

Clearly, this path connects u1 to u2 in P. Moreover, since the weight of R is at most the total weight of574

paths R1 and R2, this path in H has weight at most the weight of the u1-u2 shortest path in Ĥ. Therefore,575

distH(u1, u2)≤ distĤ(u1, u2).576

From now on we focus on showing that, for each pair u1, u2 ∈ U , distĤ(u1, u2)≤ e3εr · distH(u1, u2).577

Assume first that u1, u2 both belong to H1 (the case where u1, u2 both belong to H2 is symmetric).578

Similar to the previous discussion, the u1-u2 shortest path in H is entirely contained in H1, and so579

distĤ(u1, u2) = distH(u1, u2). Assume now that u1 ∈ V (H1) \ {u, u′} and u2 ∈ V (H2) \ {u, u′} (the case580

where u1 ∈ V (H2) \ {u, u′} and u2 ∈ V (H1) \ {u, u′}) is symmetric. Let Q be the u1-u2 shortest path in581
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H. The intersection between Q and P is a subpath of P. Let x1, x2 be the endpoints of this subpath, so582

vertices u1, x1, x2, u2 appear on path Q in this order. Let Q1 denote the subpath of Q between u1 and x1,583

Q2 the subpath of Q between u2 and x2, and Q′ the subpath of Q between x1 and x2. We consider the584

following possibilities, depending on the locations of vertices x1, x2 and vertices in Y .585

Possibility 1. There is a vertex in Y between x1 and x2. Let y be a vertex of Y between vertices x1 and x2.586

Consider the path Q̂ of Ĥ formed by the sequential concatenation of (i) the copy of Q1 in Ĥ1 connecting587

u1 to the copy of x1; (ii) the subpath R1 of P1 connecting the copy of x1 to y; (iii) the subpath R2 of P2
588

connecting y to the copy of x2; and (iv) the copy of Q2 in H̃2 connecting the copy of x2 to u2. Since589

vertex y lies between x1 and x2 on path P, from the construction of Ĥ, the path Q̂ in Ĥ constructed590

above has weight at most the weight of Q in H. Therefore, distĤ(u1, u2)≤ distH(u1, u2).591

Possibility 2. There is no vertex of Y between x1 and x2. Assume without loss of generality that |V (H1)∩U | ≥592

|U |/2, and that x1 is closer to u than to u′ in P. We use the following observation.593

Observation 4.5. distH(x1, u1)≥ distH(x1, u).594

Proof: Assume not, then distH(u1, u)≤ distH(x1, u1) + distH(x1, u)< 2 · distH(x1, u)≤ distH(u, u′), and595

distH(u1, u′)≤ distH(x1, u1)+distH(x1, u′)< distH(x1, u)+distH(x1, u′)≤ distH(u, u′). So both distH(u1, u)596

and distH(u1, u′) is less than distH(u, u′). However, since |U |/2≤ |V (H1)∩ U | ≤ (3/4) · |U |, it is easy to597

verify that at least one of the pairs (u1, u), (u1, u′) is (3/4)-balanced, a contradiction to the fact that u, u′598

is the closest (3/4)-balanced terminal pair in H. �599

Think of path P as a line connecting u to u′. We now mark, for each 1≤ j ≤ Lr , the point on the line600

that is at distance eiεr from u, and the point on the line that is at distance eiεr from u′, and call these marked601

points landmarks. It is easy to observe that there is no landmark between vertices x1 and x2. This is602

because, if there is landmark between vertices x1 and x2, since set Y contains, for all landmark, the vertices603

of P that are closest to it from both sides, either x1 or x2 or some other vertices of P that lie between x1 and604

x2 will be added to vertex set Y , a contradiction. Let x be the landmark closest to x1 that lies between u605

and x1, and assume distP(x , u) = eiεr . Let y be the vertex of Y closest to the landmark x that lies between606

x and x1. From the construction of portals, eiεr ≤ distP(y, u) < distP(x1, u), distP(x2, u) < e(i+1)εr .607

Therefore, distP(x1, y), distP(x2, y) ≤ (eεr − 1) · eiεr . Consider now the u1-u2 path in Ĥ formed by608

concatenation of (i) the copy of Q1 in Ĥ1 connecting u1 to the copy x1
1 of x1; (ii) the subpath of P1

609

connecting x1
1 to y; (iii) the subpath of P2 connecting y to the copy x2

2 of x2; and (iv) the copy of Q2 in610

Ĥ2 connecting x2
2 to u2. The total weight of this path is at most611

distĤ1
(u1, x1

1) + distĤ1
(x1

1 , y) + distĤ2
(x2

2 , y) + distĤ2
(u2, x2

2)

= distH(u1, x1) + distP(x1, y) + distP(x2, y) + distH(u2, x2)

= distH(u1, x1) + distH(u2, x2) + distP(x1, x2) +
�

distP(x1, y) + distP(x2, y)− distP(x1, x2)
�

≤ distH(u1, u2) + 2 · (eεr − 1) · eiεr

≤ distH(u1, u2) + 2 · (eεr − 1) · distH(u, x1)

≤ distH(u1, u2) + 2 · (eεr − 1) · distH(u1, x1) (from Observation 4.5)

≤ e3εr · distH(u1, u2).

612

Therefore, distĤ(u1, u2)≤ e3εr · distH(u1, u2). This completes the proof of Claim 4.4. �613
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4.4 The Large Spread Case614

Now we assume Φ> 2r0.9 log2 r . Without loss of generality, we assume that minu,u′∈U distH(u, u′) = 1 and615

maxu,u′∈U distH(u, u′) = Φ. In the algorithm for this case, we use the following parameters:616

µ= r2, L = dlogµΦe, εr =
log4 r
r0.1

, ε′r =
1

r0.7
.617

We first compute a hierarchical partitioning (S0,S1, . . . ,SL) of terminals in U in a bottom-up fashion618

as follows. We proceed in L iterations. In the ith iteration, we compute a collection Si of subsets of U619

that partition U .620

• We start by letting collection S0 contain, for each terminal u ∈ U , a singleton set {u}. That is,621

S0 := {{u} | u ∈ U}.622

• Consider an index 1 ≤ i ≤ L. Assume we have already computed the collection Si−1 of subsets,623

we now describe the computation of collection Si, as follows. First, let graph Wi−1 be obtained624

from H by contracting each subset S ∈ Si−1 into a single supernode, that we denote by vS, and625

we define Vi−1 := {vS | S ∈ Si−1}. Recall that H is an edge-weighted graph, and we let every626

edge of Wi−1 have the same weight as the corresponding edge in H. Then we construct another627

auxiliary graph Ri−1 as follows. Its vertex set is Vi−1, and it contains an edge connecting vS to vS′628

if distWi−1
(vS , vS′)≤ µi , or equivalently distH(S, S′)≤ µi . Finally, we define Si to be the collection629

that contains, for each connected component C of graph Ri−1, the set
⋃

vS∈V (C) S. It is easy to630

verify that the sets in Si partition U .631

This completes the description of the hierarchical partitioning (S0,S1, . . . ,SL). Clearly, collection SL632

contains a single set U . We denote S :=
⋃

0≤i≤L Si . So collection S is a laminar family. That is, for every633

pair S, S′ ∈ S, either S ∩ S′ =∅, or S ⊆ S′, or S′ ⊆ S.634

Observation 4.6. For each set S in collection Si , diamH(S)≤ 2r ·µi .635

Proof: We prove the observation by induction on i. The base case is when i = 0. From the construction,636

the collection S0 contains only single-vertex sets, so the diameter of each such set is at most 0≤ 2r ·µ0.637

Assume that the observation holds for 0, 1, . . . , i−1. Consider now a cluster Ŝ ∈ Si . From the construction,638

it is the union of a collection of sets in Si−1. Consider any pair u, u′ of vertices in Ŝ. If they belong to the639

same set of in Si−1, then from the induction hypothesis, distH(u, u′)≤ 2r ·µi−1 ≤ 2r ·µi. Assume now640

that u ∈ S and u′ ∈ S′ where S, S′ are distinct sets in Si−1. Since supernodes vS and vS′ lie in the same641

connected component of graph Ri−1, there exists a path connecting vS to vS′ in Ri−1, and we denote it by642

(vS , vS1
, . . . , vSb

, vS′), where b ≤ r −2 (since the number of supernodes is at most r). If we further denote643

S0 = S and Sb+1 = S′, then there exist, for each 0≤ j ≤ b+ 1, a pair û j , û′j of vertices in S j , such that644

• u= û0, u′ = û′b+1;645

• for each 0≤ j ≤ b+ 1, distH(û j , û′j)≤ 2r ·µi−1; and646

• for each 0≤ j ≤ b, distH(û′j , û j+1)≤ µi .647

Therefore, distH(u, u′)≤ r · (2r ·µi−1) + r ·µi ≤ 2r ·µi , since µ= r2. �648

In order to describe and analyze the algorithm, it would be convenient for us to compute a partitioning649

tree T with the hierarchical partitioning (S0,S1, . . . ,SL), in a natural way as follows. The vertex set of T650

is V (T) := V0 ∪ . . .∪ VL (recall that for each i, Vi = {vS | S ∈ Si}, that is, Vi contains, for each set S ∈ Si ,651

the supernode vS representing S). We call nodes in Vi level-i nodes of tree T, and we call sets in Si level-i652
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sets. Since SL = {U}, there is only one level-L node in T, that we view as the root of T. The edge set E(T)653

contains, for each pair S, Ŝ of sets such that S ∈ Si , Ŝ ∈ Si+1 for some i and S ⊆ Ŝ, an edge connecting vS654

to vŜ , so vS is a child node of vŜ , and in this case we also say that S is a child set of Ŝ and Ŝ is a parent set655

of S. It is easy to verify from the construction that T is indeed a tree.656

Observation 4.7. Let S, S′ be disjoint sets in S. Let u1, u2 be any pair of vertices in S, and let u′1, u′2 be657

any pair of vertices in S′. Then the pairs (u1, u2) and (u′1, u′2) of terminals are non-crossing in H.658

Proof: Assume for contradiction that the pairs (u1, u2) and (u′1, u′2) are crossing in H. Assume that S is659

a level-i set and S′ is a level-i′ set, and assume without loss of generality that i ≥ i′.660

We first find another two pairs (u3, u4), (u′3, u′4) of terminals such that distH(u3, u4)≤ µi , distH(u′3, u′4)≤661

µi′ and the pairs (u3, u4) and (u′3, u′4) are crossing. We start by finding the pair (u3, u4). In fact, if we662

denote by γ1 the boundary segment clockwise from u′1 to u′2 around the outerface of H, and denote by γ2663

the boundary segment clockwise from u′2 to u′1 around the outerface of H, then since we have assumed664

that (u1, u2) and (u′1, u′2) are crossing, one of u1, u2 lies on γ1 and the other lies on γ2. Assume without665

loss of generality that u1 lies on γ1 and u2 lies on γ2.666

From the construction of graphs R1, . . . , Ri−1 and collections S1, . . . ,Si. It is easy to observe that,667

for every pair u, u′ of terminals that belong to the same level-i set, there exists a sequence u1, . . . , ut of668

terminals in U that all belong to the same level-i set as u and u′, such that, if we denote u = u0 and669

u′ = ut+1, then for each 0 ≤ j ≤ t, distH(u j , u j+1) ≤ µi; and for every pair u, u′ of terminals do not670

belong to the same level-i set, distH(u, u′)> µi .671

Consider now the pair u1, u2 of terminals. Note that they belong to the same level-i set. From the672

above discussion, there exists a sequence of terminals in S starting with u1 and ending with u2, such that673

the distance between every pair of consecutive terminals in the sequence is less than µi . Since u1 lies on674

γ1 and u2 lies on γ2, there must exist a pair (u3, u4) of terminals appearing consecutively in the sequence,675

such that u3 lies on γ1 and u4 lies on γ2, so pairs (u3, u4) and (u′1, u′2) are crossing and distH(u3, u4)≤ µi .676

We can then use similar arguments to find another pair (u′3, u′4), such that the pairs (u3, u4) and677

(u′3, u′4) are crossing and distH(u′3, u′4)≤ µ
i′ . Note that, since u3, u4 ∈ S and u′3, u′4 /∈ S, distH(u3, u′3)> µ

i
678

and distH(u4, u′4)> µ
i . Altogether, we get that679

distH(u
′
3, u′4) + distH(u3, u4)≤ µi +µi′ ≤ µi +µi < distH(u3, u′3) + distH(u4, u′4),680

a contradiction to the Monge property on the crossing pairs (u3, u4) and (u′3, u′4). �681

Expanding sets. The central notion in the algorithm for the large spread case is the expanding sets.682

Recall that ε′r = r−0.7. We say that a set S ∈ S is expanding if |Ŝ| ≥ eε
′
r · |S|, where Ŝ is the parent set of S683

(or equivalently, vŜ is the parent node of vS in T); otherwise it is non-expanding. We now distinguish684

between two cases, depending on whether S contains a non-expanding set with moderate size.685

4.4.1 The Balanced Case: there is a non-expanding set S with r/5≤ |S| ≤ 4r/5686

We let Ŝ be the parent set of S. We denote S∗ := Ŝ \ S, and S′ := U \ Ŝ, so the sets S∗, S, and S′ partition687

set U . Moreover, we have r/6 ≤ |S|, |S′| ≤ 5r/6 and |S∗| ≤ (eε
′
r − 1)r. We will employ the procedure688

SPLIT in order to decompose the instance (H, U) into smaller instances, for which we need to compute a689

non-crossing path set and a set of vertices in the path set, as the input to the procedure, as follows.690

We say that an ordered pair (u, u′) of terminals in S is a border pair if the segment on the outer-691

boundary of H from u clockwise to u′ contains no other vertices of S but at least one vertex of S∗ ∪ S′.692

We compute the set M of all border pairs in S, and then apply the algorithm from Lemma 2.2 to graph H693
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and the set of border pairs M, to obtain a set P of shortest paths connecting pairs in M. We call P the694

border path set of S. It is easy to verify that set M is non-crossing, and so path set P is also non-crossing.695

Consider now a border pair (u, u′) of terminals and let Pu,u′ be the u-u′ shortest path that we have696

computed. We apply the algorithm from Lemma 2.4 to graph H, path Pu,u′ and each vertex u∗ ∈ S∗ that697

lies on the segment of the outer-boundary of H from u clockwise to u′, with parameter εr , and compute698

an εr -cover of u∗ on Pu,u′ . We then let Yu,u′ be the union of all vertices in these εr -covers and the endpoints699

of Pu,u′ , so Yu,u′ is a vertex set of Pu,u′ . Let Y ∗ be the set of all vertices that are either an endpoint of700

a path in P or have degree at least 3 in the graph
⋃

P∈P P. We then define Y := Y ∗ ∪ (
⋃

(u,u′)∈M Yu,u′).701

From Theorem 2.3,702

|Y \ Y ∗| ≤ O
�

|S∗|
εr

�

≤ O
�

(eε
′
r − 1) · r
εr

�

= O
�

(1/r0.7) · r
log4 r/r0.1

�

= O
�

r0.4

log4 r

�

.703

We then apply the procedure SPLIT to the one-hole instance (H, U), the non-crossing path set P, and704

the vertex set Y . We return the collection H of one-hole instances output by the procedure SPLIT as the705

output of our algorithm in this case.706

Analysis of the Balanced Case. We now show that the output collection of one-hole instances of the707

above algorithm satisfies the properties required in Lemma 3.3.708

First, we show in the following claim that each instance in H contains at most (9/10)r terminals.709

Claim 4.8. Each instance in H contains at most (9/10)r terminals.710

Proof: From the construction of the border path set P, the one-hole instances in H can be partitioned711

into two subsets: H1 contains all instances that corresponds to a region in H surrounded by a segment712

of outer-boundary of H and the image of some path P ∈ P; and set H2 contains all other instances.713

Each instance inH1 contains at most two terminals in S, and so it contains at most r−|S|+2+|Y \Y ∗| ≤714

(9/10)r terminals (note that such an instance does not need to contain branch vertices that are not715

εr -cover vertices on its boundary). On the other hand, each instance in H2 does not contain terminals in716

S′, and so it contains at most r − |S′|+ |Y | ≤ (9/10)r terminals. �717

Second, note that |Y \ Y ∗| ≤ O(r0.4/ log4 r), then from Claim 4.1, we get that
∑

(Hi ,Ui)∈H |Ui| ≤ O(r)718

and
∑

(Hi ,Ui)∈H:|Ui |>λ |Ui| ≤ r ·
�

1+O(1/λ)
�

.719

We now construct an algorithm COMBINE that satisfies the required properties in Lemma 3.3. Recall720

that we are given, for each instance (Hi , Ui) ∈H, an ε-emulator (Zi , Ui). The algorithm COMBINE simply721

applies GLUE to instances (Z1, U1), . . . , (Zs, Us) and returns instance (Z , U) output by GLUE. It remains722

to show that the algorithm COMBINE satisfies the required properties. Note that the one-hole instances723

(H1, U1), . . . , (Hs, Us) also form a valid input for procedure GLUE. Let (Ĥ, Û) be the one-hole instance724

that the procedure GLUE outputs when it is applied to instances (H1, U1), . . . , (Hs, Us). It is easy to verify725

that Û = U . We use the following claim, whose proof is similar to the proof of Claim 4.4, and is deferred726

to Appendix A.6.727

Claim 4.9. Instance (Ĥ, U) is an O(εr)-emulator for instance (H, U).728

Now we complete the proof of Lemma 3.3 for the Balanced Case using Claim 4.9. In fact, since for729

each 1≤ i ≤ t, (Zi , Ui) is an ε-emulator for (Hi , Ui), from Claim 4.2, (Z , U) is an ε-emulator for (Ĥ, U).730

Then from Claim 4.4 and Claim 4.9, we get that (Z , U) is an (ε +O(εr)) = (ε +O( log4 r
r0.1 ))-emulator for731

(H, U). Moreover, from the algorithm GLUE, it is easy to verify that the instance (Z , U) output by the732

algorithm COMBINE satisfies that |V (Z)| ≤
∑

(Hi ,Ui)∈H |V (Zi)|.733
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4.4.2 The Unbalanced Case: every set S is either expanding, or |S|< r/5, or |S|> 4r/5734

The algorithm in this case consists of two steps. Eventually, we will reduce to the Small Spread Case,735

and use the algorithm there to complete the decomposition of the instance (H, U).736

Step 1: We say that a set S ∈ S is heavy if |S| > 4r/5, and in this case we also say that the node737

vS is heavy. Clearly, every level of T contains at most one heavy node, and all heavy nodes form a738

path in T which ends at the root node of T. Let Ŝ be the non-expanding heavy set that lies on the739

lowest level. We denote by L̂ the level that Ŝ lies in and let Š be its parent set. Define Ŝ∗ := Š \ Ŝ and740

Ŝ′ := U \ Š. So sets Ŝ∗, Ŝ, Ŝ′ partition set U , and |Ŝ∗| ≤ (eε
′
r − 1)r. We perform the same operations as741

in the Balanced Case (Section 4.4.1) to graph H with respect to the partition (Ŝ, Ŝ∗, Ŝ′). Let Ĥ be the742

collection we obtain. From similar analysis as in Section 4.4.1, we get that
∑

(Hi ,Ui)∈Ĥ
|Ui| ≤ O(r), and743

∑

(Hi ,Ui)∈Ĥ:|Ui |>λ
|Ui|= r ·

�

1+O(1/λ)
�

. If additionally we have, for each (Hi , Ui) ∈ Ĥ, |Ui| ≤ (9/10)r,744

then we simply return the collection Ĥ as the output. Assume now that there exists some instance745

(Hi∗ , Ui∗) ∈ Ĥ with |Ui∗ |> (9/10)r. Note that we may have only one such instance. It is easy to see from746

the algorithm SPLIT that no terminal of Ui∗ is a cut vertex in graph Hi∗ . Note that it is now enough to747

prove Lemma 3.3 for the instance (Hi∗ , Ui∗), which we do in the next step. Indeed, if Lemma 3.3 holds748

for instance (Hi∗ , Ui∗), then we simply apply the algorithm from Lemma 3.3 to instance (Hi∗ , Ui∗) and749

obtain a collection H∗ instances. We simply return the collection H̃ := (Ĥ \ {(Hi∗ , Ui∗)})∪H∗. It is easy750

to verify that the output collection H̃ satisfies all conditions in Lemma 3.3 for the original input instance751

(H, U) (where again we simply set COMBINE to be GLUE).752

Step 2: The goal of this step is to further modify and decompose the instance (Hi∗ , Ui∗) into instances753

with small spread, and eventually apply the algorithm from the Small Spread Case to them. Consider the754

instance (Hi∗ , Ui∗). From the algorithm SPLIT, the instance (Hi∗ , Ui∗) corresponds to a region of H, that is755

surrounded by shortest paths connecting terminals in U . Therefore, for every pair v, v′ of vertices in Hi∗756

(that are also vertices in H), distH(v, v′) = distHi∗
(v, v′). Note that set Ui∗ can be partitioned into two757

subsets: set S̃ contains all terminals in Ŝ that lies in Ui∗ , and set Yi∗ contains all new terminals (which758

are vertices in εr -covers of vertices of Ŝ∗ on paths of P and the branch vertices) added in Step 1 that759

lie on the boundary of graph Hi∗ . Note that the distances between a pair of terminals in Yi∗ and the760

distances between a terminal in Yi∗ and a terminal in S̃ could be very small (even much smaller than761

minu,u′ distH(u, u′)) at the moment, which makes it hard to bound the spread from above. Therefore, we762

start by modifying the instance (Hi∗ , Ui∗) as follows.763

We let graph H̃ be obtained from Hi∗ by adding, for each terminal u ∈ Yi∗ , a new vertex ũ and an764

edge (ũ, u) with weight µ L̂−1. We then define Ũ := S̃ ∪ {ũ | u ∈ Yi∗}. This completes the construction of765

the new instance (H̃, Ũ). We call this operation terminal pulling. See Figure 5 for an illustration. It is766

easy to verify that (H̃, Ũ) is a one-hole instance, and moreover, for each new terminal ũ in Ũ \ S̃, the767

distance in H̃ from ũ to any other terminal in Ũ is at least µ L̂−1. We will show later in the analysis that it768

is now sufficient to prove Lemma 3.3 for the instance (H̃, Ũ).769

We now construct the hierarchical clustering S̃ for instance (H̃, Ũ), in the same way as the hierarchical770

clustering S for instance (H, U), that is described at the beginning of the large spread case. Let T̃ be the771

partitioning tree associated with S̃. Recall that for every pair of vertices in Hi∗ , the distance between772

them in Hi∗ is identical to the distance between them in H. From the construction of instance (H̃, Ũ), it773

is easy to verify that both S̃ and T̃ has depth L̂, and in levels L̂ − 1, . . . , 1, new terminals in Ũ \ S̃ only774

form singleton sets as each of them is at distance at least µ L̂−1 from any other terminal in Ũ . Therefore,775

every non-singleton set in S̃ is also a set in S.776
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(a) Before: the instance (Hi∗ , Ui∗). (b) After: the instance (H̃, Ũ).

Figure 5. An illustration of modifying the instance (Hi∗ , Ui∗).

We say that a set S is good if777

(i) |S|> 1;778

(ii) S lies on level at most L̂ − 2 log r/ε′r ;779

(iii) S is non-expanding; and780

(iv) for any other set S′ ∈ S̃ that lies on level at most L̂ − 2 log r/ε′r and S ⊆ S′, S′ is expanding.781

We denote by S̃g the collection of all good sets in S̃. Next we show that all (good) sets in S̃g lie on level782

at least L̂ −O(log r/ε′r). From definition of a good set and our assumption for the Unbalanced Case that783

every set S ∈ S with r/5≤ |S| ≤ 4r/5 is expanding, it is easy to see that all good sets S have size at most784

r/5 (we have used the property that every non-singleton set in S̃ is also a set in S).785

Observation 4.10. Every good set in S̃ lies on level at least L̂ − 10 log r/ε′r . Every terminal either forms786

a singleton set on level at least L̂ − 10 log r/ε′r , or belongs to some good set in S̃g .787

Proof: Denote L̂′ := L̂ − 2 log r/ε′r . Let S be a good set. Assume S lies in level i. Let Si+1, . . . , S L̂′ be788

the ancestor sets of S on levels i + 1, . . . , L̂′, respectively. From the definition of good sets, all sets789

Si+1, . . . , S L̂′−1 are expanding, so we have790

1≤ |S| ≤ |Si+1| ≤ e−εr · |Si+2| ≤ · · · ≤ e−ε
′
r ·(L̂

′−i−1) · |SL∗ | ≤ e−ε
′
r ·(L̂

′−i−1) · r.791

Therefore, εr · (L̂′ − i − 1)≤ ln r and so i = L̂′ − 8 log r/ε′r = L̂ − 10 log r/ε′r .792

Similarly, if a terminal in S̃ does not form a singleton set on level at least L̂ − 10 log r/ε′r , and it does793

not belong to any good set in S̃g , then from the inequality above, its ancestor chain has length at most794

8 log r/ε′r , a contradiction. �795

Now for each good set S, we compute its border path set P̃S in instance (H̃, Ũ) in the same way as in796

the Balanced Case (Section 4.4.1). Now define P̃ :=
⋃

S∈S̃g
P̃S . We show in the next observation that the797

collection P of paths is non-crossing.798

Observation 4.11. The collection P̃ of paths is non-crossing.799

Proof: Assume for contradiction that the collection P̃ of paths is not non-crossing. Then there exist800

two distinct sets S, S′ ∈ S̃g , a border path P connecting terminals u1, u2 in S and a border path P ′ of801

S′ connecting terminals u′1, u′2 in S′, such that the pairs (u1, u2), (u′1, u′2) are crossing. However, from802

the definition of good sets, S ∩ S′ = ∅. Therefore, from Observation 4.7, pairs (u1, u2), (u′1, u′2) are803

non-crossing, a contradiction. �804
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Consider now a good set S ∈ S̃g . We define S∗ := Š \ S, where Š is the parent set of S in S̃g . Recall805

that a pair (u, u′) of terminals in S is a border pair, if the outer-boundary of H̃ connecting u to u′ contains806

no other vertices of S but at least one vertex that does not lie in S. Now for each border pair (u, u′) of807

terminals in S, let Pu,u′ be the u-u′ shortest path in P̃S that we have computed. We apply the algorithm808

from Lemma 2.4 to each vertex u∗ ∈ S∗ that lies on the outer-boundary from u clockwise to u′ with809

parameter εr , and compute an εr -cover of u∗ on Pu,u′ . We then let Y S
u,u′ be the union of all such εr -covers810

and the endpoints of Pu,u′ . We then let set Y S be the union of the sets Y S
u,u′ for all border pairs (u, u′).811

Finally, we define Y as the union of
⋃

S∈S̃g
Y S and all branch vertices (which we denote by Y ∗), so Y is a812

vertex set of V (P̃) that contains all branch vertices P̃. Moreover, from Theorem 2.3,813

|Y \ Y ∗| ≤ O
�

∑

S∈S̃g

|S∗|
εr

�

≤ O
�(eε

′
r − 1) ·

∑

S∈S̃g
|S|

εr

�

≤ O
�

(eε
′
r − 1) · r
εr

�

= O
�

(1/r0.7) · r
log4 r/r0.1

�

= O
�

r0.4

log4 r

�

.

814

We now apply the algorithm SPLIT to instance (H̃, Ũ), the path set P̃ and the vertex set Y . Let H̃ be815

the collection of one-hole instances we get. If all instances (Ĥ, Û) in H̃ satisfy that |Û | ≤ (9/10)r, then816

we terminate the algorithm and return H̃. Assume that there is some instance (Ĥ, Û) in H̃ such that817

|Û |> (9/10)r. From similar analysis in Step 1, there can be at most one such instance. We denote such818

an instance by (Ĥ, Û).819

We now modify the instance (Ĥ, Û) as follows. Denote L∗ := L̂ − 10 log r/ε′r . Let H∗ be the graph820

obtained from Ĥ by applying the terminal pulling operation to every terminal in Û \ S̃ via an edge of821

weight µL∗−1. We then define set U∗ to be the union of (Û ∩ S̃) and the set of all new terminals created822

in the terminal pulling operation. We use the following observation.823

Observation 4.12. Φ(H∗, U∗)≤ 2O(log2 r/ε′r ).824

Proof: From Observation 4.10, every pair of terminals in U∗ has distance at least µL∗−1 in graph H∗. On825

the other hand, since graph Ĥ is a subgraph of H̃, every pair of terminals in U∗ has distance at most826

µ L̂+1 in graph H∗. Therefore, Φ(H∗, U∗)≤ µ L̂−L∗+2 = 2O(log2 r/ε′r ) as µ= r2. �827

Since 2O(log2 r/ε′r ) < 2r0.9 log2 r when r is larger than some large enough constant, we apply the828

algorithm from the Small Spread Case to instance (H∗, U∗) and obtain a collection H(Ĥ,Û) of instance.829

The output of the algorithm is the collection
�

H̃ \ {(Ĥ, Û)}
�

∪H(Ĥ,Û) of instances.830

Analysis of the Unbalanced Case. Recall that in this step we assume that, after Step 1, there is an831

instance (Hi∗ , Ui∗)with |Ui∗ |> (9/10)r, and we transformed it into another instance (H̃, Ũ). We first show832

that it is sufficient to prove Lemma 3.3 for instance (H̃, Ũ). All other conditions can be easily verified. We833

now show that when applying the algorithm GLUE to ε-emulators {(H̃ ′, Ũ)}∪{(H ′i , Ui)}i 6=i∗ , we still obtain834

an (ε+O( log4 r
r0.1 ))-emulator for (H, U). In fact, we only need to consider the terminal pairs u, u′ with u ∈ S835

and u′ /∈ S. Note that such a pair u, u′ of terminals belongs to different level- L̂ clusters in S. From the836

construction of S̃, distH(u, u′)≥ µ L̂. Therefore, the transformation from instance (Hi∗ , Ui∗) to instance837

(H̃, Ũ) adds at most an additive µ L̂−1 to their distance, which is at most O( 1
µ) = O( 1

r2 )≤ O( log4 r
r0.1 )-fraction838

of their distance in graph H. Therefore, by gluing the ε-emulators {(H̃ ′, Ũ)} ∪ {(H ′i , Ui)}i 6=i∗ , we still839

obtain an (ε +O( log4 r
r0.1 ))-emulator for (H, U).840

From now on, we focus on proving that the decomposition we computed for instance (H̃, Ũ) satisfies841

all properties in Lemma 3.3. Recall that we have first computed a collection S̃g of good sets, computed a842
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path set P̃ and a subset Y of vertices in V (P̃) based on sets in S̃g , and then applied the procedure SPLIT843

to ((H̃, Ũ), P̃, Y ) and obtained a collection H̃ of one-hole instances.844

Assume first that all instances (Ĥ, Û) in collection H̃ satisfies that |Û | ≤ (9/10)r. Since |Y \ Y ∗| ≤845

O
� r0.4

log4 r

�

, from Claim 4.1, we get that
∑

(Ĥ,Û)∈H̃ |Û | ≤ O(r) and
∑

(Ĥ,Û)∈H̃:|Û |>λ |Û | ≤ r ·
�

1+O(1/λ)
�

.846

We now describe the algorithm COMBINE that, takes as input, for each instance (Ĥ, Û) ∈ H, an ε-847

emulator (Ĥ ′, Û), computes an
�

ε + O(εr)
�

=
�

ε + O( log4 r
r0.1 )

�

-emulator for (H̃, Ũ). We simply apply848

the algorithm GLUE to instances {(Ĥ ′, Û) | (Ĥ, Û) ∈ H̃} and return the output instance (H̃ ′, Ũ) of849

GLUE. The proof that instance (H̃ ′, Ũ) is indeed an
�

ε +O(εr)
�

-emulator for (H̃, Ũ) and the proof that850

|V (H̃ ′)| ≤
∑

(Ĥ,Û)∈H̃ |V (Ĥ
′)| use identical arguments in the Balanced Case, and is omitted here.851

Assume now that there exists an instance (Ĥ, Û) in collection H̃ with |Û | > (9/10)r. Denote852

H̃′ = H̃ \ {(Ĥ, Û)} and denote by H =
�

H̃ \ {(Ĥ, Û)}
�

∪H(Ĥ,Û) the output collection of instances. First,853

note that all instances (H, U) in collection H̃′ satisfies that |U | ≤ (9/10)r. Since the remaining instances854

in H is obtained by applying the algorithm from Case 1 to the instance (H∗, U∗), that is obtained from855

modifying the unique large instance in (Ĥ, Û). From the algorithm in Case 1, we know that each856

instance in the output collection contains at most (9/10)r terminals. Second, from similar arguments,857

we get that
∑

(H,U)∈H |U | ≤ O(r) and
∑

(H,U)∈H:|U |>λ |U | ≤ r ·
�

1 + O(1/λ)
�

. We now describe the858

algorithm COMBINE that, takes as input, for each instance (H, U) ∈H, an ε-emulator (H
′
, U), computes859

an
�

ε + O(εr)
�

=
�

ε + O( log4 r
r0.1 )

�

-emulator for (H̃, Ũ). First, consider the instances in H(Ĥ,Û) that are860

obtained from applying the algorithm in Case 1 to (H∗, U∗). We simply use the algorithm COMBINE861

described in Case 1 to compute an
�

ε+O(εr)
�

-emulator (H∗∗, U∗) for instance (H∗, U∗). Finally, we apply862

the algorithm GLUE to instances in {(H ′, U) | (H, U) ∈ H̃′}∪{(H∗∗, U∗)} and denote the obtained instance863

by (H̃ ′, Ũ). Note that, for different sets S, S′ ∈ S̃g such that S ∩ Û 6=∅, S′ ∩ Û 6=∅ and S ∩ S =∅, if set S864

lies on level i and set S′ lies on level i′, then distH(S, S′)≥ µ(max{i,i′}+1) ≥ µL∗ . Therefore, from similar865

arguments at the beginning of the analysis, the terminal pulling operation only incur an multiplicative866

factor-O(1/r) error of the distances between terminals in disjoint sets in S̃g .867

The rest of the proof that instance (H̃ ′, Ũ) is indeed an
�

ε +O(εr)
�

-emulator for (H̃, Ũ) uses almost868

identical arguments in the Balanced Case, and is omitted here.869

4.5 Near-linear Time Implementation of Lemma 3.3870

Denote n := |V (H)|. In this subsection we show that the algorithm described in this section can be871

implemented in time O
�

(n+ r2) · log r · log n
�

.872

The first step of the algorithm is to split the input instance (H, U) into smaller instances at cut vertices.873

The cut vertices of the plane graph H are simply the vertices encountered more than once when we874

traverse the boundary of the outerface of H, and so they can be computed in O(n) time. Therefore, the875

algorithm in Section 4.2 can be implemented in O(n) time.876

Consider now the step in Section 4.3. In this step we first compute the closest (3/4)-balanced pair of877

terminals in U . We show that this can be done in O(n log n+ r2 log n) time. In fact, we use the algorithm878

in [Kle05] to compute an MSSP data structure of graph H, which takes time O(n log n). We then query879

the distances between every pair of terminals in U , which takes time O(r2 log n) as the query time of880

the MSSP data structure is O(log n). We can then use the acquired information to compute the closest881

(3/4)-balanced pair of terminals in U by simply dropping all the unbalanced pairs and sort. Let this pair882

be (u, u′). Computing the u-u′ shortest-path in H takes O(n) time. Computing portals (vertices of P)883

takes O(n) time. From Section 4.1, the procedures SPLIT and GLUE can be implemented in O(n) time.884

Therefore, the total running time of the step in Section 4.3 is O(n log n+ r2 log n).885

Consider next the step in Section 4.4. In this step we first compute a hierarchical clustering of886

terminals in U , according to their distances in H. This can be done in O(n log n+ r2 log n) time. In fact,887
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we can similarly use the MSSP data structure in [Kle05] and query the distances between every pair888

of terminals in U , and then consider the complete graph KU on U whose edge weights are distances889

between pairs of its endpoints returned by the MSSP data structure. It is easy to see that, in order890

to construct the hierarchical clustering S, every edge of KU needs to be visited at most O(1) times.891

Therefore, the construction of hierarchical clustering takes in total O(n log n+ r2 log n) time. Note that S892

is a hierarchical clustering on a collection of r elements, so S contains at most O(r) distinct sets. Since893

deciding whether or not a set in S is expanding or not takes O(1) time, we can tell in O(r) time whether894

we are in the Balanced Case or the Unbalanced Case.895

• In the Balanced Case, the next steps are to compute border pairs, border path sets, εr -covers and896

to use procedure SPLIT to obtain smaller instances. From Theorem 2.2 and Lemma 2.4, all these897

takes can be done in O(n log r) time.898

• In the Unbalanced Case, the next steps are to first repeat apply the steps in the Balanced Case to899

the non-expanding set that lies on the lowest level. From the above discussion, this takes in total900

O(n log r) time. If we end up with one instance (Hi∗ , Ui∗) with |Ui∗ |> (9/10)r, we need a final step901

for further splitting this instance. It is easy to verify that the operation of terminal pulling can be902

done in O(r) time. Constructing the new collection S̃ takes O(n log n+ r2 log n) time. Identifying903

good sets in S̃ takes O(r) time. The remaining operations are computing border pairs, border path904

sets, εr -covers and using procedure SPLIT to obtain smaller instances. From the above discussion,905

all these takes can be done in O(n log r) time.906

Altogether, the running time of the algorithm in this section is O
�

(n+ r2) · log r · log n
�

.907

5 Emulator for Edge-Weighted Planar Graphs908

In this section we provide the proof of Theorem 1.1. In Section 5.1, we show an algorithm for computing909

ε-emulators for O(1)-hole instances. Then in Section 5.2, we complete the proof of Theorem 1.1 using910

the results in Section 5.1. We will prove in Section 5.3 that an ε-emulator of size Oε(k polylog k) can be911

computed in Oε(n) time.912

5.1 Emulator for O(1)-Hole Instances913

In this subsection we present a near-linear time algorithm for constructing ε-emulators for O(1)-hole914

instances. We first define aligned emulators for O(1)-hole instances similarly as aligned emulators for915

one-hole instances, as follows. Let (G, T ) and (G′, T ) be two h-hole instances. We denote by F the set of916

holes in G that contain the images of all terminals, and define F′ for G′ similarly, so |F| = |F′| = h. We say917

that instances (G, T ) and (G′, T ) are aligned, if and only if there is a one-to-one correspondence between918

faces in F and faces in F′, such that for every face F ∈ F, the set T(F) of terminals that it contains is919

identical to the set T(F ′) of terminals contained in its corresponding face F ′ ∈ F′, and moreover, the920

circular orderings in which the terminals of T (F) appearing on faces F and F ′ are identical. If (G, T ) and921

(G′, T ) aligned and (G, T ) is an ε-emulator for (G′, T ), then we say that (G, T ) is an aligned ε-emulator922

for (G′, T). Throughout this section, all emulators we construct for various O(1)-hole instances are923

aligned emulators. Therefore, we will omit the word “aligned” and only refer to them by ε-emulators or924

simply emulators. The main result of this section is the following lemma.925

Lemma 5.1. For any 0< ε < 1 and any h-hole instance (H, U) with n := |H| and r := |U |, there exists926

an h-hole instance (H ′, U) that is an ε-emulator for (H, U) with size |V (H ′)| ≤ r · (ch log r/ε)ch for some927

universal constant c. Moreover, such an emulator can be computed in time O
�

(n+ r2) · (h log n/ε)O(h)
�

.928
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The remainder of this subsection is dedicated to the proof of Lemma 5.1. We first introduce basic929

algorithms SPLITh and GLUEh for splitting and gluing h-hole instances that are similar to the algorithms930

SPLIT and GLUE for splitting and gluing one-hole instances in Section 4.1.931

Splitting and Gluing. The input to procedure SPLITh (for some integer h> 1) consists of:932

• an h-hole instance (H, U);933

• a path P connecting a pair of terminals lying on two different holes; and934

• a set Y ⊆ V (P) of vertices that contains both endpoints of P.935

The output of SPLITh is an (h− 1)-hole instance. Intuitively, SPLITh slices the graph H open along the936

path P connecting two separate holes in the graph, as illustrated in Figure 6(b). We denote by (H̃, Ũ)937

the (h− 1)-hole instance obtained by applying procedure SPLITh to instance (H, U), path P, and vertex938

set Y . Intuitively, procedure GLUEh takes as input an emulator for (H̃, Ũ), and outputs an emulator for939

the original instance (H, U) by identifying the two copies in H̃ of every vertex in Y , as illustrated in940

Figure 6(c). A complete description of these procedures is provided in Appendix B.1.941

(a) Graph H: holes α,α′ (shaded gray), terminals on α
and α′ (blue), path P (red), vertices of Y that are not
endpoints of P (purple).

(b) Graph H̃: the new hole β (shaded gray), terminals on
β (blue and purple), and the new u1-u′1 path and u2-u′2
path (red).

(c) An illustration of the output instance of GLUEh, when the input
is the (h− 1)-hole instances in Figure 6(b). Holes α and α′ are
restored.

Figure 6. An illustration of splitting and gluing an h-hole instance along a path.

Note that instance (H̃, Ũ) is also a valid input for procedure GLUEh. Let (Ĥ, Û) be the h-hole instance942

obtained by applying procedure GLUEh to instance (H̃, Ũ). Clearly, Û = U . We use the following claim,943

whose proof is similar to Claim 4.2 and thus is deferred to Appendix B.2.944
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Claim 5.2. Let (Z , U) be the instance obtained by applying procedure GLUEh to an ε-emulator (Z̃ , Ũ) of945

(H̃, Ũ). Let (Ĥ, U) be the instance obtained by applying procedure GLUEh to (H̃, Ũ). Then (Z , U) is an946

ε-emulator for (Ĥ, U).947

We now complete the proof of Lemma 5.1 by induction on h. The base case (when h= 1) follows948

from Theorem 3.1. Consider now the case where the input (H, U) is an h-hole instance for h> 1. We949

first compute a pair of terminals (u, u′) that lie on different holes, and a shortest path P in H connecting950

u to u′, such that P does not contain any terminal as internal vertices. Then for each û ∈ U \ {u, u′}, we951

use the algorithm from Theorem 2.3 and parameter ε′ := ε/h to compute an ε′-cover of û on path P.952

Let Y be the union of all such ε′-covers together with the endpoints of P, so Y ⊆ V (P). Note that from953

Theorem 2.3 we have |Y | ≤ O(|U |/ε′)≤ O(rh/ε), and by using the algorithm from Lemma 2.4, Y can954

be computed in O(h · n log r) time.955

Let c be a large enough constant that is greater than all hidden constants in Theorem 3.1. We then956

apply the procedure SPLITh to the h-hole instance (H, U), the path P and the vertex set Y . Let (H̃, Ũ)957

be the (h− 1)-hole instance SPLITh returns. From procedure SPLITh, |Ũ | ≤ |U |+ 2|Y | ≤ c · rh/ε, since c958

is large enough. Recall that instance (Ĥ, U) is obtained by applying the procedure GLUEh to instance959

(H̃, Ũ). We use the following claim, whose proof is similar Claim 4.4, and is deferred to Appendix B.3.960

Claim 5.3. Instance (Ĥ, U) is an ε′-emulator for instance (H, U).961

Consider the (h− 1)-hole instance (H̃, Ũ). From the induction hypothesis, if we set ε′′ := ε(1− 1
h),962

then there is another (h− 1)-hole instance (H̃ ′, Ũ) that is an ε′′-emulator for (H̃, Ũ), such that963

|V (H̃ ′)| ≤ |Ũ | ·
�

ch · log |Ũ |
ε′′

�c(h−1)

≤
crh
ε
·
�

ch · log(crh/ε)
ε · (1− 1/h)

�c(h−1)

≤ r ·
�

ch
ε

�c(h−1)+1

·
�

log(crh/ε)
(1− h)

�c(h−1)

≤ r ·
�

ch
ε

�ch

·
�

log r + log(crh/ε)
�c(h−1)

≤ r ·
�

ch log r
ε

�ch

.

964

where we have used the fact that (1− 1
h)
−c(h−1) ≤ ec < cc−1, as c is large enough.965

We apply procedure GLUEh to instance (H̃ ′, Ũ), and let (H ′, U) be the h-hole instance we get. From966

the procedure GLUEh, |V (H ′)| ≤ |V (H̃ ′)| ≤ r · (ch log r/ε)ch. On the other hand, since instance (H̃ ′, Ũ) is967

an ε′′-emulator for (H̃, Ũ), from Claim 5.2, instance (H ′, U) is an ε′′-emulator for (Ĥ, U). Since (Ĥ, U) is968

an ε′-emulator for instance (H, U) (from Claim 5.3), using the fact that ε′′ + ε′ = ε(1− 1/h) + ε/h= ε,969

we conclude that (H ′, U) is an ε-emulator for instance (H, U).970

Note that the above proof also gives an algorithm for constructing an ε-emulator of (H, U) of size971

at most r · (ch log r/ε)ch. Specifically, if (H, U) is the input h-hole instance, then we slice it open along972

some shortest path P that connects a pair of terminals lying on different holes, add ε′-covers of terminals973

in U on P, get an (h− 1)-hole instance (H̃, Ũ), and then we recursively construct an ε′′-emulator for974

(H̃, Ũ) and glue it along P to get an ε-emulator for (H, U). The following claim completes the proof of975

Lemma 5.1.976

Claim 5.4. The running time of the above algorithm is O
�

(n+ r2) · (h log n/ε)O(h)
�

.977
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Proof: We prove the claim by induction on h. The base case is when h = 1. From Theorem 3.1, the978

running time of the above algorithm is at most (n+ r2) · (c log n/ε)c on an n-vertex graph when h= 1.979

Consider the inductive case: The SPLITh and GLUEh algorithms runs in time at most cn. Since the input980

to the algorithm SPLITh is an n-vertex graph, SPLITh produces a graph (H̃, Ũ) with at most 2n vertices.981

Therefore, from the induction hypothesis, the construction of an ε′-emulator for (H̃, Ũ) takes at most982

(2n+ r2) · (c(h− 1) log n/ε′′)c(h−1) time. Therefore, the total running time of the algorithm is at most983

(2n+ r2) ·
�

c(h− 1) log n
ε′′

�c(h−1)
+ 2cn≤ (n+ r2) ·

�

ch log n
ε

�ch

.984 �985

5.2 Algorithm for General Planar Graphs: Proof of Theorem 1.1986

Separators and recursive decomposition. Let r be any positive integer. An r-division with few987

holes [Fre87, KMS13] of a n-vertex connected plane graph G is a collection G of connected subgraphs of988

G, called the pieces, such that989

• every edge in G belongs to at least one piece in G;990

• |G|= O(n/r);991

• the number of vertices in H is at most r for each piece H ∈ G;992

• the number of boundary vertices in H (that is, vertices in V (H) that also belong to some other piece993

in G) is O(
p

r); and994

• for each piece H ∈ G, there are O(1) faces, called holes, whose boundaries contain all boundary995

vertices of H (when considered as a plane graph).996

We often refer to an r-division with few holes as an r-division. A standard r-division can be computed in997

linear time for any r [KMS13]. However in our application we need to compute r-divisions of instances998

that evenly distribute the terminals among pieces. In particular, we need the following lemma, whose999

proof is deferred to Appendix B.4.1000

Lemma 5.5. Given an instance (G, T ) with n := |V (G)| and k := |T | computing an r-division for graph1001

G takes in O(n) time, where each piece contains O(1+ kr/n) terminals.1002

We use the following lemma, which is crucial for the proof of Theorem 1.1.1003

Lemma 5.6. Given a planar instance (H, U) with n := |V (H)| and k := |U |, and a parameter 0< ε < 1,1004

computing an ε-emulator (H ′, U) for (H, U)with |V (H ′)| ≤ O
�p

nk · (log n/ε)c
′�

takes O
�

n · (c′ log n/ε)c
′�

1005

time for some large enough universal constant c′. Furthermore, if (H, U) is an h-hole instance, then1006

(H ′, U) is also an h-hole instance.1007

Proof: Let c′ be a constant that is greater than c and all other hidden constants in Lemma 5.1. We first1008

compute an r-division for H, with parameter r := n/k using the algorithm from Lemma 5.5. Let R be1009

the collection of pieces in H that we obtain. From Lemma 5.5,1010

• |R|= O(k);1011

• the number of vertices in each piece in R is at most O(n/k);1012

• the number of boundary vertices in each piece in R is at most O(
p

n/k);1013

• the number of terminals in T in each piece in R is O(1); and1014

• there are O(1) holes in each piece in R.1015
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For each graph piece R in R, let UR be the set that contains all boundary vertices of R and all terminals in U .1016

Observe that (R, UR) is an h-hole instance for some constant h. We apply the algorithm from Lemma 5.11017

to instance (R, UR), and let (R′, UR) be the ε-emulator we get, so |V (R′)| ≤ |UR| · (ch log(n/k))/ε)ch. Also,1018

such an emulator can be computed in at most (|V (R)|+|UR|2)·(h log n/ε)ch time. Therefore, all emulators1019

in {(R′, UR) | R ∈ R} can be computed in time1020

∑

R∈R
O
�

�

|V (R)|+ |UR|2
�

·
�h log n

ε

�ch
�

≤ O
�

n ·
�h log n

ε

�ch
�

≤ O
�

n ·
� c′ log n

ε

�c′
�

,1021

as
∑

R∈R |V (R)| ≤ O(k) · (n/k) = O(n),
∑

R∈R |UR|2 ≤ O(k) · (
p

n/k)2 ≤ O(n), and c′ is large enough. We1022

then glue the emulators together via a process similar to GLUE and GLUEh, and eventually obtain an1023

ε-emulator (H ′, U) for (H, U), with size1024

|V (H ′)| ≤
∑

R∈R
|UR| ·

�

ch log(n/k)
ε

�ch

≤ O
�

k ·
s

n
k

�

·
�

ch log n
ε

�ch

≤ O

�

p

nk ·
�

log k
ε

�c′�

,1025

as both c and h are constants. �1026

Algorithm for Theorem 1.1. Let G be the input n-vertex plane graph and let T be the set of terminals1027

of size k. We first preprocess the graph G into a new graph G0 as follows. If n< k2, then we set G0 = G.1028

If n ≥ k2, we use the algorithm in [CGH16, Theorem 6.9] with parameter ε/2 to compute an (ε/2)-1029

emulator G0 for G with size O(k2 log2 k/ε2). This can be done in time Õ(n/εO(1)) by a slight modification1030

of the algorithm in [CGH16] (in particular, we remove their preprocessing step that reduces the number1031

of vertices to k4). Either way, we obtain an (ε/2)-emulator G0 for G, and |V (G0)|= O(k2 log2 k/ε2).1032

We then set L := log log k and ε′ := ε/2L. Now sequentially for each 0 ≤ i ≤ L − 1, we apply the1033

algorithm from Lemma 5.6 to instance (Gi , T ) and parameter ε′ to obtain an ε′-emulator (Gi+1, T ) for1034

(Gi , T ). Finally, we return (G′, T ) = (GL , T ) as the output. Note that ε′L = (ε/2) and thus (GL , T ) is an1035

ε/2-emulator of (G0, L), and is therefore an ε-emulator for (G, T ). From Lemma 5.6, the running time1036

of our algorithm is Õ(n/εO(1)). In order to complete the proof of Theorem 1.1, it suffices to show that1037

|V (G′)| ≤ O(k · (log k/ε)O(1)), which follows immediately from the next claim (by setting i = L).1038

Claim 5.7. For each 0≤ i ≤ L, |V (Gi)| ≤ k1+2−i
· (log k/ε′)2c′−c′/2i

.1039

Proof: We prove the claim by induction on i. The base case is when i = 0. From the preprocessing1040

step, |V (G0)| ≤ O(k2 log2 k/ε2)≤ k2(log k/ε′)2, so the claim holds, as c′ is large enough. Consider the1041

inductive case. From Lemma 5.6,1042

|V (Gi)| ≤
Æ

|V (Gi−1)| · k ·
�

log k
ε′

�c′

≤
Ç

�

k1+2−(i−1) · (log k/ε′)2c′−c′/2(i−1)
�

· k ·
�

log k
ε′

�c′

≤ k(1+2−(i−1)+1)/2 ·
�

log k
ε′

�(2c′−c/2(i−1))/2+c′

= k1+2−i
· (log k/ε′)2c′−c′/2i

.

1043

Therefore the claim holds for all i. �1044
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5.3 Bootstrapping1045

Perhaps surprisingly, we can further reduce the running time for constructing an ε-emulator to be linear1046

to the size of the graph whenever k is “sufficiently” sublinear and the range of the edge weights (that1047

is, the ratio between the smallest and largest weights) are polynomially bounded, using the idea of1048

bootstrapping combining with a precomputed look-up table.1049

Theorem 5.8. Given any parameter 0 < ε < 1 and any instance (H, U) with n := |H| and k := |U |1050

satisfying k ≤ n/ logD n for some big enough constant D, and the range of the edge weights are bounded1051

by polynomial in n, computing an emulator (Z , U) for (H, U) of size |V (Z)| ≤ O(k polylog k/εO(1)) takes1052

Oε(n) time. Furthermore, if (H, U) is an h-hole instance, then (Z , U) is an h-hole instance.1053

Proof: We apply r-division iteratively with exponentially-growing values of r; intuitively each time1054

we shrink the graph by a very small amount, just enough to absorb the logarithmic terms required to1055

compute the emulators.1056

• First compute r-division of H for r := (log log log n)6C that evenly distribute the terminals in U using1057

Lemma 5.5, where C is bigger than the number of logs we need in the running time of Theorem 1.1.1058

Replace each piece in the r-division by an ε-emulator with respect to the boundary vertices1059

and terminals using Theorem 1.1; every piece contains O(r1/2 + k(log log log n)6C/n) ≤ O(r1/2)1060

boundary vertices and terminals. The total time on the emulator construction is1061

O

�

r ·
�

log r
ε

�O(1)�

·O
�n

r

�

≤ O

�

n · (log log log log n)O(1)

polyε

�

;1062

and the new graph H ′ has size1063

O

�

r1/2

�

log r1/2

ε

�C�

·O
�n

r

�

≤ O
�

n
εC(log log log n)2C

�

.1064

• Now the graph is about (log log log n)2C -factor smaller than original, we can compute another1065

r ′-division for r ′ := (log log n)6C , and replace each piece in the r ′-division by an ε-emulator with1066

respect to the boundary vertices and terminals; every piece contains O(r ′1/2 + k(log log n)6C/n)≤1067

O(r ′1/2) boundary vertices and terminals. This way, instead of spending Oε(n(log log log n)O(1))1068

time if we perform r ′-division directly on the original graph, now it takes time1069

Oε

�

n
(log log log n)2C

· (log log log n)C
�

≤ Oε(n).1070

The new graph H ′′ has size about Oε(n/(log log n)2C).1071

• Now the graph is about (log log n)2C -factor smaller than original, we can compute another r ′′-1072

division for r ′′ := (log n)6C , and replace each piece in the r ′′-division by an ε-emulator with respect1073

to the boundary vertices and terminals; every piece contains O(r ′′1/2 + k(log n)6C/n)≤ O(r ′′1/2)1074

boundary vertices and terminals, and this takes time1075

Oε

�

n
(log log n)2C

· (log log n)C
�

≤ Oε(n).1076

The new graph H ′′′ has size about Oε(n/(log n)2C).1077
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• Finally, compute an ε-emulator for H ′′′ with respect to the terminals. This takes time1078

Oε

�

n
(log n)2C

· (log n)C
�

≤ Oε(n)1079

The final emulator has size O(k polylog k/εO(1)).1080

The accumulated distortion in distance is 4ε. Overall the bottleneck is to compute the first set of emulators1081

for pieces in the r-division, which takes O(n · (log log log log n)O(1)) time. We can avoid spending super-1082

linear time to compute the first set of emulators; instead, we precompte a look-up table for every graph1083

up to size r = (log log log n)6C , every possible subset of terminals, and every edge-weight functions1084

rounded to the closest power of 1+ ε.1085

Look-up table. Now we can describe the construction of the look-up table.1086

• There are 2O(r) plane graphs K up to size r.1087

• There are 2r possible choices for the terminal subset UK .1088

• The spread of any instance (K , UK) is at most nO(1) because the range of the edge weights is1089

polynomial in n; so if we round the weight of each edge to the closest power of 1+ ε, there are1090

log1+ε nO(1) ≤ O(log n/ε) possible weight values per edge, and thus O(log n/ε)2
O(r)

many different1091

(rounded) edge-weight functions (because ε is a constant).1092

• Computing an ε-emulator for each instance (K , UK) takes rO(1) time.1093

Overall, it takes1094

2O(r) · 2r ·O(log n/ε)2
O(r)
· rO(1) ≤ 22Oε ((log log log n)6C )

≤ oε(n)1095

time to precompute a look-up table, so that for any instance (K , UK) from the pieces of the first r-division,1096

one can round the edge weights of K and find the ε-emulator for (K , UK) directly from the look-up table.1097

Rounding the edge-weights to the closest powers of (1+ ε) will introduce at most O(ε) distortion. As a1098

result, an ε-emulator of size O(k polylog k/εO(1)) for (H, U) can be computed in Oε(n) time. �1099

6 Applications1100

In this section we present efficient ε-approximate algorithms to several optimization problems on planar1101

graphs that beat their exact counterparts, inclusing multiple-source shortest paths, minimum (s, t)−cut,1102

graph diameter, and offline dynamic distance oracle. To put emphasis on the new ideas presented, we1103

assume the readers are familiar with the various tools for optimization on planar graphs and only provide1104

citations to the earlier literature.1105

6.1 Approximate Multiple-Source Shortest Paths1106

The approximate multiple-source shortest paths data structure (ε-MSSP) can achieve the following task:1107

Preprocess a plane graph P and a set of terminals U on the outerface of P (that is, a one-hole instance1108

(P, U)), and answer distance queries between terminal pairs within (1+ ε)-approximation.1109

To prove Theorem 1.2, apply Theorem 5.8 on (P, U) to construct another one-hole instance (P ′, U)1110

that is an ε-emulator of (P, U), which has size1111

O

�

(n/logC n) · poly log n
εO(1)

�

= O
�

n
εO(1) poly log n

�

1112
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and takes Oε(n) time. Now construct the MSSP data structure on P ′ using Klein’s algorithm [Kle05],1113

which takes O
�

n
εO(1) poly log n · log n

�

= O(n/εO(1)) time; MSSP answers queries in time O(log n), which is1114

an ε-approximation to the actual distance between the pairs due to the fact that (P ′, U) is an ε-emulator.1115

This proves Theorem 1.2.1116

6.2 Approximate Minimum Cut1117

Here we briefly summarize the minimum (s, t)-cut algorithm on planar graphs with non-negative weights1118

by Italiano, Nussbaum, Sankowski, and Wulff-Nilsen [INSW11]. Many details and edge-cases are omitted1119

for the clarity of presentation. Let G be the input plane graph, and two vertices s and t.1120

1. Compute the dual graph G∗ of G; it is sufficient to compute a shortest cycle in G∗ that separates1121

the faces s∗ and t∗. Find a shortest s∗-t∗ path π in G∗. This step takes O(n) time [HKRS97].1122

2. Construct r-division in G∗ respecting π where r := log6 n. Cut π open; now each vertex on π has1123

a copy. This step takes O(n) time [KMS13].1124

3. Compute MSSP [Kle05] for each piece in the r-division with respect to the boundary vertices.1125

Prepare the Monge heap data structures [FR06], and represent each piece as a dense distance graph.1126

This step takes O(n log r) = O(n log log n) time for the MSSP [Kle05], and O(n log log n) time to1127

set up the Monge heap data structures and dense distance graphs [FR06].1128

4. Denote the length of π as p. Compute p/ log p shortest paths between the two copies of each1129

evenly spaced points on π, using Reif’s divide-and-conquer strategy [Rei81]; each shortest path is1130

computed by FR-Dijkstra [FR06] on the dense distance graphs. Now the graph is cut into p/ log p1131

slabs. This step takes Õ(n/
p

r · log(p/ log p))≤ O(n) time.1132

5. Apply Reif’s strategy directly on each slab which now has only O(log p) vertices from π, so it takes1133

O(n log p) = O(n log log n) time.1134

Overall the algorithm takes O(n log log n) time, with Step 3 being the bottleneck.1135

We can safely truncate the edge weights to have polynomial range in linear time when solving the1136

minimum (s, t)-cut problem. Now by simply choosing r := logC n with a bigger C and replacing Step 31137

with an ε-emulator per piece using Theorem 5.8, the new graph has size O( n
r ·
p

r poly log r/εO(1)) =1138

O(n/εO(1) poly log n). We can now compute p shortest paths (instead of p/ log p) in Step 4 without1139

recursion in Step 5 using Reif’s divide-and-conquer strategy directly on the emulators without preparing1140

the MSSP and Monge heap data structures in Step 3 and FR-Dijkstra in Step 4. Therefore the total1141

running time is now Oε(n), proving Theorem 1.3.1142

6.3 Approximate Diameter1143

Here we summarize the (1+ ε)-approximate algorithm to compute the diameter of planar graphs with1144

non-negative edge weights by Weimann-Yuster [WY16] and Chan-Skrepetos [CS19]. Again we omit1145

some details about marking/unmarking vertices in the actual algorithm to emphasize on core concepts.1146

Let G be the input planar graph. Given three graphs H, H ′ and H ′′, denote diamH(H ′, H ′′) the longest1147

shortest-path distance with respect to H between a vertex in H ′ and a vertex in H ′′.1148

1. Compute a shortest-path cycle separator C in G and splits G into A and B, where A∪ B = G and1149

A∩ B = C , using the algorithm by Thorup [Tho04]. This step takes O(n) time.1150

2. Construct an auxillary graph G+ by selecting O(1/ε) evenly-spaced portals on C; run single-source1151

shortest path algorithm on each portal p to get maximum distance out of all paths from p, denoted1152

as `; add edges from every vertex in A and B to the portals, with the edge-weights being their1153
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distances rounded to multiples of ε`. This step takes O(n · (1/ε)) time using the linear-time1154

single-source shortest path algorithm by Henzinger-Klein-Rao-Subramanian [HKRS97].1155

3. Approximate diamG+(A, B). This step takes O(n/ε) + 2O(1/ε) time using brute-force [WY16], or1156

O(n · (1/ε)5) time using the farthest Voronoi diagram [CS19].1157

4. Build another auxillary graph A+ from G by first adding denser portals on C , computing shortest1158

paths between denser portals on C with respect to B, then planarizing the union of all the shortest1159

paths between dense portal pairs so that A+ remains planar. Following Chan-Skrepetos [CS19],1160

the number of denser portals can be set to |G|1/8/ε; compute all-pairs shortest paths between1161

dense portals in B takes O(|B| log n + log n ·
p

|B|/ε4) time using MSSP [Kle05]; A+ has size1162

|A|+O(|A|1/2/ε4). Build the graph B+ similarly by switching the roles of A and B.1163

5. Approximate diamA+(A, A) and diamB+(B, B) recursively; the recursion depth is O(log n).1164

6. Return the maximum of diamG+(A, B), diamA+(A, A), and diamB+(B, B).1165

Overall the algorithm takes O(n log2 n+ n log n · (1/ε)5) time.1166

Again we can safely truncate the edge weights to have polynomial range when solving the diameter1167

problem. Now we can substitute the construction of A+ and B+ using planarized shortest paths in1168

Step 4 with two ε-emulators using Theorem 5.8, which only takes Oε(|A|+ |B|) time to construct and1169

has size Oε((|A|1/8 + |B|1/8)poly log n). Thus we improve the total running time to Oε(n log n), proving1170

Theorem 1.4.1171

6.4 Offline Dynamic Approximate Distance Oracle1172

Here we describe the crucial step in the algorithm by Chen et al. [CGH+20] to construct an offline1173

dynamic (1+ ε)-approximate distance oracle with O(poly log n) query and update time, assuming that1174

a (1+ ε)-distance-approximating minor of size Õ(k) for a planar graph of size n and k terminals can1175

be computed in O(n poly(log n,ε−1)) time. Given a sequence of graphs G0 ⊆ G1 ⊆ · · · ⊆ G`, denote1176

Hp := Gp \ Gp−1 for any p ∈ {1, . . . ,`}. The proof of Theorem 4.15 in Chen et al. [CGH+20] iteratively1177

constructs graphs G′1, . . . , G′
`

in the following way:1178

G′p := EMULATOR(G′p−1 ∪Hp, Tp)1179

for some terminal set Tp (irrelevant to the discussion here), where EMULATOR(G, T ) returns an ε-emulator1180

of G with respect to terminal set T . When EMULATOR(G, T) guarantees to return a minor of the input1181

graph G, one can argue that G′p must be a minor of G′p−1 ∪ Hp, which by induction is a minor of1182
⋃

1≤k≤p−1 Hk ∪Hp = Gp which must be planar [CGH+20, Lemma 4.16].1183

To prove Theorem 1.5, we follow the algorithm by Chen et al. [CGH+20] almost verbatim; the only1184

missing piece is to prove that G′p remains planar in our setting. Observe that our emulator construction1185

solely relies on the SPLIT and GLUE procedures introduced in Section 4.1. (The base case from Theorem 2.11186

can be replaced by the O(k4)-size distance-approximating minor [KNZ14].) While the emulator G′1187

produced by split-and-glue is technically not a minor of the input graph G, there is another planar1188

supergraph Ĝ modified from G such that G′ is a minor of Ĝ. Now we can proceed to prove that G′p is1189

planar using our construction for EMULATOR(G, T ).1190

Claim 6.1. For any p ∈ {1, . . . ,`}, G′p is planar when EMULATOR(G, T ) is implemented using Theorem 1.1.1191

Proof: We will prove the following stronger statement by induction on p: there is a planar graph Ĝp1192

constructed from Gp by vertex spitting (the reverse operation to edge contraction), edge subdivision (by1193

33



breaking an edge into two using a degree-2 node), and edge duplications (by creating multiedges from1194

an existing edge), and contains G′p as a minor. We say a plane graph H is a topological minor of some1195

graph Ĥ if Ĥ is constructed from H by vertex spitting, edge subdivision and edge duplications. (Notice1196

that this is difference from the standard terminology; in fact it is a topological minor in the dual.) Notice1197

the crucial property that if plane graph H is a topological minor of Ĥ, then Ĥ must also be a plane graph.1198

First we introduce an operation that we will later use in the construction of Ĝp. Recall that we can1199

slice a graph H open along some path P by duplicating every vertex and edge of P to create another path1200

P ′ identical to P. The set of edges incident to each vertex on P are split into two sides naturally based on1201

their cyclic order around the vertex. Now we also add an edge between each vertex on P and its copy in1202

P ′. We call this operation a pizza slice. A pizza slice of a graph H must contain H as a topological minor.1203

Every graph constructed from slice-and-gluing H along a set of paths is a minor of some pizza slice of H.1204

By induction hypothesis, there is a planar graph Ĝp−1 containing G′p−1 as a minor and Gp−1 as a1205

topological minor. Now because the endpoints of all edges in Hp can still be found in G′p−1 and Ĝp−1,1206

G′p−1∪Hp is a minor of Ĝp−1∪Hp. We know by induction hypothesis that Ĝp−1 contains Gp as a topological1207

minor, so edges in Hp can be safely added to Ĝp−1 without destroying planarity; therefore Ĝp−1 ∪Hp is1208

still planar, and so does G′p−1 ∪ Hp. Therefore G′p := EMULATOR(G′p−1 ∪ Hp, Tp) is also planar from the1209

emulator construction.1210

Now we describe the construction of Ĝp from Gp and G′p. As G′p is constructed using split-and-glue1211

from Zp := G′p−1 ∪Hp by Theorem 1.1, there is a pizza slice Ẑp of Zp that contains G′p as a minor. Using1212

the lifting property that a topological minor commutes with a minor, there is another plane graph Ĝp1213

that contains Ĝp−1 ∪Hp as a topological minor; one can indeed construct Ĝp from Ĝp−1 ∪Hp using pizza1214

slices on a set of paths mimicking the one used during the slice-and-glue operations to obtain G′p from1215

Zp. Now Ĝp contains G′p as a minor because Ĝp contains Ẑp as a minor and Ẑp contains G′p as a minor by1216

construction. Ĝp also contains Gp as a topological minor because Ĝp contains Ĝp−1 ∪Hp as a topological1217

minor, which by induction contains Gp−1 ∪Hp as a topological minor. Therefore the existence of Ĝp is1218

established.1219

The base case is clear: Define Ĝ1 to be the pizza slice of G′0 ∪H1 = G0 ∪H1 = G1 that contains G′1 as1220

a minor from the emulator construction. Thus the claim is proved. �1221
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A Missing Proofs in Section 2 and Section 31379

A.1 Proof of Lemma 2.21380

Let w : E(G)→ R+ be the edge weight function of graph G. We slightly perturb w to obtain another1381

function w′ : E(G)→ R+, such that for every pair P, P ′ of distinct paths in G: w′(P) 6= w′(P ′); and if1382

w′(P)> w′(P ′), then w(P)≥ w(P ′). Therefore, for each pair v, v′ of vertices in G, there is a unique v-v′1383

shortest path in G under the weight function w′, and this path is also a v-v′ shortest path in G under the1384

weight function w [MVV87, Cab12].1385

The algorithm uses the technique of divide-and-conquer. We now describe the recursive step.1386

We first construct an auxiliary planar graph H as follows. Its vertex set is V (H) = T , and its edge1387

set E(H) contains, for each pair (t1, t2) ∈M, an edge connecting t1 to t2. Graph H inherits a planar1388

embedding from G and is therefore an outerplanar graph. Denote by F the set of bounded faces in H1389

lying inside a disc D. We construct a graph R as follows. Its vertex set is V (R) = {uF | F ∈ F}, and its1390

edge set E(R) contains, for every pair F, F ′ ∈ F, an edge (uF , uF ′) if and only if faces F and F ′ share a1391

segment of non-zero length on their boundaries. It is easy to verify that R is a tree, and |V (R)| = |M|+ 1.1392

(In other words, R is the weak-dual of an outerplanar graph.) We can now efficiently compute a vertex1393

uF of R, such that every connected component of graph R\ {uF} contains no more than |V (R)|/2 vertices.1394

Denote this vertex by uF∗ . Consider now the face F∗ of H. Since in graph R, every connected component1395

of graph R \ {uF} contains no more than |V (R)|/2 vertices, it is easy to see that we can find a pair t i , t j1396

of terminals on the intersection of the boundary of D and the boundary of F∗, such that, if we draw a1397

straight line segment connecting t i , t j , and denote by D1, D2 the discs obtained by cutting D along this1398

segment, then each edges of H is drawn either inside D1 or inside D2, and each of D1, D2 contains the1399

image of at most 3/4-fractions of edges in H.1400

Consider now the one-hole instance (G, T). We compute a t i-t j shortest path P in G, and cut the1401

graph G into two subgraphs G1, G2 along path P (so G1 ∩G2 = P). Define M1 to be the subset of M that1402

contains all pairs whose corresponding edge in graph H is drawn inside D1 in H, and we define subset1403

M2 similarly, so sets M1,M2 partition M, and |M1|, |M2| ≤ (3/4) · |M|. We now recurse on graph G1 for1404

computing the shortest paths connecting pairs of M1 and graph G2 for computing the shortest paths1405

connecting pairs of M2. This completes the description of the algorithm.1406

It is easy to verify that the running time of the algorithm is O(log |M| · |E(G)|), since in every recursive1407

layer, every edge of the original graph G appears in at most two of the graphs that lie on this layer. To1408

complete the proof of Theorem 2.2, it suffices to show that, in a recursive step described above, for every1409

pair (t1, t2) ∈M1, the unique shortest path in G under w′ lies entirely in graph G1 (the case for M2 and1410

G2 is symmetric), and the set of resulting shortest paths that we computed is well-structured.1411

Assume for contradiction that the t1-t2 shortest-path P ′ in G does not lie entirely in G1. We view P ′1412

as being directed from t1 to t2. Let v (v′, resp.) be the first (last, resp.) vertex of P ′ that lies on P and1413

denote by P̂ (P̂ ′, resp.) the subpath of P (P ′, resp.) between v and v′. Therefore, some inner vertex1414

of P̂ ′ does not belong to G1 and therefore does not belong to P, and so P̂ 6= P̂ ′. However, since both P1415

and P ′ are shortest paths under w′, w′(P̂) = w′(P̂ ′), a contradiction to the fact that every pair of distinct1416

paths have different weight in w′. Via similar arguments we can also show that set of resulting shortest1417

paths that we computed is well-structured.1418

A.2 Proof of Theorem 3.21419

In this subsection we provide the proof of Theorem 3.2. Our example is inspired by the hard example1420

constructed in [KNZ14]. Assume that 1/ε is an integer and k is a multiple of 1/ε. This will only cause1421

an additional constant factor in the size bound and will not influence the bound in Theorem 3.2.1422
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We first construct a circular ordering σ and a metric d on the terminals. From [CO20], if d satisfies1423

the Monge property (under the circular ordering σ), then there exists a one-hole instance (G, T ) with1424

terminals in T appearing on the boundary in the order σ.1425

The set T is partitioned into L = εk/4 groups T =
⋃

1≤i≤L T i, where each group contains 4/ε1426

terminals. Each group T i is then partitioned into four subgroups T i = T i,1 ∪ T i,2 ∪ T i,3 ∪ T i,4, each1427

containing 1/ε terminals. We denote T i, j = {t i, j
1 , . . . , t i, j

1/ε}, for each 1≤ j ≤ 4. The circular ordering σ1428

on terminals of T is defined as follows. The groups T1, . . . , T L appear clockwise in this order; within each1429

group T i, the subgroups T i,1, T i,2, T i,3, T i,4 appear clockwise in this order; and within each subgroup1430

T i, j, the vertices t i, j
1 , . . . , t i, j

1/ε appear clockwise in this order. See Figure 7(a) for an illustration. The1431

metric d on T is defined as follows. For every pair t, t ′ of terminals that belong to different groups,1432

d(t, t ′) = 1/ε2. Consider now a group Ti. The metric between terminals in Ti is defined as follows.1433

Consider the (1
ε + 2)× (1

ε + 2) grid with unit edge weight. We place each terminal in T at a boundary1434

vertex of H, in the way shown in Figure 7(b). Now for each pair t i, j
r , t i, j′

r ′ of terminals in T i, we define1435

d(t i, j
r , t i, j′

r ′ ) = distH(t
i, j
r , t i, j′

r ′ ). It is easy to verify that d is a metric and satisfies the Monge property.1436

(a) An illustration of ordering σ. (b) An illustration of metric d within a group T i of terminals.

Figure 7. Illustrations of circular ordering σ and metric d within a group T i of terminals.

Consider now a one-hole instance (G′, T) such that the circular ordering in which terminals in T1437

appear on the outer boundary of G′ is σ and for each pair t, t ′ ∈ T , e−ε/3 · distG′(t, t ′)≤ d(t, t ′)≤ e−ε/3.1438

For each 1 ≤ i ≤ L, we define G′i to be the subgraph of G′ induced by the set of all vertices in G′ that1439

have distance at most 10/ε from terminal t i,1
1 . Since in d, the distance between every pair of terminals in1440

{t1,1
1 , . . . , t L,1

1 } is 1/ε2, it is easy to see that the graphs {G′1, . . . , G′L} are mutually vertex-disjoint. On the1441

other hand, it is easy to verify that, for every 1≤ i ≤ L and every pair t, t ′ of terminals in T i , the shortest1442

path in G′ connecting t to t ′ is entirely contained in G′i . Therefore, for each 1≤ i ≤ L, (G′i , T i) is an aligned1443

ε/3-emulator for (G, T i). From similar arguments in [KNZ14], we get that |V (G′i)| ≥ Ω(|T
i|2) = Ω(1/ε2).1444

Therefore, |V (G′)| ≥
∑

1≤i≤L |V (G
′
i)| ≥ L ·Ω(1/ε2) = Ω(k/ε). This shows that any aligned (ε/3)-emulator1445

for (G, T ) has size at least Ω(k/ε). Theorem 3.2 now follows by scaling.1446

A.3 Calculations for size and error bounds in Section 31447

For convenience, we denote λ= λ∗. We prove the following observations.1448

Observation A.1. Let r1, . . . , rt be a sequence of integers, such that r1 ≤ k, rt ≥ λ, and for each1449

1≤ i ≤ t − 1, ri ≥ (10/9) · ri+1. Then
∑

1≤i≤t(log(10/9) ri)−2 ≤ 1/(log(10/9)λ− 1).1450
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Proof: Since for each 1≤ i ≤ t − 1, ri+1 ≤ (9/10) · ri , log(10/9) ri+1 ≤ log(10/9) ri − 1. Therefore,1451

∑

1≤i≤t

1
(log(10/9) ri)2

≤
∑

j≥log(10/9) λ

1
j2
≤

∑

j≥log(10/9) λ

�

1
j − 1

−
1
j

�

≤
1

log(10/9)λ− 1
.1452

�1453

Observation A.2. Let r1, . . . , rt be a sequence of integers, such that r1 ≤ k, rt ≥ λ, and for each1454

1≤ i ≤ t − 1, ri ≥ (10/9) · ri+1. Then
∑

1≤i≤t(log ri)4/r0.1
i ≤ 101(logλ)4/λ0.1.1455

Proof: Consider any index 1≤ i ≤ t − 1. Denote x = log ri/ log ri+1, so ri = (ri+1)x . Assume first that1456

x < 1+ 10−100, then since ri ≥ (10/9) · ri+1, we get that1457

�

(log ri)4

r0.1
i

�

/

�

(log ri+1)4

r0.1
i+1

�

=
r0.1

i+1

r0.1
i

·
�

log ri

log ri+1

�4

≤
99
100
· x4 ≤

100
101

.1458

Assume now that x ≥ 1+ 10−100, then since ri+1 ≥ λ and from the definition of λ,1459

�

(log ri)4

r0.1
i

�

/

�

(log ri+1)4

r0.1
i+1

�

=
r0.1

i+1

r0.1
i

·
�

log ri

log ri+1

�4

=
x4

(ri+1)
x−1
10

≤
x4

λ
x−1
10

≤
100
101

.1460

and so1461
∑

1≤i≤t

(log ri)4

r0.1
i

<
(logλ)4

λ0.1
·
�

1+
100
101

+
�100
101

�2
+ · · ·

�

≤
101(logλ)4

λ0.1
.1462 �1463

A.4 Proof of Claim 4.11464

Item 1 of Claim 4.1. We define the graph H̃ as the union of (i) all paths in P; and (ii) the cycle that1465

connects all vertices of U in the order that they appear on the outer-boundary of the drawing associated1466

with H, so H̃ is a planar graph, and the drawing of H naturally induces a planar drawing of H̃. Let H̃ ′ be1467

the graph obtained from H̃ by suppressing all degree-2 vertices, so the planar drawing of H̃ naturally1468

induces a planar drawing of H̃ ′. Since H̃ ′ has no degree-2 vertices, the number of faces, edges and1469

vertices are all within a constant factor. Therefore, to show that the number of branch vertices is O(|U |),1470

it suffices to show that the number of vertices in H̃ ′ is O(|U |), and therefore it suffices to show that the1471

number of faces in the planar drawing of H̃ ′ is O(|U |).1472

We first construct an outerplanar graph X on U as follows. The edge set of X is the union of (i) all1473

edges of the cycle that connects all vertices of U in the order that they appear on the outerface; and (ii)1474

for each path in P, an edge connecting its endpoints in U . Clearly, X has |U | vertices and O(|U |) edges.1475

The circular ordering on vertices of U naturally defines a drawing of X . Clearly, the number of faces in1476

this drawing is O(|U |), and moreover, the total size of all faces is O(|U |) (where the size of a face is the1477

number of vertices that lie on the boundary of the face).1478

Let F be a face in the drawing of X defined above. We denote by |F | the number of vertices that1479

lie on the boundary of F . We now show that this face gives birth to at most O(|F |) faces in H̃ ′. Let Y1480

be a graph defined as follows. The vertex set V (Y ) contains, for each boundary edge e of F , a node ye1481

representing e. The edge set E(Y ) contains, for every pair ye, ye′ of vertices, an edge connecting them iff1482

the corresponding paths (in P) of edge e and e′ either share an edge or share an internal vertex that1483

does not belong to any other path in P. Since P is well-structured and non-crossing, the graph Y is an1484

outerplanar graph, and so |E(Y )| = O(|V (Y )|) = O(|F |). Since the number of faces in H̃ ′ that F gives1485

birth to is at most the number of edges in Y plus one, we get that the number of faces in H̃ ′ that F gives1486

birth is at most O(|F |).1487

Therefore, the total number of faces in H̃ ′ in at most a constant times the total size of all faces in X ,1488

which is O(|U |). This completes the proof of 1.1489

41



Item 2 of Claim 4.1. For convenience, we rename Y \ Y ∗ as Y . In other words, set Y only contains1490

vertices that belong to exactly two paths of P, so each vertex of Y is contained in at most two instances1491

in H, contributing at most 2 to the sum
∑

(HR,UR)∈H: |UR|≥λ |UR|.1492

We denote by R the set of regions in H obtained by the procedure SPLIT. Recall that, for each region1493

R ∈ R, set UR contains all branch vertices and vertices of U ∪ Y that lie on the boundary of R. Therefore,1494

if we denote by U ′R the set that contains all branch vertices and vertices of U lying on the boundary of R,1495

then it suffices to show that1496

∑

R∈R: |U ′R|≥λ/2

|U ′R| ≤ |U | ·
�

1+O
�

1
λ

��

. (3)1497

This is because, for each R ∈ R, if |U ′R| < λ/2 while |UR| ≥ λ, then |Y ∩ UR| ≥ λ/2 ≥ |U ′R| and so
|UR| ≤ 2 · |Y ∩ UR|, and since every vertex of Y appears on the boundaries of at most two regions in R,
we get that

∑

R∈R: |U ′R|<λ/2, |UR|≥λ

|UR| ≤
∑

R∈R: |U ′R|<λ/2, |UR|≥λ

2 · |Y ∩ UR| ≤ O(|Y |).

Combined with Inequality 3 and the above discussion, this completes the proof of Claim 4.1.1498

The remainder of this section is dedicated to the proof of Inequality 3. Using similar arguments in1499

the proof of Claim 4.4, we can show that it suffices to prove Inequality 3 when no vertex of U is a cut1500

vertex of H. In other words, when we traverse the outerface of graph H, every terminal in U will be1501

visited once, and so we get a circular ordering on terminals in U .1502

Denote λ′ := λ/2. We say that a region R ∈ R is big if |U ′R| ≥ λ
′, otherwise we say it is small. We1503

need the following observation: if all regions in R are big, then Claim 4.1 holds.1504

Observation A.3. Let λ̂ > 10 be any integer. If for all R ∈ R, |U ′R| ≥ λ̂, then
∑

R∈R
|U ′R| ≤ |U | ·

�

1+O(1/λ̂)
�

.

Proof: Denote U = {u1, . . . , ur}, where the terminals are indexed according to the circular ordering in1505

which they appear on the outerface of H. We define a graph W as follows. We start from the graph1506

obtained by taking the union of all paths in P. We then suppress all degree-2 non-terminals. Finally,1507

we add the cycle (u1, . . . , ur , u1). Clearly, W is a planar graph, and the planar drawing of H naturally1508

defines a drawing of W : start with the planar drawing of all paths in P induced by the planar drawing of1509

H, contracting degree-2 non-terminals, and finally draw every edge (ui , ui+1) along the boundary of the1510

disc in which the one-hole instance (H, U) lies in. Note that each region R ∈ R corresponds to a face in1511

the planar drawing of W , that we denote by FR. Moreover, the vertices lying on the boundary of FR are1512

exactly the vertices of U ′R.1513

Consider now the dual graph W ∗ of W with respect to the planar drawing defined above. Clearly,1514

every node in W ∗ corresponds to a region in R∪{R∞}, where R∞ is the region outside the disc in which1515

the one-hole instance (H, U) lies in. We denote V (W ∗) = {vR | R ∈ R} ∪ {v∞}.1516

On the one hand, for each R ∈ R, |U ′R| is equal to the number of edges on the boundary of face FR,
which is then equal to the degree of vertex vR in W ∗. Therefore,

∑

R∈R
|U ′R|=

∑

v∈V (W ∗),v 6=v∞

degW ∗(v).

Recall that every region R ∈ R satisfies that |U ′R| ≥ λ̂, so degW ∗(v)≥ λ̂ for all v ∈ V (W ∗), v 6= v∞.1517
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On the other hand, since the paths in P are well-structured and non-crossing, and we have suppressed1518

all degree-2 vertices, it is easy to observe that the subgraph of W ∗ induced by all vertices of {vR | R ∈ R}1519

is a simple graph. In other words, all edges that have a parallel copy in W ∗ must be incident to v∞.1520

Since the number of edges in W ∗ incident to v∞ is |U |, if we subdivide every edge incident to v∞1521

by a new vertex, then the resulting graph, which we denote by Ŵ ∗, is a planar simple graph, and so1522

|E(Ŵ ∗)| ≤ 3 · |V (Ŵ ∗)|. Therefore,1523

|U |+ 2 · |U |+
∑

v∈V (W ∗),v 6=v∞

degW ∗(v)≤ 2 · |E(Ŵ ∗)| ≤ 6 · |V (Ŵ ∗)| ≤ 6 · (|U |+ |V (W ∗)|),1524

so 3|U |+ (|V (W ∗)| − 1) · λ̂≤ 6(|U |+ |V (W ∗)|), and so |V (W ∗)| ≤ (3|U |+ λ̂)/(λ̂− 6)≤ O(|U |/λ̂).1525

Altogether, we get that1526

∑

R∈R
|U ′R|=

∑

v∈V (W ∗),v 6=v∞

degW ∗(v) = |U |+
∑

v∈V (W ∗),v 6=v∞

degW ∗\v∞(v)≤ |U |+O(|U |/λ̂).1527

�1528

We now proceed to prove Inequality 3 using Theorem A.3. Let W be the plane graph defined in the proof1529

of Theorem A.3, and we say that graph W is generated by the set P of paths. We prove the following1530

observation.1531

Observation A.4. Let P be a path in P, let F be a face, and let C be the boundary cycle of F . Then1532

either P ∩ C = ;, or the intersection between P and C is a subpath of both P and C .1533

Proof: Assume that P ∩ C 6= ;; and furthermore, P ∩ C contains at least two vertices (since otherwise a1534

single vertex is a subpath of both P and C , and we are done). Assume for contradiction that P ∩ C is1535

not a subpath of P. It is easy to verify that there are two vertices u, u′, such that u, u′ ∈ V (P)∩ V (C),1536

but every vertex in P between u and u′ does not belong to C . Denote by P ′ the subpath of P connecting1537

u to u′. Note that u, u′ separates C into two path, that we denote by C1, C2. Assume without loss of1538

generality that the region surrounded by P ′ ∪ C1 does not contain the outerface. Let e be an edge of C1.1539

Since graph W is generated by paths in P, edge e must belong to some path P ′′ ∈ P. However, since both1540

endpoints of P ′′ lie outside of the region surrounded by P ′ ∪C1, and since C1 is a segment of a face, path1541

P ′′ must contain two vertices of P ′, and the subpath of P ′′ between these two vertices contains the edge1542

e, which does not belong to P ′. Therefore, paths P ′ and P ′′ are not well-structured, a contradiction. �1543

Let P be a path and let F be a face, such that P and the boundary cycle CF of F intersect, and the1544

intersection P ∩ CF is a subpath of both P and CF . Let u, u′ be the endpoints of this subpath. We define1545

P⊕F as the path obtained from P by replacing the subpath between u and u′ with the other subpath of1546

CF connecting u to u′ that does not belong to P.1547

Recall that we only need to prove Inequality 3 for W , where the left hand side
∑

R∈R: |U ′R|≥λ′
|U ′R|,1548

which we denote by bs(W ), is the sum of the sizes of all big faces. We will first iteratively modify W1549

until we are unable to do so, such that the value bs(W ) never decreases. Then we will show that the1550

value bs(W̃ ) of the resulting graph W̃ is bounded by |U | · (1+O(1/λ′)) using Theorem A.3.1551

We now describe the algorithm that iteratively modifies the graph W . Throughout, we maintain a1552

plane graph Ŵ , that is initialized to be W , and a set P̂ of paths, that is initialized to be P. We will always1553

ensure that P̂ is a well-structured set of paths, and graph Ŵ is generated by P̂. When the algorithm1554

proceeds, the plane graph Ŵ evolves, and so does the set of faces in its planar drawing. We say that a1555

face is big (small, resp.) iff its boundary contains at least (less than, resp.) λ′ vertices.1556

We say that a tuple (e, F1, F2) critical, iff (i) e is an edge in Ŵ , F1 is a small face, and F2 is a big1557

face, such that e is incident to F1 and F2; and (ii) no vertex of F1 is incident to any other big face1558

than F2. We say that a pair (P, P ′) of paths in P̂ is a blocking pair for a critical tuple (e, F1, F2), iff (i)1559
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e ∈ E(P), e /∈ E(P ′); and (ii) the pair P⊕F1
, P ′ of paths are not well-structured. We distinguish between1560

the following cases.1561

Case 1: There is a critical tuple (e, F1, F2) with no blocking pairs, and the degree of at least one endpoint1562

of e is at least 4. In this case, we simply replace each path P ∈ P̂ that contains the edge e with path P⊕F1
,1563

and then update Ŵ to be the graph generated by the resulting set P̂ of paths. See Figure 8.1564

(a) Before: Faces F1 and F2 share an edge e. Two
paths containing e in P̂ are shown in green and red.

(b) After: Faces F1 and F2 are merged into F .
The modified segment of two paths are shown
in dashed lines.

Figure 8. An illustration of graph and path modification in Case 1.

It is clear that the invariant that Ŵ is generated by P̂ still holds in this case. Also, since there is no1565

blocking pair for the critical tuple (e, F1, F2), the resulting path set P̂ is still well-structured. Moreover,1566

since no path in the resulting set P̂ contains the edge e, the resulting graph Ŵ no longer contains the1567

edge e, either. Since the resulting graph Ŵ may not contain any new edge, the number of faces in Ŵ1568

decreases by at least 1 (as faces F1 and F2 are merged into a single face). We now show that the value1569

bs(Ŵ ) does not decrease.1570

First, since the modification of paths in P̂ only involves edges and vertices in CF1
, the boundary cycle1571

of face F1, the graph Ŵ \ CF1
remain unchanged, so every big face other than F2 remain unchanged as1572

well, and so is their contribution to bs(Ŵ ). Second, consider the resulting face F into which F1 and F21573

are merges. Note that F contains all original vertices of F2 as branch vertices. This is because all vertices1574

of F2 \ F1 remain unchanged, and since at least one of the endpoints of e has degree at least 4 in Ŵ1575

before this iteration, this endpoint remain as branch vertices in the resulting graph Ŵ , and the face F1576

contains at least one more branch vertex. Therefore, face F contains at least the same number of branch1577

vertices as the previous big face F2. It follows that the value bs(Ŵ ) does not decrease.1578

Case 2: There is a critical tuple (e, F1, F2) with no blocking pairs, where F1 contains more than 3 vertices,1579

and the degrees of both endpoints of e are 3. In this case, we update the path set P̂ and graph Ŵ in the1580

same way as the previous case. Via similar arguments, we can show that the number of faces decreases1581

by at least 1, and the value bs(Ŵ ) does not decrease.1582

Case 3: There is a critical tuple (e, F1, F2) and a blocking pair (P, P ′) for it. Since paths P and P ′ are1583

well-structured, but paths P⊕F1
and P ′ are not, from Theorem A.4, there must be two disjoint subpaths1584

P ′1, P ′2 of P ′, such that P ′1 = P ∩ P ′ and P ′2 = CF1
∩ P ′. We first give both paths P and P ′ a direction, such1585

that P ′1 appears before P ′2 on P ′, and P ′1 appears before edge e on P. Let u be the last vertex of P ′1, let v′1586

be the first vertex of P ′2, and let v be the first vertex of CF1
∩ P that appears on P.1587
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We first show that v and v′ must be adjacent on CF1
. Assume not, let X be the segment of CF1

between1588

u and v′ that does not contain e, and let x be an inner vertex of X . Since deg(x) ≥ 3, we let ex be an1589

edge incident to x , such that ex /∈ CF1
. Consider the region R surrounded by (i) the subpath of P between1590

u and v; (ii) the subpath of P ′ between u and v′; and (iii) path X . It is clear that ex must lie entirely in1591

R. On the other hand, let Px be a path in P̂ that contains the edge ex , so both endpoints of Px lie outside1592

R. Since paths in P̂ are non-crossing and well-structured, path Px must exit region R at v and v′, but1593

since ex /∈ E(CF1
), the intersection between Px and CF1

is neither a subpath of CF1
nor a subpath of Px ,1594

a contradiction to Theorem A.4. Via similar arguments, we can show that no edge may lie inside the1595

interior of region R. In other words, region R is in fact a face, which we denote by F ′ (see Figure 9(a)).1596

Moreover, since vertices v, v′ are not incident to any other big faces, F ′ is a small face.1597

We now “suppress” the face F ′ as follows. We first contract the edge (v, v′) of CF1
, while identifying1598

vertices v and v′ into a single vertex v′′. We then “identify” the subpath of P between u and v (which1599

we denote by P̃) with the subpath of P ′ between u and v′ (which we denote by P̃ ′). Specifically, if1600

originally P̃ = (u, y1, . . . , ys, v) and P̃ ′ = (u, y ′1, . . . , y ′t , v′), then we replace these two paths with a new1601

path P̃ ′′ = (u, y1, . . . , ys, y ′1, . . . , y ′t , v′′), and we do not modify the incident edges of any yi or y ′j (see1602

Figure 9(b)). We update Ŵ to be the resulting graph after this step.1603

(a) Before: Vertex u is shown in brown. Paths P, P ′ are
shown in red, green respectively. Face F ′ is shown in or-
ange.

(b) After: Face F ′ is suppressed, vertices v, v′ are con-
tracted into v′′, and the two subpaths are identified.

Figure 9. An illustration of graph and path modification in Case 3.

This face suppression naturally defines a way of modifying the paths in P̂, as follows. Denote by CF ′1604

the boundary cycle of face F ′. For every path P ∈ P̂:1605

• if P ∩ CF ′ = ;, then we do not modify it;1606

• if P ∩ V (CF ′) ⊆ {v, v′}, then we let it contain the new vertex v′′ at the same location;1607

• if P ∩ CF ′ is a subpath of P̃ or a subpath of P̃ ′, then we replace that subpath of P with the1608

corresponding subpath of P̃ ′′.1609

It is easy to verify that the resulting set P̂ is non-crossing and well-structured, and it still generates1610

the resulting graph Ŵ . Also, the number of faces in Ŵ decreases by 1 in this case. We now show that the1611

value bs(Ŵ ) does not decrease. Note that the degree of every vertex except for v, v′ does not change, and1612

the degree of the new vertex v′′ obtained from contracting (v, v′) has degree at least 3 in the resulting1613

graph, so all big faces remain unchanged, and so are their contribution to bs(Ŵ ).1614
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We denote by W̃ the graph Ŵ when none of the Cases 1-3 described above happens. We are then1615

guaranteed that, for each small face F in W̃ , either1616

• it does not share a vertex with any big faces; or1617

• it contains exactly 3 vertices, it shares a vertex with exactly one big face, and both endpoints of1618

the edge that it shares with that big face has degree exactly 3; or1619

• it shares a vertex with at least two big faces (in this case we call it a bridge face).1620

We call vertices that are shared by a bridge face and a big face bridge vertices, and we call vertices1621

that belong to at least two big faces interface vertices. Clearly, bridge vertices and interface vertices must1622

be branch vertices. Consider now any big face F , and let V ′F be the set of its bridge vertices and interface1623

vertices. We prove the following observation.1624

Observation A.5. Let F be a big face and let u, u′ be a pair of vertices in V ′F that appear consecutively1625

on CF . That is, there is a subpath Q of CF connecting u to u′ that does not contain any other vertex of V ′F .1626

Then the number of branch vertices that is an internal vertex of Q is at most 2.1627

Proof: Consider any edge e in path Q that is not incident to u or u′. Let F ′ be the other face that e is1628

incident to, so F ′ is a small face. Since both endpoints of e are not in V ′F , face F ′ do not share vertex with1629

any other big faces. From the above discussion, face F ′ has to contain exactly three vertices, and the1630

degrees of both endpoints of e are exactly 3. Let ze be the other vertex of face F ′. Note that, via similar1631

arguments we can show that all internal vertices of Q have degree exactly 3. Therefore, the vertex ze′1632

defined for every other edge e′ of Q that is not incident to u or u′ has to coincide with ze. But if the1633

number of branch vertices that is an internal vertex of Q is greater than 2, then there exists a vertex1634

u′′ ∈ V (Q) that is not adjacent to either u or u′′. Now the existence of edge (ze, u′′) can be shown to cause1635

a contradiction to the well-structuredness of P̂, using similar arguments in the proof of Theorem A.4. �1636

Similarly, we can prove the following observation.1637

Observation A.6. Let F, F ′ be a pair of big faces, and let F̂ , F̂ ′ be a pair of bridge faces, such that both1638

F̂ , F̂ ′ share vertices with both F, F ′. Then if we denote by R the region outside F, F ′, F̂ , F̂ ′ surrounded1639

by the boundaries of F, F ′, F̂ , F̂ ′ that does not contain the outerface, then the boundary of R contains at1640

most 8 bridge vertices.1641

Consider now the dual graph W̃ ∗ of the resulting graph W̃ . From similar arguments in the proof of1642

Theorem A.3, we know that in order to show
∑

R∈R |U
′
R| ≤ |U | ·

�

1+O(1/λ′)
�

, it suffices to show that1643
∑

v∈V (W̃ ∗),v 6=v∞
degW̃ ∗\v∞(v) ≤ O(|U |/λ′). We denote by W̌ the subgraph of W̃ ∗ induced by all nodes1644

corresponding to big faces and bridge faces. From the above two observations, we know that, it suffices1645

to show that
∑

v∈V (W̌ ) degW̌ (v)≤ O(|U |/λ′).1646

Let F̂ be a bridge face. We denote by F1, . . . , Ft the big faces that share a vertex with F̂ , where the1647

faces are indexed according to the circular ordering in which they intersect with F̂ . Then, it is easy to see1648

that, if we replace, for each bridge face F̂ , all edges incident to node vF̂ (the node in W̌ that corresponds1649

to face F̂) with edges (vF1
, vF2
), . . . , (vFt

, vF1
), then the resulting graph W̌ is still a planar graph, with1650

each every having at most one parallel copy. Using similar arguments in the proof of Theorem A.3, we1651

can show that
∑

v∈V (W̌ ) degW̌ (v)≤ O(|U |/λ′). This completes the proof of Claim 4.1.1652
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A.5 Proof of Claim 4.21653

Let u, u′ be terminals in U . We will show that e−ε · distZ(u, u′)≤ distĤ(u, u′)≤ eε · distZ(u, u′).1654

On the one hand, let Q be the u-u′ shortest path in Ĥ. We view path Q as being directed from u1655

to u′. Let {u1, . . . , uk} be the set of all inner vertices of Q that belongs to V ∗ ∪ Y (recall that V ∗ is the1656

set of branch vertices), where the vertices are indexed according to the order in which they appear on1657

Q. Therefore, if we set u0 = u and uk+1 = u′, then for each 0≤ i ≤ k, either one of ui , ui+1 is a branch1658

vertex and so distZ(ui , ui+1) = distĤ(ui , ui+1), or ui , ui+1 are both vertices of Y and belong to the same1659

instance in H and so distĤ(ui , ui+1)≥ e−ε · distZ(ui , ui+1). Thus, if we set, for each 0≤ i ≤ k, HRi
to be1660

the graph in H that vertices ui , ui+1 belong to, then1661

distĤ(u, u′) =
∑

0≤i≤k

distĤ(ui , ui+1)≥
∑

0≤i≤k

distHRi
(ui , ui+1)

≥
∑

0≤i≤k

e−ε · distZRi
(ui , ui+1)≥

∑

0≤i≤k

e−ε · distZ(ui , ui+1)≥ e−ε · distZ(u, u′).
1662

On the other hand, let Q′ be the u-u′ shortest path in Z . We view path Q′ as being directed from u1663

to u′. Let {u′1, . . . , u′k} be the set of all inner vertices of Q′ that belongs to V ∗ ∪ Y (recall that V ∗ is the1664

set of branch vertices), where the vertices are indexed according to the order in which they appear on1665

Q′. Therefore, if we set u′0 = u and u′k+1 = u′, then for each 0≤ i ≤ k, either one of u′i , u′i+1 is a branch1666

vertex and so distZ(u′i , u′i+1) = distĤ(u
′
i , u′i+1), or u′i , u′i+1 are both vertices of Y and belong to the same1667

instance in H and so distZ(u′i , u′i+1)≥ e−ε · distĤ(u
′
i , u′i+1). Thus, if we set, for each 0≤ i ≤ k, HRi

to be1668

the graph in H that vertices u′i , u′i+1 belong to, then1669

distZ(u, u′) =
∑

0≤i≤k

distZ(u
′
i , u′i+1)≥

∑

0≤i≤k

distZRi
(u′i , u′i+1)

≥
∑

0≤i≤k

e−ε · distHRi
(u′i , u′i+1)≥

∑

0≤i≤k

e−ε · distĤ(u
′
i , u′i+1)≥ e−ε · distĤ(u, u′).

1670

A.6 Proof of Claim 4.91671

We denote by ` the level that set S belongs to. We use the following simple observations.1672

Observation A.7. For every pair (u, u′) with u ∈ S and u′ ∈ S′, distH(u, u′)≥ µ`+1. For every pair (u, u′)1673

of terminals in S′ that do not belong to the same graph in H, distH(u, u′)≥ µ`+1.1674

Proof: From the construction of the collection S and the definition of sets S, S′, S∗, if u ∈ S and u′ ∈ S′,1675

then u, u′ do not belong to the same (`+ 1)-level set, and so distH(u, u′) > µ`+1. Consider now a pair1676

u, u′ of terminals in S′ that do not belong to the same graph in H. From the construction of the graphs1677

in H, there must exist a pair û, û′ of terminals in S, such that the pairs (û, û′) and (u, u′) are crossing.1678

Therefore, from Monge property,1679

distH(u, u′)≥ dist(u, û) + dist(u′, û′)− dist(û, û′)≥ µ`+1 +µ`+1 − 2rµ` > µ`+1,1680

where we have used the fact (from Observation 4.6) that dist(û, û′)≤ 2rµ`. �1681

Let u, u′ be terminals in U . We will show that distĤ(u, u′)≤ distH(u, u′)≤ eεr ·distĤ(u, u′). If vertices1682

u, u′ belong to the same instance in H, then since the instances in H is obtained by cutting along shortest1683

paths in H, it is easy to see that distH(u, u′) = distĤ(u, u′). Therefore, we assume from now on that1684

that terminals u, u′ do not belong to the same instance in H. We denote by Y the set of all vertices that1685

belongs to more than one instances in H.1686
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Recall that, in the procedure SPLIT, we have sliced H open along a set of shortest paths in H. Let R1687

be the collection of regions (of H) that we get. Recall that each instance in H corresponds to a region in1688

R. We say that an instance (HR, UR) ∈H is a regular instance if the corresponding region R is surrounded1689

by (i) a contiguous segment of the outer-boundary of H and (ii) the image of a single path in P. Since1690

the paths are well-structured, when we consider a u-u′ shortest path Q in H, we can assume that, for1691

each regular instance (HR, UR) ∈H with u, u′ /∈ V (HR), the intersection between Q and HR is a subpath1692

of the path in P that surrounds the region R and both endpoints of this subpaths are branch vertices.1693

Consider now the u-u′ shortest path Q in H. Assume that u ∈ HR and u′ ∈ HR′ . We view path Q as1694

being directed from u to u′. Let v be the last vertex of Q that belongs to HR, and let v′ be the first vertex1695

of Q after v that belongs to HR′ . We distinguish between the following cases.1696

Case 1. v 6= v′. From the construction of graph Ĥ and the above discussion, it is easy to verify that1697

the entire path Q is also contained in graph Ĥ, so distĤ(u, u′) ≤ distH(u, u′). On the other hand, it1698

is easy to verify that any shortest path in Ĥ connecting u to u′ is also entirely contained in H, so1699

distĤ(u, u′)≥ distH(u, u′). Therefore, distĤ(u, u′) = distH(u, u′).1700

Case 2. v = v′. This means that path Q only touches two regions, R and R′. If one of u, u′ belongs to set1701

S′, then from Observation A.7 and the fact (from Observation 4.6) that the boundary path of R and R′1702

have total length at most 2rµ`, it is easy to verify that1703

distH(u, u′)≤ distĤ(u, u′)≤ (1+O(1/r)) · distH(u, u′)≤ eεr · distH(u, u′).1704

If both u, u′ belong to S, then from the construction of Ĥ, distH(u, u′) ≤ distĤ(u, u′). It remains to1705

consider the case where at least one of u, u′ belongs to set S∗. Assume without loss of generality that1706

u ∈ S∗. Since the set Y ∩ UR contains an εr -cover of u on the boundary path of R, there exists a vertex1707

v̂ ∈ Y ∩UR, such that distH(u, v̂)+distH(v̂, v)≤ eεr ·distH(u, v). In this case we denote by v1 the copy of1708

v in HR and by v2 the copy of v in HR′ , then1709

distH(u, u′)≤ distĤ(u, u′)≤ distĤ(u, v̂) + distĤ(v̂, v2) + distĤ(v2, u′)

≤ distH(u, v̂) + distH(v̂, v2) + distH(v
′, u′)

≤ eεr · distH(u, v) + distH(v, u′)≤ eεr · distH(u, u′).
1710

B Missing Proofs in Section 51711

B.1 Complete Description of Procedures SPLITh and GLUEh1712

Splitting. The input to procedure SPLITh consists of1713

• an h-hole instance (H, U);1714

• a path P connecting a pair of its terminals that lie on different holes; and1715

• a set Y of vertices in P that contains both endpoints of P.1716

The output of procedure SPLITh is an (h− 1)-hole instance (H̃, Ũ) that is constructed as follows. Let u, u′1717

be the endpoints of P. We denote by γ the curve representing the image of path P in H, and view it as1718

being directed from u to u′. For each v ∈ V (P), we define δ1(v) (δ2(v), resp.) as the set of all incident1719

edges of v in graph H, whose image lie on the left (right, resp.) side of γ, as we traverse along γ from u1720

to u′. We now modify the graph H as follows. Replace each vertex v ∈ V (P) by two new vertices v1 and1721

v2, where v1 is incident to all edges in δ1(v) and v2 is incident to all edges in δ2(v). Then we add, for1722

each edge (v, v′) of path P, an edge (v1, v′1) and an edge (v2, v′2). The resulting graph is denoted by H̃.1723
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We naturally construct a planar drawing of graph H̃, as follows. We start from the drawing φ1724

associated with instance (H, U). We first erase from it the images of all vertices and edges of P. Denote1725

by α (α′, resp.) the hole in φ whose boundary contains the image of u (u′, resp.). Let S be a thin strip1726

around the curve γ. We draw the new vertices u1, u2 at the intersections of S and the boundary of hole1727

α, where u1 lies on the left of γ and u2 lies on the right of γ. Similarly, we draw the new vertices u′1, u′21728

at the intersections of S and the boundary of hole α′, where u′1 lies on the left of γ and u′2 lies on the1729

right of γ. Now for every other vertex v ∈ V (P), we draw the new vertex v1 (v2, resp.) on the boundary1730

of S just to the left (right, resp.) of the old image of v in φ. The images of other vertices remain the1731

same as in φ. For each vertex v ∈ V (P) and each edge e ∈ δ1(v) (δ2(v), resp.), we slightly modify the1732

image of e to make it direct to v1 (v2, resp.). Lastly, for each edge (v, v′) ∈ P, we draw the image of new1733

edge (v1, v′1) ((v2, v′2), resp.) as the segment of the boundary of strip S between the points representing1734

the images of v1, v′1 ((v2, v′2), resp.). This completes the construction of a planar drawing of H̃, that we1735

denote by φ̃. See Figure 6(a) and Figure 6(b) for an illustration.1736

We now define Ũ to be the set obtained from U by replacing for each vertex y ∈ Y , two new vertices1737

y1 and y2 (since such a vertex y belongs to path P), so |Ũ | = |U |+ 2|Y |. The instance (H̃, Ũ) is the1738

output of procedure SPLITh. We now show that it is indeed an (h− 1)-hole instance.1739

We define area β = α ∪ S ∪ α′. It is easy to observe that no vertices or edges are drawn inside1740

the interior of area β , and if we denote by U(α) the set of terminals in H that lie on the boundary of1741

α, and define set U(α′) similarly, then in H̃, the boundary of β contains the images of terminals in1742

(U(α) \ {u})∪ (U(α′) \ {u′})∪ {y1, y2 | y ∈ Y }. Therefore (H̃, Ũ) is a valid (h− 1)-hole instance.1743

Gluing. We next describe the procedure GLUEh, which is intuitively a reverse process of procedure1744

called SPLITh. Assume that we have applied the procedure SPLITh to some h-hole instance (H, U), some1745

path P connecting a pair u, u′ of terminals in U that lie on holes α,α′ respectively, and a subset Y of1746

vertices in P. Let (H̃, Ũ) be the (h− 1)-hole instance that the procedure SPLITh outputs, where holes1747

α,α′ are merged into hole β . We then denote, for each y ∈ Y , by y1 and y2 the two terminals in Ũ1748

obtained by splitting y. The procedure GLUEh takes as input an emulator (H̃ ′, Ũ) for instance (H̃, Ũ),1749

and works as follows.1750

We let graph H ′ be obtained from graph H̃ ′ by identifying, for each y ∈ Y , vertex y1 with vertex1751

y2 (and name the obtained vertex y). Denote Ỹ = {y1, y2 | y ∈ Y }. We then set U ′ = (Ũ \ Ỹ )∪ {u, u′}.1752

Clearly, U ′ = U . The output of algorithm GLUEh is instance (H ′, U).1753

We associate with instance (H ′, U) a planar drawing with terminals of U drawn on the boundary of1754

h holes as follows. We denote by γ the boundary segment of hole β from u2 to u1 that does not contain1755

any other vertex of Ỹ , and denote by γ′ the boundary segment of hole β from (u′)1 to (u′)2 that does not1756

contain any other terminal of Ỹ . We now compute, for each y ∈ Y , a curve γy connecting y1 to y2, such1757

that the curves {γy | y ∈ Y } all lie in hole β and are mutually disjoint. We now move, for each y ∈ Y ,1758

the images of y1 and y2 along the curve γy towards each other until they are identified. Now γ becomes1759

a closed curve that surrounds a region which does not contain the image of any vertices or edges in1760

its interior. We designate this region by hole α. We define hole α′ for the closed curve γ′ similarly. It1761

is easy to verify that all terminals of U ′ that previously lied on the boundary of hole β now lie on the1762

boundary of either hole α or hole α′. See Figure 6(c) for an illustration. Therefore, (H ′, U) is a valid1763

h-hole instance, and it is easy to verify that instance (H ′, U) is aligned with instance (H, U).1764

B.2 Proof of Claim 5.21765

For convenience, we rename the selected terminals u, u′ by û, û′, respectively. Throughout the proof,1766

we will use u, u′ to denote some pair of terminals in U , and we will show that e−ε
′
· distZ(u, u′) ≤1767

distĤ(u, u′)≤ eε
′
· distZ(u, u′).1768
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On the one hand, let Q be the shortest path in Ĥ connecting u to u′. We view the path Q as being1769

directed from u to u′. Recall that in graph Ĥ, for each vertex y ∈ Y , we have denoted by δ1(y) the1770

incident edges of y that lie on one side of path P, and denote by δ2(y) the incident edges of y that lie1771

on the other side of path P. We denote E1 =
⋃

y∈Y δ1(y) and E2 =
⋃

y∈Y δ2(y). If either E(Q)∩ E1 =∅1772

or E(Q)∩ E2 =∅ holds, then it is immediate to verify that path Q is entirely contained in graph H̃. Since1773

(Z̃ , Ũ) is an ε-emulator for instance (H̃, Ũ), we get that1774

distĤ(u, u′) = distH̃(u, u′)≥ e−ε · distZ̃(u, u′)≥ e−ε · distZ(u, u′).1775

Assume now that E(Q′)∩ E1 6=∅ or E(Q′)∩ E2 6=∅. Recall that graph Ĥ contains two copies P1, P2 of1776

path P that corresponds to the sides of E1, E2, respectively. We can assume without loss of generality that1777

path Q is the concatenation of (i) a path Q1 connecting u to some vertex x1 ∈ V (P1), that is internally1778

disjoint from P1; (ii) a subpath P ′1 of P1 connecting x1 to some vertex y ∈ Y ; (iii) a subpath P ′2 of P21779

connecting y to some vertex x ′2 ∈ V (P2); and (iv) a path Q′2 connecting x ′2 to some vertex u′, that is1780

internally disjoint from P2. Recall that (Z̃ , Ũ) is an ε-emulator for instance (H̃, Ũ), and instance (Z , U) is1781

obtained by applying the procedure GLUEh to instance (Z̃ , Ũ). We denote by y1, y2 the copies of y in1782

graph H̃, where y1 ∈ V (P1) and y2 ∈ V (P2). Then1783

distĤ(u, u′) = distĤ(u, x1) + distP1
(x1, y) + distP2

(y, x ′2) + distĤ(x
′
2, u)1784

≥ distH̃(u, x1) + distH̃(x1, y1) + distH̃(y2, x ′2) + distZ̃(x
′
2, u)1785

≥ e−ε · (distZ̃(u, x1) + distZ̃(x1, y1) + distZ̃(y2, x ′2) + distZ̃(x
′
2, u))1786

≥ e−ε · (distZ(u, x1) + distZ(x1, y) + distZ(y, x ′2) + distZ(x
′
2, u))1787

≥ e−ε · distZ(u, u′).1788
1789

On the other hand, let Q′ be the shortest path in Z connecting u to u′. We view the path Q′ as being1790

directed from u to u′. Via similar analysis, we can easily show that, if Q′ does not contain vertices of Y ,1791

then1792

distZ(u, u′) = distZ̃(u, u′)≥ e−ε · distH̃(u, u′)≥ e−ε · distĤ(u, u′).1793

We assume from on now that Q′ contains some vertices of Y . In graph Z̃ , we denote by Ẽ1 the set of1794

edges incident to some vertex of Y1 = {y1 | y ∈ Y }, and define set Ẽ2 for set Y2 = {y2 | y ∈ Y } similarly.1795

Let y1 . . . , y r be the vertices of Y ∩ V (Q), where the vertices are indexed according to their appearance1796

on Q. For each 0≤ j ≤ r, we denote by Q j the subpath of Q between vertices y j and y j+1 (where we set1797

y0 = u and y r+1 = u′). For each 0≤ j ≤ r, we set a( j) to be 1 (2, resp.) if the first edge of Q j belongs1798

to Ẽ1 (Ẽ2, resp.), and set set b( j) to be 1 (2, resp.) if the last edge of Q j belongs to Ẽ1 (Ẽ2, resp.). Since1799

(Z̃ , Ũ) is an ε-emulator for instance (H̃, Ũ), and instance (Z , U) is obtained by applying the procedure1800

GLUEh to instance (Z̃ , Ũ), we get that1801

distZ(u, u′) =
∑

0≤ j≤r

distZ(y
j , y j+1) =

∑

0≤ j≤r

distZ̃(y
j
a( j), y j+1

b( j))1802

≥
∑

0≤ j≤r

e−ε · distH̃(y
j
a( j), y j+1

b( j))≥
∑

0≤ j≤r

e−ε · distĤ(y
j , y j+1)≥ e−ε · distĤ(u, u′).1803

1804

Altogether, we get that e−ε
′
· distZ(u, u′)≤ distĤ(u, u′)≤ eε

′
· distZ(u, u′).1805

B.3 Proof of Claim 5.31806

For convenience, we rename the selected terminals u, u′ by û, û′, respectively. Throughout the proof,1807

we will use u, u′ to denote some pair of terminals in U , and we will show that e−ε
′
· distĤ(u, u′) ≤1808

distH(u, u′)≤ distĤ(u, u′).1809
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On the one hand, let Q be a shortest path in H connecting û to û′. We view Q as being directed1810

from u to u′. If V (Q) ∩ V (P) = ∅, then it is immediate to verify that path Q is entirely contained in1811

graph Ĥ, so distĤ(u, u′)≤ distH(u, u′). Assume now that V (Q)∩ V (P) 6=∅. Since Q and P are shortest1812

paths in H, Q ∩ P is a subpath of both Q and P. Let v, v′ be the endpoints of this path where v is1813

closer to u and v′ is closer to u′ on Q (note that it is possible that v = v′). Since set Y contains an1814

ε′-cover of u on P, there exists some vertex y ∈ Y , such that distH(u, y) + distH(y, v)≤ eε · distH(u, v);1815

and similarly since set Y contains an ε′-cover of u′ on Q, there exists some vertex y ′ ∈ Y , such that1816

distH(u′, y ′) + distH(y ′, v′)≤ eε · distH(u′, v′). From the construction of graph Ĥ, we get that1817

distH(u, u′) = distH(u, v) + distH(v, v′) + distH(u
′, v′)

≥ e−ε
′
· (distH(u, y) + distH(y, v)) + distH(v, v′) + e−ε · (distH(u

′, y ′) + distH(y
′, v′))

≥ e−ε
′
· (distĤ(u, y) + distĤ(y, v) + distĤ(v, v′) + distĤ(u

′, y ′) + distĤ(y
′, v′))

≥ e−ε · distĤ(u, u′).

1818

On the other hand, let Q′ be a shortest path in Ĥ connecting û to û′. We view Q′ as being directed1819

from u to u′. Recall that in graph H, for each vertex y ∈ Y , we have denoted by δ1(y) the incident1820

edges of y that lie on one side of path P, and denote by δ2(y) the incident edges of y that lie on the1821

other side of path P. We denote E1 =
⋃

y∈Y δ1(y) and E2 =
⋃

y∈Y δ2(y). If either E(Q′)∩ E1 = ∅ or1822

E(Q′)∩ E2 = ∅ holds, then it is immediate to verify that path Q′ is entirely contained in graph H, so1823

distH(u, u′) ≤ distĤ(u, u′). Assume now that E(Q′) ∩ E1 6= ∅ or E(Q′) ∩ E2 6= ∅. Recall that graph Ĥ1824

contains two copies P1, P2 of path P that corresponds to the sides of E1, E2, respectively. We can assume1825

without loss of generality that path Q′ is the concatenation of (i) a path Q′1 connecting u to some vertex1826

x1 ∈ V (P1), that is internally disjoint from P1; (ii) a subpath P ′1 of P1 connecting x1 to some vertex y ∈ Y ;1827

(iii) a subpath P ′2 of P2 connecting y to some vertex x ′2 ∈ V (P2); and (iv) a path Q′2 connecting x ′2 to1828

some vertex u′, that is internally disjoint from P2. Let x be the original copy of x1 in graph H, and let x ′1829

be the original copy of x1 in graph H. From the construction of graph Ĥ, we get that1830

distĤ(u, u′) = distĤ(u, x1) + distP1
(x1, y) + distP2

(y, x ′2) + distĤ(u
′, x ′2)

≥ distH(u, x) + distH(x , x ′) + distH(u
′, x ′)≥ distH(u, u′).1831

B.4 Proof of Theorem 5.51832

Similar to Frederickson [Fre87] and Klein-Mozes-Sommer [KMS13], we recursively find balanced cycle1833

separators to subdivide the input graph. To control the number vertices, boundary vertices, holes, and1834

terminals within each piece simultaneously, we ask the cycle separator to balance these quantities in1835

rounds. Specifically, at recursive level `:1836

• If `mod 4= 0, balance the vertices.1837

• If `mod 4= 1, balance the boundary vertices.1838

• If `mod 4= 2, balance the holes by inserting one supernode per hole.1839

• If `mod 4= 3, balance the terminals.1840

We terminate the recursion four rounds after a piece has size at most r. The depth of the recursion tree is1841

log(n/r), and a similar analysis as in Klein-Mozes-Sommer [KMS13] shows that the number of terminals1842

within each piece is O(kr/n).1843
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