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Abstract1

We constructively show that any cyclic Monge distance2

matrix can be represented as the graph distances between3

vertices on the outer face of a planar graph. The structure4

of the planar graph depends only on the number of rows5

of the matrix, and the weight of each edge is a fixed linear6

combination of constantly many matrix entries. We also7

show that the size of our constructed graph is worst-case8

optimal among all planar graphs.9

1 Introduction10

Monge property, named after the 18th century mathemati-11

cian Gaspard Monge, roughly say that the sum of shortest-12

path distances between two crossing pairs of points (x , y)13

and (z, w) is at least the sum of the ones between corre-14

sponding non-crossing pairs (x , z) and (y, w). The original15

motivation is to study the optimal transport of masses in16

the plane [30,39]. As a simple consequence of the Jordan17

curve theorem, Monge property has been tremendously18

helpful in designing efficient algorithms for planar opti-19

mization problems—whether the input is a planar graph20

or geometric objects lying in the plane [12,24,25,38,42].21

Most famously, Monge property is central to the design22

of the SMAWK algorithm [2] for row-minimum queries in23

totally monotone matrices and the Monge heap data struc-24

ture [27] for speeding up various optimization algorithms25

on planar and surface graphs [27, 29, 32, 34, 40, 51]. In26

some problems where Monge property is evident, it is not27

clear whether the problem has an obvious connection to28

planar metrics. Examples are fast dynamic programming29

using quadrangle inequalities [6,28], as well as string prob-30

lems such as the edit distance and longest common subse-31

quence [45, 49]. (See Burkard et al. [11, 12], Park [42],32

and the citations within for additional applications of the33

Monge properties.) A characterization of matrices satisfy-34

ing the Monge property is known to exist [7,10,44], but35

the following fundamental question relating planar metric36

to Monge property remains unanswered: Given a metric37

between a finite number of points satisfying some Monge38

property, is the metric planar?39

We answer this question affirmatively. We show that40

given any distance matrix satisfying the (cyclic) Monge41

property, one can construct an edge-weighted planar graph42
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realizing entries of the matrix exactly as graph distances43

between some subset of vertices (called terminals). In44

other words, we construct a planar emulator for any (cyclic)45

Monge matrix with zero diagonals. Moreover, the construc-46

tion is optimal in size and takes time linear in the size of the47

distance matrix. In fact, each edge in the graph along with48

its weight is determined by a constant number of entries49

in the matrix. Such property is of independent interest50

and might be useful in designing efficient algorithms under51

various computation models.52

1.1 Related work53

Sketching graph distances. Emulators—arbitrary54

graphs that preserve distances between terminals in the55

input graph—are known to exist in general [8,9,18]. But56

without additional assumptions on the input graph there57

is a linear lower-bound on the size of the emulator (with58

respect to the size of the input graph) when the number59

of terminals is a polynomial Θ(nα) for some range of α60

strictly less than 1 [18].1 Chang, Gawrychowski, Mozes,61

and Weimann [14] constructed the first sub-linear size62

emulator for any undirected unweighted planar graph:63

given any k-terminal planar graph with n vertices, an64

emulator of size Õ(min{k2, (kn)1/2}) can be constructed in65

Õ(n) time, which is optimal up to logarithmic factors.66

A related structure, called a spanner, which preserves the67

distances approximately up to additive or multiplicative68

errors, is relatively well-understood for general graphs [9,69

31,43,48,50]. Spanners with stronger guarantees exist for70

geometrically/topologically constrained graphs [4,13,23,71

37]. Similarly, distance oracles that answer distance queries72

exactly or approximately are known to exist for planar and73

surface graphs [1,5,15,27,35,36,41,46,47]. (See Ahmed74

et al. [3] for a recent survey on distance sketching.)75

Circular planar graphs. One of the central problems in76

the theory of circular planar graphs considers the following77

problem: Given measures of effective resistances between78

all pairs of terminals, can we reconstruct a planar resistor79

network realizing the measures where the terminals lie on80

the boundary? Colin de Verdière et al. [16,17] and Curtis81

et al. [20,21] showed that the reconstruction problem can82

be solved precisely when the effective resistance matrix is83

totally non-negative. The problem sounds similar to ours84

1Interestingly, when the number of terminals is barely sublinear
(say n/2Θ(log∗ n)) in an undirected unweighted graph, there is a strictly
sublinear-size emulator [8].
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in spirit; in fact, when looking closer, the planar emulator85

problem is equivalent to their reconstruction problem in the86

(min,+)-semiring instead of the standard (+,×)-ring. The87

techniques involved in proving their theorem rely crucially88

on the fact that the weights are over a (+,×)-ring and89

therefore do not apply to our problem.90

1.2 Preliminaries91

Monge properties. A matrix M satisfies the Monge prop-92

erty if for any two rows i < i′ and two columns j < j′, one93

has94

M[i, j] +M[i′, j′]≤ M[i′, j] +M[i, j′].95

Matrix M satisfies the anti-Monge property if the sign of96

the above inequality flipped. We often reorder the terms in97

the inequality to emphasize the monotonicity on the entry98

differences:99

M[i′, j′]−M[i, j′]≤ M[i′, j]−M[i, j].100

For the purpose of this paper we only consider distance101

matrices, where the diagonal entries are all zeros, the en-102

tries are symmetric and satisfy the triangle inequality. A103

distance matrix M is cyclic Monge2 if for any four indices104

i, i′, j, j′ in cyclic order (that is, i ≤ i′ ≤ j ≤ j′ after some105

cyclic reordering of [i, i′, j, j′]), one has106

M[i, j′] +M[i′, j]≤ M[i, j] +M[i′, j′].107

(Notice the inequality sign flipped comparing to the stan-108

dard Monge property.) Let M be a cyclic Monge distance109

matrix and let A and B be two disjoint sub-intervals of the110

index set of M . Then the submatrix of M between A and B111

must be an (anti-)Monge matrix.112

Planar emulators. Consider an undirected planar graph113

G with edge weights and let ∂ G be the vertices on the114

boundary of the outer face of G. We consider the distance115

matrix M between vertices in ∂ G: for any pair of vertices116

i and j in ∂ G, we set M[i, j] to be the distance between i117

and j in G.118

It is not immediately clear that any cyclic Monge distance119

matrix M comes as a distance matrix generated from some120

planar graph G. A planar emulator for a distance matrix M121

is a graph G whose vertex set V (G) contains the indices of122

M (and possibly others), and the graph distance dG(u, v)123

between any pair of vertices u and v in G is equal to M[u, v].124

Planarity and the Jordan curve theorem ensures that any125

distance matrix M of a planar emulator must satisfy the126

cyclic Monge property. Our main result shows that the127

converse is also true: any cyclic Monge distance matrix128

admits a planar emulator.129

In Section 2 we describe the construction and prove its130

correctness. We show that the size of the construction is131

optimal in Section 3, and conclude the paper in Section 4.132

2This is known as the Kalmanson matrix [22,33], which is slightly more
restricted than a triangular Monge matrix [12] or the convex quadrangle
inequality [26].

2 Constructing a planar emulator133

The goal of this section is to construct planar emulators for134

arbitrary cyclic Monge distance matrices.135

Theorem 1 Given any n× n cyclic Monge distance matrix136

M, there is a planar emulator for M with
�n

2

�

edges.137

For any given positive integer n, we define a planar138

graph Gn as follows (see Figure 1). Let the vertices of Gn
139

be the set {vi, j}, where i ranges in [1 : n] and j ranges in140

[1 : min{i, n− i+1}]. Define terminal pi to be vi,min{i,n−i+1}.141

The edges of Gn consist of horizontal edges and vertical142

edges. A horizontal edge e↔i, j lies between each vi, j and vi+1, j143

where j ranges in [1 : bn/2c] and i ranges in [ j : n− j]. A144

vertical edge eli, j lies between each vi, j and vi, j+1 where j145

ranges in [1 : min{i, n+1− i}−1] and i ranges in [2 : n−1].146

p1

p2

p3 p4

p5

p6

v3,2

v3,1v2,1 v4,1

v4,2

v5,1
e
l
5,1e

l
4,1

e
l
4,2

e
l
3,1e

l
2,1

e
l
3,2

e↔4,2e↔2,2 e↔3,2

e↔3,3

e↔2,1e↔1,1 e↔3,1 e↔4,1 e↔5,1

Figure 1: Graph G6.

Consider a cyclic Monge distance matrix M and for147

brevity denote Mi, j := M[i, j]. We define the graph Gn
M148

as an edge-weighted copy of Gn, where the weight of a149

horizontal edge e↔i, j is150

ω(e↔i, j ) :=
1
2

�

Mi+1, j −Mi, j +Mi,n− j+1 −Mi+1,n− j+1

�

,151

and the weight of a vertical edge eli, j is152

ω(eli, j) :=
1
2

�

Mi, j −Mi, j+1 +Mi,n− j+1 −Mi,n− j+153

M j+1,n− j −M j,n− j+1

�

.154
155

(See Figure 2.) Henceforth, we will refer to the edge-156

weighted graph Gn
M as the canonical realization of M .157

For the rest of the section, we show that G := Gn
M158

is a planar emulator of M . For this, it suffices to show159

that dG(pi , p j) = M[i, j] for all pairs of terminals pi and p j .160

First, we derive some properties of G using the fact that M161

is a cyclic Monge matrix.162

Lemma 2 If M is a cyclic Monge matrix, then all edge163

weights of Gn
M are non-negative.164

Proof. An edge of Gn
M is either horizontal or vertical. For165

any horizontal edge e↔i, j , the cyclic Monge property states166

that Mi, j + Mi+1,n− j+1 ≤ Mi+1, j + Mi,n− j+1, and therefore167

2ω(e↔i, j ) = Mi+1, j −Mi, j +Mi,n− j+1 −Mi+1,n− j+1 ≥ 0.168
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Figure 2: Values used to assign weights to e↔i, j and eli, j .

For any vertical edge eli, j , the cyclic Monge property states169

that (1) Mi, j+1 +M j,n− j ≤ Mi, j +M j+1,n− j and (2) Mi,n− j +170

M j,n− j+1 ≤ M j,n− j +Mi,n− j+1. Combining (1) and (2) gives171

2ω(eli, j) = Mi, j − Mi, j+1 + Mi,n− j+1 − Mi,n− j + M j+1,n− j −172

M j,n− j+1 ≥ 0. �173

It follows that the minimum-weight path from pi to p j in174

G is simple.175

Next, we show that there is at least one path from pi176

to p j achieving the cost M[i, j]. For i ≤ i′, the path of177

horizontal edges between vi, j and vi′, j in G has weight178

∑

x∈[i:i′−1]

ω(e↔x , j) =
1
2

∑

x∈[i:i′−1]

�

Mx+1, j −Mx , j +Mx ,n− j+1179

−Mx+1,n− j+1

�

180

=
1
2

�

Mi′, j −Mi, j +Mi,n− j+1 −Mi′,n− j+1

�

,181

182

and for j ≤ j′, the path of vertical edges between vi, j183

and vi, j′ has weight184

∑

y∈[ j: j′−1]

ω(eli,y) =
1
2

∑

y∈[ j: j′−1]

�

Mi,y −Mi,y+1 +Mi,n−y+1185

−Mi,n−y +My+1,n−y −My,n−y+1

�

186

=
1
2

�

Mi, j −Mi, j′ +Mi,n− j+1 −Mi,n− j′+1187

+M j′,n− j′+1 −M j,n− j+1

�

.188189

Consider two terminals pi and p j and assume that190

min{i, n− i+1} ≥min{ j, n− j+1}. Let π j,i be the unique191

L-shaped (simple) path from p j to pi that consists of a192

path π↔j,i of horizontal edges followed by a path πlj,i of193

vertical edges (both paths might possibly be empty). When194

min{i, n− i + 1}>min{ j, n− j + 1} we define π j,i := πi, j .195

Lemma 3 Let M be a cyclic Monge distance matrix. The196

weight of π j,i in Gn
M is Mi, j .197

Proof. We assume that j ≤ dn/2e (the other case is sym-198

metric). The vertex at the end of π↔j,i (and at the start199

of πlj,i) is vi, j . Let i′ := min{i, n− i + 1}, then the weight200

of π j,i is201

ω(π j,i) =
∑

x∈[ j:i−1]

ω(e↔x , j) +
∑

y∈[ j:i′−1]

ω(eli,y)202

=
1
2

�

(Mi, j −M j, j +M j,n− j+1 −Mi,n− j+1)+203

(Mi, j −Mi,i′ +Mi,n− j+1 −Mi,n−i′+1+204

Mi′,n−i′+1 −M j,n− j+1)
�

205

=
1
2
(Mi, j +Mi, j −Mi,i′ −Mi,n−i′+1 +Mi′,n−i′+1),206

207

where either Mi,i′ = 0 and Mi,n−i′+1 = Mi′,n−i′+1, or208

Mi,n−i′+1 = 0 and Mi,i′ = Mi′,n−i′+1; so ω(π j,i) = Mi, j . �209

By Lemma 3 we have dG(pi , p j)≤ Mi, j , so it remains to210

show that dG(pi , p j) ≥ Mi, j . Define the y-coordinate of a211

horizontal edge e↔i, j as j, and the x-coordinate of a vertical212

edge eli, j as i. We next show that G contains a minimum-213

weight path from pi to p j whose horizontal edges all have214

the same y-coordinate. It follows that there is a minimum-215

weight path consisting of at most one subpath of horizontal216

edges.217

Lemma 4 Let M be a cyclic Monge distance matrix. For any218

pair of terminals p and p′, Gn
M has a minimum-weight path219

from p to p′ whose horizontal edges all have the same y-220

coordinate.221

Proof. For a path π, let σ(π) be the sum of y-coordinates222

of its horizontal edges. Let α be a minimum-weight path223

from p to p′ that minimizesσ(α) (over all minimum-weight224

paths from p to p′). We claim that all horizontal edges of α225

have the same y-coordinate. Suppose not, then α contains226

a two-edge subpath consisting of a vertical edge eli, j and a227

horizontal edge e↔i, j+1 or e↔i−1, j+1. We consider only the case228

where the subpath has edges eli, j and e↔i, j+1 (the other case229

is symmetric). Consider the path β obtained from α by230

replacing this subpath by e↔i, j and eli+1, j . Thenσ(β)< σ(α),231

so by assumption β cannot be a minimum-weight path.232

However, Figure 3 shows that the weight of β is at most233

that of α, contradicting that α is a minimum-weight path234

that minimizes σ. �235

Finally, we show that there is a minimum-weight path for236

which additionally, its vertical edges all have the same x-237

coordinate. Together with the fact that all edge weights are238

non-negative (Lemma 2), it follows that π j,i is a minimum-239

weight path between p j and pi .240

Lemma 5 Let M be a cyclic Monge distance matrix. For any241

pair of terminals p and p′, Gn
M has a minimum-weight path242

from p to p′ whose horizontal edges all have the same y-243

coordinate, and whose vertical edges all have the same x-244

coordinate.245
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Figure 3: The sum of weights of e↔i, j and eli+1, j is at most that of eli, j and e↔i, j+1.
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Figure 4: The weight of the horizontal path from vi, j+1 to vi′, j+1 is at most the total weight of eli, j , eli′, j , and the horizontal
path from vi, j to vi′, j .

Proof. By Lemma 4, there is a minimum-weight path246

from p to p′ whose horizontal edges all have the same247

y-coordinate, and without loss of generality assume that248

this y-coordinate is maximal over all such paths. Because249

all edges have nonnegative weights by Lemma 2, we may250

assume that this path consists of a path of vertical edges251

(with decreasing y-coordinates), followed by a path of252

horizontal edges whose x-coordinates are increasing or253

decreasing, and finally a path of vertical edges with in-254

creasing y-coordinates. Suppose that the subpath of hor-255

izontal edges is surrounded by vertical edges eli, j and eli′, j256

with i < i′ (the case i > i′ is symmetric). Let α be the257

path consisting of eli, j , the edges e↔x , j for i ≤ x < i′, and258

eli′, j; let β be the path of edges e↔x , j+1 for i ≤ x < i′.259

Apply cyclic Monge property twice, one can show that260

2Mi′, j+2M j+1,n− j−Mi′, j+1+2Mi,n− j+1−2M j,n− j+1−Mi,n− j ≥261

Mi′, j+1 + Mi,n− j , which implies that the weight of β is at262

most that of α, so replacing α by β yields a shortest path263

whose horizontal edges all have the same y-coordinate, but264

one bigger than that of the horizontal edges of α, which is265

a contradiction. (See Figure 4.) �266

As an immediate corollary of Lemmas 2, 3, and 5, every267

n× n cyclic Monge distance matrix has a planar emulator268

of size
�n

2

�

, proving Theorem 1.269

3 Lower bound on the size of planar emulators270

In this section we show that some Monge distance matrices271

requires
�n

2

�

edges in any of its planar emulator. A similar272

result by Cossarini [19] says that any planar emulator of273

some cyclic Monge matrix requires
�n

2

�

edges. Therefore,274

our canonical realization is worst-case optimal in size.275

Theorem 6 Some n× n Monge distance matrices have no276

planar emulator with fewer than
�n

2

�

edges.277

Proof. Let M be a Monge distance matrix. The vec-278

tor (Mi, j)i< j ∈ R(
n
2) completely determines M since Mi,i = 0279

and Mi, j = M j,i as d is a graph metric on the canonical re-280

alization of M . The set of such vectors over all Monge dis-281

tance matrices yields a convex polytopeP , as it is bounded282

only by the hyperplanes arising from the linear inequalities283

of the triangle inequality and cyclic Monge property. We284

show that P is
�n

2

�

-dimensional.285

For this, we define a family of
�n

2

�

sets (Ee)e∈E(G) of edges286

indexed by the edges of Gn
M . For each horizontal edge e↔i, j ,287

let Ee↔i, j
:= {e↔i, j′ | j′ ≤ j}. For each vertical edge eli, j ,288

let Eeli, j
:= {eli, j} ∪ Ee↔i, j

∪ Ee↔i+1, j
. For each edge e, define the289

weight function ωe as the characteristic function of Ee; in290

other words, let ωe : E→ {0, 1}, with ωe(e′) = 1 if e′ ∈ Ee,291

and ωe(e′) = 0 otherwise. We show that the
�n

2

�

weight292

functions (ωe)e∈E(G) are linearly independent. For each293

horizontal edge e↔i,1 , ωe↔i,1
sets only the weight of edge e↔i,1294

to one, and all other edges to zero. Similarly, for each hor-295

izontal edge e↔i, j with j > 1, e 7→ ωe↔i, j
(e)−ωe↔i, j−1

(e) sets296

only the weight of edge e↔i, j to one. Finally, for each vertical297

edge eli, j , e 7→ ωeli, j
(e)−ωe↔i, j

(e)−ωe↔i+1, j
(e) sets only the298

weight of edge eli, j to one. Since each of the
�n

2

�

edges can299

be set to weight one while all other edges are set to zero,300

the defined weight functions are linearly independent, and301
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moreover, any weight function can be obtained as a linear302

combination of (ωe)e∈E(G).303

Since the polytope P is
�n

2

�

-dimensional, there exists a304

Monge distance matrix whose entries are in general posi-305

tion: there is no indexed family S of fewer than
�n

2

�

real306

numbers such that each of the
�n

2

�

distances can be writ-307

ten as the sum of a subset of S. Since the length of each308

shortest path in a nonnegatively edge-weighted graph is309

the sum of a subset of its edge-weights, there is a Monge310

distance matrix that does not have a planar emulator with311

fewer than
�n

2

�

edges. �312

The argument of Theorem 6 relies on the fact that the313

set of distances can be chosen to lie in general position. We314

present a different, but slightly weaker lower bound for the315

more general setting where the weights are integers up to316

dn/2e. A Monge matrix M is unit-Monge if for all i and j,317

M[i + 1, j]−M[i, j] ∈ {−1,0, 1}, and318

M[i, j]−M[i, j + 1] ∈ {−1,0, 1}.319
320

Theorem 7 Some n× n unit-Monge distance matrices have321

no planar emulator with fewer than n2/8+ n/2 edges.322

Proof. Let M be a distance matrix defined as follows. Con-323

sider a rectangular grid graph with vertex set {0, . . . , w} ×324

{0, . . . , h} and edges between vertices at distance 1, so that325

vertex (x , y) has (unit-weight) edges to (x ± 1, y) and326

(x , y ± 1). For all y and k, we have d((0, y), (w, y ± k)) =327

w+k, and symmetrically d((x , 0), (x±k, h)) = h+k for all x328

and k. Let M be the distance matrix from the set of vertices329

{(x , 0)} ∪ {(0, y)} to the set of vertices {(x , h)} ∪ {(w, y)};330

distance matrix M must be unit-Monge.331

Consider an arbitrary planar emulator G of M . Let dG332

denote the shortest-path metric on G. For vertices i, j, k,`333

in clockwise-order along the outer face, we have dG(i,`) +334

dG( j, k) ≤ dG(i, k) + dG( j,`). On the other hand, for any335

pair of points p and q where p is on a shortest path from i336

to ` and q on a shortest path from j to k, we have dG(i,`)+337

dG( j, k) + 2dG(p, q)≥ dG(i, k) + dG( j,`).338

Denote by π↔y a shortest path in G between (0, y) and339

(w, y), and by πlx a shortest path in G between (x , 0) and340

(x , h). We will show that the paths πlx are disjoint and have341

h edges each. Recall that dG(i,`) + dG( j, k) + 2dG(p, q)≥342

dG(i, k) + dG( j,`), so343

‖π↔y ‖+ ‖π
↔
y+k‖+ 2dG(π

↔
y ,π↔y+k)344

= 2w+ 2dG(π
↔
y ,π↔y+k)345

≥ dG((0, y), (w, y + k)) + dG((0, y + k), (w, y))346

= 2(w+ k),347
348

and thus any pair of points p ∈ π↔y and q ∈ π↔y+k on349

distinct paths have distance at least k ≥ 1, so different350

such paths are vertex-disjoint. Any path πlx must cross all351

the (vertex-disjoint) paths π↔0 , . . .π↔h , and thus have at352

least h edges (not shared with any path π↔y ) of length at353

least 1. Therefore, the paths πlx and π↔y (over all x and by354

symmetric argument y) contain at least (w+1)h+(h+1)w355

edges. We have n= 2(w+ h); by taking w= h= n/4, this356

yields a lower bound of357

2(n/4+ 1)(n/4) = n2/8+ n/2358

edges for any planar emulator of M . �359

We remark that the argument of Theorem 7 depends360

only on distances between opposite sides of the grid, and361

can be made to depend only on the linearly many dis-362

tances d((0, y), (w, y + k)) and d((x , 0), (x + k, h)) with363

k ∈ {−1,0, 1}.364

Cossarini [19] proved that any planar emulator for some365

n×n cyclic unit-Monge matrix must have at least
�n

2

�

edges.366

Our result, while slightly weaker in comparison, applies to367

general unit-Monge matrices, which can be viewed as the368

directed version of the problem.369

4 Discussion370

In this paper we have shown that any cyclic Monge dis-371

tance matrix admits a quadratic-size planar emulator. Our372

construction is universal in the sense that the underlying373

graph does not depend on the entries of the matrix. And374

there are metrics for which each edge must be used by375

some shortest path. We also showed that already for planar376

emulators of unit-Monge distance matrices (which can be377

represented in linear space), Ω(n2) edges are sometimes378

necessary.379

The cyclic-Monge distance matrices considered in this380

paper are closely connected to the set of intrinsic metrics of381

topological disks. In particular, a given metric on points in382

a circle can be realized as a metric intrinsic to a topological383

disk bounded by that circle if and only if the metric is a384

cyclic-Monge distance matrix. We conclude with an open385

problem.386

• Under what conditions do surfaces other than the disk387

(such as the Möbius strip, or a torus with holes) realize388

a given metric between points on their boundary? Do389

such surfaces also have a universal emulator, and if390

so, one with at most
�n

2

�

edges?391
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