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Planar Emulators for Monge Matrices

Hsien-Chih Chang*

Abstract

We constructively show that any cyclic Monge distance

; matrix can be represented as the graph distances between

vertices on the outer face of a planar graph. The structure

s of the planar graph depends only on the number of rows
s of the matrix, and the weight of each edge is a fixed linear

combination of constantly many matrix entries. We also
show that the size of our constructed graph is worst-case
optimal among all planar graphs.

, 1 Introduction

Monge property, named after the 18th century mathemati-
cian Gaspard Monge, roughly say that the sum of shortest-

. path distances between two crossing pairs of points (x, y)

and (z,w) is at least the sum of the ones between corre-

s sponding non-crossing pairs (x,z) and (y,w). The original

< motivation is to study the optimal transport of masses in
; the plane [30,39]. As a simple consequence of the Jordan
. curve theorem, Monge property has been tremendously
o helpful in designing efficient algorithms for planar opti-

mization problems—whether the input is a planar graph
or geometric objects lying in the plane [12,24,25,38,42].

> Most famously, Monge property is central to the design
s of the SMAWK algorithm [2] for row-minimum queries in

)

N

totally monotone matrices and the Monge heap data struc-

s ture [27] for speeding up various optimization algorithms
s+ on planar and surface graphs [27,29,32,34,40,51]. In

some problems where Monge property is evident, it is not
clear whether the problem has an obvious connection to

o planar metrics. Examples are fast dynamic programming

using quadrangle inequalities [ 6,28], as well as string prob-
lems such as the edit distance and longest common subse-
quence [45,49]. (See Burkard et al. [11,12], Park [42],

» and the citations within for additional applications of the

Monge properties.) A characterization of matrices satisfy-
ing the Monge property is known to exist [7, 10, 44], but
the following fundamental question relating planar metric
to Monge property remains unanswered: Given a metric
between a finite number of points satisfying some Monge
property, is the metric planar?

We answer this question affirmatively. We show that
given any distance matrix satisfying the (cyclic) Monge
property, one can construct an edge-weighted planar graph
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s realizing entries of the matrix exactly as graph distances

between some subset of vertices (called terminals). In
other words, we construct a planar emulator for any (cyclic)
Monge matrix with zero diagonals. Moreover, the construc-

; tion is optimal in size and takes time linear in the size of the

« distance matrix. In fact, each edge in the graph along with
. its weight is determined by a constant number of entries

in the matrix. Such property is of independent interest
and might be useful in designing efficient algorithms under

»» various computation models.

5= 1.1 Related work

Sketching graph distances. Emulators—arbitrary

ss graphs that preserve distances between terminals in the

input graph—are known to exist in general [8,9, 18]. But

; without additional assumptions on the input graph there

.+ is a linear lower-bound on the size of the emulator (with
. respect to the size of the input graph) when the number

of terminals is a polynomial ®(n*) for some range of a
strictly less than 1 [18].! Chang, Gawrychowski, Mozes,
and Weimann [14] constructed the first sub-linear size

> emulator for any undirected unweighted planar graph:

given any k-terminal planar graph with n vertices, an

.. emulator of size O(min{k?, (kn)'/?}) can be constructed in

. O(n) time, which is optimal up to logarithmic factors.

A related structure, called a spanner, which preserves the

. distances approximately up to additive or multiplicative

errors, is relatively well-understood for general graphs [9,

o 31,43,48,50]. Spanners with stronger guarantees exist for

geometrically/topologically constrained graphs [4, 13,23,

»» 37]. Similarly, distance oracles that answer distance queries
»» exactly or approximately are known to exist for planar and

IS

surface graphs [1,5,15,27,35,36,41,46,47]. (See Ahmed

» et al. [3] for a recent survey on distance sketching.)

“
o

Circular planar graphs. One of the central problems in
the theory of circular planar graphs considers the following
problem: Given measures of effective resistances between
all pairs of terminals, can we reconstruct a planar resistor

o network realizing the measures where the terminals lie on

the boundary? Colin de Verdiere et al. [16,17] and Curtis

s et al [20,21] showed that the reconstruction problem can
s> be solved precisely when the effective resistance matrix is

totally non-negative. The problem sounds similar to ours

Unterestingly, when the number of terminals is barely sublinear
(say n/220°¢" M) in an undirected unweighted graph, there is a strictly
sublinear-size emulator [8].
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. in spirit; in fact, when looking closer, the planar emulator
; problem is equivalent to their reconstruction problem in the

(min, +)-semiring instead of the standard (+, x)-ring. The
techniques involved in proving their theorem rely crucially
on the fact that the weights are over a (+, x)-ring and

o therefore do not apply to our problem.

1.2 Preliminaries

Monge properties. A matrix M satisfies the Monge prop-
erty if for any two rows i < i’ and two columns j < j’, one
has

M, j1+M[i, ' 1< M, j1+M[i,j'].

« Matrix M satisfies the anti-Monge property if the sign of
; the above inequality flipped. We often reorder the terms in

the inequality to emphasize the monotonicity on the entry
differences:

For the purpose of this paper we only consider distance
matrices, where the diagonal entries are all zeros, the en-

s tries are symmetric and satisfy the triangle inequality. A

distance matrix M is cyclic Monge? if for any four indices
i,1’, j, j" in cyclic order (that is, i < i’ < j < j’ after some
cyclic reordering of [i,i’,j,j’]), one has

M[i,j’ 1+ M[i’,j1< M[i,jl1+M[i,j'].

(Notice the inequality sign flipped comparing to the stan-
dard Monge property.) Let M be a cyclic Monge distance

, matrix and let A and B be two disjoint sub-intervals of the

index set of M. Then the submatrix of M between A and B
must be an (anti-)Monge matrix.

Consider an undirected planar graph
G with edge weights and let dG be the vertices on the

s boundary of the outer face of G. We consider the distance
« matrix M between vertices in JG: for any pair of vertices

i and j in G, we set M[i, j] to be the distance between i
and j in G.

It is not immediately clear that any cyclic Monge distance
matrix M comes as a distance matrix generated from some
planar graph G. A planar emulator for a distance matrix M
is a graph G whose vertex set V(G) contains the indices of

s M (and possibly others), and the graph distance dg;(u, v)

between any pair of vertices u and v in G is equal to M[u, v].

s Planarity and the Jordan curve theorem ensures that any

distance matrix M of a planar emulator must satisfy the

; cyclic Monge property. Our main result shows that the

converse is also true: any cyclic Monge distance matrix
admits a planar emulator.

In Section 2 we describe the construction and prove its
correctness. We show that the size of the construction is
optimal in Section 3, and conclude the paper in Section 4.

2This is known as the Kalmanson matrix [ 22,33], which is slightly more
restricted than a triangular Monge matrix [12] or the convex quadrangle
inequality [26].

» edges. A horizontal edge e;

;s 2 Constructing a planar emulator

The goal of this section is to construct planar emulators for

:s arbitrary cyclic Monge distance matrices.

Theorem 1 Given any n x n cyclic Monge distance matrix
M, there is a planar emulator for M with (;) edges.

For any given positive integer n, we define a planar
graph G" as follows (see Figure 1). Let the vertices of G"
be the set {v; ;}, where i ranges in [1: n] and j ranges in
[1:min{i,n—i+1}]. Define terminal p; to be v; minfi n—i+1}-

> The edges of G" consist of horizontal edges and vertical

«—>

; lies between each v; ; and v, ;
where j ranges in [1:|n/2]] and i rangesin [j:n—j]. A

s vertical edge el.ij lies between each v; ; and v; ., where j

rangesin[1 : niin{i,n+1—i}—1] and i rangesin [2: n—1].

b3 D4
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Figure 1: Graph G°.

Consider a cyclic Monge distance matrix M and for

» brevity denote M, ; := M[i, j]. We define the graph Gy,

as an edge-weighted copy of G", where the weight of a

« horizontal edge ;" is

7 that Mi,j + Mi+1,n—j+l

"\ . 1
w(ei,j )= 5 (Mi+1,j —M;j+M,; i _Mi+1,n—j+1):
and the weight of a vertical edge eiI jis

1
a)(eiIJ) = E(Mi,j =M1+ Mg jy1 — M,

Mji1nej = Mjnojin)-

+

i,n—j

. (See Figure 2.) Henceforth, we will refer to the edge-
> weighted graph Gy, as the canonical realization of M.

For the rest of the section, we show that G = Gy,
is a planar emulator of M. For this, it suffices to show

o that dg(p;, p;) = M[i, j] for all pairs of terminals p; and p;.

First, we derive some properties of G using the fact that M

» is a cyclic Monge matrix.

; Lemma 2 If M is a cyclic Monge matrix, then all edge
« weights of Gy, are non-negative.

s Proof. An edge of G}, is either horizontal or vertical. For

any horizontal edge elf’_j’, the cyclic Monge property states
< Mi;1; + M, ,_j;1, and therefore

20(e; ) =My j =M j+ M ji1 —Misy pjir 2 0.
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Figure 2: Values used to assign weights to e ~ and e

For any vertical edge e , the cyclic Monge property states
that (1) M; j 1 + M ,_; < M;;+ M, and (2) My ,,_;
M

in—jt1l S M+ M. Comblnmg (1) and (2) glves

2 Zw(eii,j) =M;; =M1+ My jr1 —Mipj + Mjyypj—
M; ;—jr1 20

It follows that the minimum-weight path from p; to p; in
G is simple.

Next, we show that there is at least one path from p;
to p; achieving the cost M[i,j]. For i < i’, the path of
horizontal edges between v; ; and v; ; in G has weight

> le)=;

Z (Mx+1,j —M,;+My,jn

xe€[i:i’—1] x€[i:i’—1]
_Mx+1,n—j+1)
1
= 5 (Mi’ M + Ml ,n—j+1 Mi’,n—j+l) >
= and for j < j’, the path of vertical edges between v, ;
and v; ; has welght
Z Z (M) =My yi1 + My
yeljj'-1] y€[J j'—1]
- Mi,n—y + My+1,n—y - My,n—y+1) >
1
= _(Mi My +Mipji1 =M
+M] n—j’+1 Mj,nfjJrl)'

Consider two terminals p; and p; and assume that
min{i,n—i+1} > min{j,n—j+1}. Let 7r;; be the unique

= L-shaped (simple) path from p; to p; that consists of a

path n] of horizontal edges followed by a path n of
vertical edges (both paths might possibly be empty). When

=

Jo Lj

Lemma 3 Let M be a cyclic Monge distance matrix. The
weight of t;; in Gy, is M; ;.

12 Proof. We assume that j < [n/2] (the other case is sym-
199 metrlc) The vertex at the end of 7'c > (and at the start

200 Of 71 Jisv; ;. Let i/ :=min{i,n—i+ 1} then the weight

201 ofrc,
PIEECHESDIRECH

202 (l)(ﬂ'j)i) =

xe[j:i—1] yelj:i'—1]
1
=3 (M =M+ Mg — M)+
204 (Mij =My + M pjir =M piia
205 My pirir — M jin))
206 (M + M Ml l/ - Mi,n—i’+l + Mi’,n—i’+1)’
207
208 Where either M R = O and Mi,n—i’+1 = Mi’,n—i’+1: or

209 Mi,n—i’+l 0 and Ml i = M/ n—i’+15 SO a)(ﬂ:j,i) = Mi,j‘ O

0 By Lemma 3 we have ds(p;, p;) < M, j, so it remains to
211 show that dg;(p;, p J) > M; ;. Define the y-coordinate of a
212 horlzontal edge e’ i asj, and the x-coordinate of a vertical
25 edge e ; as i. We next show that G contains a minimum-
214 welght path from p; to p; whose horizontal edges all have
215 the same y-coordinate. It follows that there is a minimum-
215 weight path consisting of at most one subpath of horizontal
2 edges.

2e Lemma 4 Let M be a cyclic Monge distance matrix. For any
2o pair of terminals p and p’, G}, has a minimum-weight path
20 from p to p’ whose horizontal edges all have the same y-
21 coordinate.

-» Proof. For a path 7, let o(7r) be the sum of y-coordinates
25 of its horizontal edges. Let a be a minimum-weight path
. from p to p’ that minimizes o (a) (over all minimum-weight
s paths from p to p’). We claim that all horizontal edges of a
»6 have the same y-coordinate. Suppose not, then a contains
- a two-edge subpath consisting of a vertical edge e i and a

s horizontal edge el, Lore’; J +1 We consider only the case

o where the subpath has edges ei’j and ei’j ., (the other case
20 is symmetric). Consider the path f3 obtained from a by
»» replacing this subpath by e > and el+1 . Theno(B) < o(a),
.»» so by assumption f cannot be a mlnlmum weight path.
;- However, Figure 3 shows that the weight of 3 is at most
.. that of a, contradicting that a is a minimum-weight path

.»s that minimizes o. O

. Finally, we show that there is a minimum-weight path for
.»» which additionally, its vertical edges all have the same x-
. coordinate. Together with the fact that all edge weights are
o non-negative (Lemma 2), it follows that 7; ; is a minimum-
20 weight path between p; and p;.

Lemma 5 Let M be a cyclic Monge distance matrix. For any
« pair of terminals p and p’, G}, has a minimum-weight path
.s from p to p’ whose horizontal edges all have the same y-
2.s coordinate, and whose vertical edges all have the same x-
215 coordinate.
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Di Dit+1 bi Di+1
pj+1 :::::::::::.E ,J+1 | pn_] pj+1 HIH pn_j
I
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(e} ;) + (el 1) = 2w(ef) + (el ;)
Figure 3: The sum of weights of e~ e;; ” and el 1, is at most that of e and e L
0 7 i'—1
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Figure 4: The weight of the horizontal path from v; ;4 to v; ;,; is at most the total weight of el gL

path from v; ; to v; ;.

Proof. By Lemma 4, there is a minimum-weight path

; from p to p’ whose horizontal edges all have the same

y-coordinate, and without loss of generality assume that
this y-coordinate is maximal over all such paths. Because

, all edges have nonnegative weights by Lemma 2, we may

assume that this path consists of a path of vertical edges
(with decreasing y-coordinates), followed by a path of

s> horizontal edges whose x-coordinates are increasing or

decreasing, and finally a path of vertical edges with in-

s creasing y-coordinates. Suppose that the subpath of hor-

izontal edges is surrounded by vertical edges e and e oy

,j
with i < i’ (the case i > i’ is symmetric). Let a be the
path consisting of el , the edges eH fori < x < i/, and

l, ; let B be the path of edges ex g fori < x < i,
Apply cyclic Monge property twice, one can show that
2My j+2Mj 1 =My j1 +2M 1 —2M =My 2

> My 41+ M; ,_;, which implies that the weight of f§ is at

most that of a, so replacing a by 3 yields a shortest path
whose horizontal edges all have the same y-coordinate, but
one bigger than that of the horizontal edges of a, which is

» a contradiction. (See Figure 4.) g

As an immediate corollary of Lemmas 2, 3, and 5, every
n x n cyclic Monge distance matrix has a planar emulator
of size ( ) proving Theorem 1.

3 Lower bound on the size of planar emulators

In this section we show that some Monge distance matrices
requires ( ) edges in any of its planar emulator. A similar
result by Cossarini [19] says that any planar emulator of

el

e s and the horizontal

some cyclic Monge matrix requires (g) edges. Therefore,

s our canonical realization is worst-case optimal in size.

s Theorem 6 Some n x n Monge distance matrices have no

planar emulator with fewer than ( ) edges.

Proof. Let M be a Monge distance matrix. The vec-
tor (M ;);<; € RG) completely determines M since M;; = 0
and M; ; = M;; as d is a graph metric on the canonical re-
alization of M. The set of such vectors over all Monge dis-
tance matrices yields a convex polytope #, as it is bounded

.ss only by the hyperplanes arising from the linear inequalities

of the triangle inequality and cyclic Monge property. We

. show that & is (g)-dimensional.

For this, we define a family of (”) sets (E, ).cr(q) of edges
indexed by the edges of G},. For each horizontal edge e;’ ] ,

let Ee:—]> = {e:;, | ]
— (!
let Eeil,j = {ei’j} @] Eelf;’ @] Eezrl,j.

< j}. For each vertical edge elj,

For each edge e, define the

. weight function w, as the characteristic function of E,; in

other words, let w, : E — {0, 1}, with w,(e/) =1 if e’ € E,,

. and w,(e’) = 0 otherwise. We show that the (g) weight

»0; functions (w, )eeE(G) are linearly independent. For each

horizontal edge e;;, w,.~ sets only the weight of edge e

s to one, and all other edges to zero. Similarly, for each hor-

e— w H(e) Weer (e) sets
’ to one. Fmally, for each vertical

izontal edge e > with j > 1,

only the welght of edgee, [y

edge el e w ¢, (e)— w H(e) — W (e) sets only the

i,j°

» weight of edge ei to one. Since each of the ( ) edges can

be set to weight one while all other edges are set to zero,
the defined weight functions are linearly independent, and
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moreover, any weight function can be obtained as a linear

202 combination of (w,).ep(q)-

Since the polytope & is (;)-dimensional, there exists a

s Monge distance matrix whose entries are in general posi-
s tion: there is no indexed family S of fewer than (g) real
., numbers such that each of the (Z) distances can be writ-

ten as the sum of a subset of S. Since the length of each

.00 shortest path in a nonnegatively edge-weighted graph is
o the sum of a subset of its edge-weights, there is a Monge

distance matrix that does not have a planar emulator with
fewer than (}) edges. O

The argument of Theorem 6 relies on the fact that the

. set of distances can be chosen to lie in general position. We
s present a different, but slightly weaker lower bound for the
« more general setting where the weights are integers up to
» [n/2]. A Monge matrix M is unit-Monge if for all i and j,

M[l+19J]_M[l’J:] € {_170;1}: and
M[i,j]—Ml[i,j+1]€ {-1,0,1}.

Theorem 7 Some n x n unit-Monge distance matrices have

»» no planar emulator with fewer than n?/8 + n/2 edges.

»: Proof. Let M be a distance matrix defined as follows. Con-
.+ sider a rectangular grid graph with vertex set {0,...,w} x

s {0,...,h} and edges between vertices at distance 1, so that
« vertex (x,y) has (unit-weight) edges to (x £1,y) and

7 (x,y £1). For all y and k, we have d((0,y),(w,y £k)) =

25 w+k, and symmetrically d((x,0), (x*k, h)) = h+k for all x

s and k. Let M be the distance matrix from the set of vertices

{(x,0)} U {(0, )} to the set of vertices {(x,h)} U {(w,¥)};
distance matrix M must be unit-Monge.
Consider an arbitrary planar emulator G of M. Let dg

- denote the shortest-path metric on G. For vertices i, j, k, £
. in clockwise-order along the outer face, we have d(i,£) +

st, dg(j, k) < dg(i, k) + dg(j,£). On the other hand, for any

s pair of points p and q where p is on a shortest path from i

7 to £ and g on a shortest path from j to k, we have d (i, £)+

° dG(j’ k) + 2dG(pa q) = dG(i: k) + dG(])Z)

Denote by 7t a shortest path in G between (0, y) and

20 (w,y), and by n}( a shortest path in G between (x,0) and

(x, h). We will show that the paths ni are disjoint and have
h edges each. Recall that d;(i,¢) + dg(j, k) +2ds(p,q) =

s dg(i, k) +dg(j, ), so

«—

s 1+ 7+ 2dg (5, 757,

=2w+ ZdG(rr;_’, n;k)

= dG((O: J’), (W:y + k)) + dG((O’y + k)’ (W: J’))
=2(w+k),

. . N o
» and thus any pair of points p € T and q € T 1 on

o distinct paths have distance at least k > 1, so different

such paths are vertex-disjoint. Any path TE)I( must cross all
the (vertex-disjoint) paths 7”,...7,~, and thus have at

555 least h edges (not shared with any path 77:?) of length at

least 1. Therefore, the paths rrfc and nyH (over all x and by

s symmetric argument y) contain at least (w+1)h+(h+1)w
, edges. We have n = 2(w + h); by taking w = h = n/4, this

s, yields a lower bound of

2(n/4+1)(n/4) =n*/8+n/2
edges for any planar emulator of M. O

We remark that the argument of Theorem 7 depends
only on distances between opposite sides of the grid, and

s> can be made to depend only on the linearly many dis-
> tances d((0, y),(w,y + k)) and d((x,0),(x + k,h)) with

ke{-1,0,1}.
Cossarini [ 19] proved that any planar emulator for some

5 n X n cyclic unit-Monge matrix must have at least (g) edges.
7 Our result, while slightly weaker in comparison, applies to

general unit-Monge matrices, which can be viewed as the
directed version of the problem.

o 4 Discussion

In this paper we have shown that any cyclic Monge dis-

> tance matrix admits a quadratic-size planar emulator. Our
55 construction is universal in the sense that the underlying

graph does not depend on the entries of the matrix. And

s there are metrics for which each edge must be used by

some shortest path. We also showed that already for planar

»» emulators of unit-Monge distance matrices (which can be
¢ represented in linear space), Q(n?) edges are sometimes
7o TIecessary.

The cyclic-Monge distance matrices considered in this
paper are closely connected to the set of intrinsic metrics of

> topological disks. In particular, a given metric on points in
ss5 a circle can be realized as a metric intrinsic to a topological

384

disk bounded by that circle if and only if the metric is a

s cyclic-Monge distance matrix. We conclude with an open

388

problem.

e Under what conditions do surfaces other than the disk
(such as the Mobius strip, or a torus with holes) realize
a given metric between points on their boundary? Do
such surfaces also have a universal emulator, and if
so, one with at most () edges?
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