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Abstract4

We strengthen the connections between electrical transformations and homotopy from the planar5

setting—observed and studied since Steinitz—to arbitrary surfaces with punctures. As a result, we6

improve our earlier lower bound on the number of electrical transformations required to reduce an7

n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous8

Ω(n3/2) lower bound applies only to facial electrical transformations on plane graphs with no terminals.9

First we provide a stronger Ω(n2) lower bound when the planar graph has two or more terminals,10

which follows from a quadratic lower bound on the number of homotopy moves in the annulus.11

Our second result extends our earlier Ω(n3/2) lower bound to the wider class of planar electrical12

transformations, which preserve the planarity of the graph but may delete cycles that are not faces13

of the given embedding. This new lower bound follows from the observation that the defect of the14

medial graph of a planar graph is the same for all its planar embeddings.15
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1 Introduction16

Consider the following set of local operations performed on any graph:17

• Leaf contraction: Contract the edge incident to a vertex of degree 1.18

• Loop deletion: Delete the edge of a loop.19

• Series reduction: Contract either edge incident to a vertex of degree 2.20

• Parallel reduction: Delete one of a pair of parallel edges.21

• Y�∆ transformation: Delete a degree-3 vertex and connect its neighbors with three new edges.22

• ∆�Y transformation: Delete edges of a 3-cycle and join its vertices to a new vertex.23

These operations and their inverses, which we call electrical transformations following Colin de Verdière24

et al. [13], have been used for over a century to analyze electrical networks [31]. Steinitz [45,46] proved25

that any planar network can be reduced to a single vertex using these operations. Several decades later,26

Epifanov [17] proved that any planar graph with two special vertices called terminals can be similarly27

reduced to a single edge between the terminals; simpler algorithmic proofs of Epifanov’s theorem were28

later given by Feo [19], Truemper [50, 51], and Feo and Provan [20]. These results have since been29

extended to planar graphs with more than two terminals [3,14,21,22] and to some families of non-planar30

graphs [21,52]. See Chang’s thesis [8] for a history of the problem.31

Despite decades of prior work, the complexity of the reduction process is still poorly understood.32

Steinitz’s proof implies that O(n2) electrical transformations suffice to reduce any n-vertex planar graph33

to a single vertex; Feo and Provan’s algorithm reduces any 2-terminal planar graph to a single edge34

in O(n2) steps. While these are the best upper bounds known, several authors have conjectured that35

they can be improved [3, 20, 21]. Without any restrictions on which transformations are permitted,36

the only known lower bound is the trivial Ω(n). However, Chang and Erickson recently proved that37

if all transformations are required to be facial, meaning any deleted cycle must be a face of the given38

embedding, then reducing a plane graph without terminals to a single vertex requires Ω(n3/2) steps in39

the worst case [10]. This is obtained by studying the relation between facial electrical transformations40

and homotopy moves, a set of operations performed on the medial graph of the input.41

In this paper, we extend our earlier lower bound for electrical transformations in two directions. To42

this end, first we study multicurves on surfaces under electrical and homotopy moves; multicuves are in43

one-to-one correspondence with medial graphs of graph embeddings. Specifically, in Section 3 we prove44

that the set of tight multicurves under electrical moves and under homotopy moves is identical. As a45

consequence, any surface-embedded graph can be reduced without ever increasing its number of edges.46

Previously such property is only known to hold for plane graphs [10,35].47

Next, we consider plane graphs with two terminals. In this setting, leaf deletions, series reductions,48

and Y�∆ transformations that delete terminals are forbidden. We prove in Section 4 that Ω(n2) facial49

electrical transformations are required in the worst case to reduce a 2-terminal plane graph as much as50

possible. Not every 2-terminal plane graph can be reduced to a single edge between the terminals using51

only facial electrical transformations. However, we show that any 2-terminal plane graph can be reduced52

to a unique minimal graph called a bullseye using a finite number of facial electrical transformations.53

Our lower bound ultimately relies on a recent Ω(n2) lower bound on the number of homotopy moves54

required to tighten a contractible closed curve in the annulus [12].55

In Section 5, we consider a wider class of electrical transformations that preserve the planarity56

of the graph, but are not necessarily facial. Our second main result is that Ω(n3/2) planar electrical57

transformations are required to reduce a planar graph (without terminals) to a single vertex in the worst58

case. Like our earlier lower bound for facial electrical transformations, our proof ultimately reduces to59
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the study of a certain curve invariant, called the defect, of the medial graph of a given unicursal plane60

graph G. A key step in our new proof is the following surprising observation: Although the definition of61

the medial graph of G depends on the embedding of G, the defect of the medial graph is the same for all62

planar embeddings of G.63

2 Background64

2.1 Types of electrical transformations65

We distinguish between three increasingly general types of electrical transformations in plane graphs:66

facial, crossing-free, and arbitrary. (For ease of presentation, we assume throughout the paper that plane67

graphs are actually embedded on the sphere instead of the plane.)68

An electrical transformation in a graph G embedded on a surface Σ is facial if any deleted cycle is a69

face of G. All leaf contractions, series reductions, and Y�∆ transformations are facial, but loop deletions,70

parallel reductions, and ∆�Y transformations may not be facial. Facial electrical transformations form71

three dual pairs, as shown in Figure 2.1; for example, any series reduction in G is equivalent to a parallel72

reduction in the dual graph G∗.73

Figure 2.1. Facial electrical transformations in a plane graph G and its dual G∗.

An electrical transformation in G is crossing-free if it preserves the embeddability of the underlying74

graph into the same surface. Equivalently, an electrical transformation is crossing-free if the vertices75

of the cycle deleted by the transformation are all incident to a common face of G. All facial electrical76

transformations are trivially crossing-free, as are all loop deletions and parallel reductions. If the graph77

embeds in the plane, crossing-free electrical transformations are also called planar. The only non-78

crossing-free electrical transformation is a ∆�Y transformation whose three vertices are not incident to79

a common face; any such transformation introduces a K3,3-minor into the graph, connecting the three80

vertices of the ∆ to an interior vertex, an exterior vertex, and the new Y vertex.81

Figure 2.2. A non-planar ∆�Y transformation.

2.2 Multicurves and medial graphs82

A surface is a 2-manifold with or without punctures. Formally, a closed curve in a surface Σ is a83

continuous map γ: S1 → Σ. A closed curve is simple if it is injective. A multicurve is a collection of84

one or more closed curves. We consider only generic multicurves, which are injective except at a finite85

number of (self-)intersections, each of which is a transverse double point. A multicurve is connected if86

its image in the surface is connected. The image of any (non-simple) multicurve has a natural structure87
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as a 4-regular map, whose vertices are the self-intersection points of the curves, edges are maximal88

subpaths between vertices, and faces are components of the complement of the curves in the surface.89

We do not distinguish between multicurves whose images are combinatorially equivalent maps.90

The medial graph G× of an embedded graph G is another embedded graph whose vertices correspond91

to the edges of G, and two vertices of G× are connected by an edge if the corresponding edges in G are92

consecutive in cyclic order around some vertex, or equivalently, around some face in G. Every vertex in93

every medial graph has degree 4; thus, every medial graph is the image of a multicurve. Conversely,94

image of a non-simple multicuvre is the medial graph of some surface-embedded graph if the faces of the95

multicurve can be two-colored; in particular, when the surface is a sphere, the image of every non-simple96

multicurve is the medial graph of some plane graph. We call an embedded graph G unicursal if its97

medial graph G× is the image of a single closed curve.98

Smoothing a multicurve γ at a vertex x replaces the intersection of γ with a small neighborhood99

of x with two disjoint simple paths, so that the result is another 4-regular embedded graph. There are100

two possible smoothings at each vertex. More generally, a smoothing of γ is any multicurve obtained by101

smoothing a subset of its vertices. For any embedded graph G, the smoothings of the medial graph G×102

are precisely the medial graphs of minors of G.103

Figure 2.3. Two possible smoothings of a vertex.

2.3 Local moves104

A homotopy between two curves γ and γ′ on the same surface Σ is a continuous deformation from one105

curve to the other, formally defined as a continuous function H : S1 × [0,1]→ Σ such that H(·, 0) = γ106

and H(·, 1) = γ′. The definition of homotopy extends naturally to multicurves. Classical topological107

arguments imply that two multicurves are homotopic if and only if one can be transformed into the other108

by a finite sequence of homotopy moves (shown in Figure 2.4). Notice that a 1�0 move is applied to an109

empty loop, and a 2�0 move is applied on an empty bigon. A multicurve is homotopically tight (or110

h-tight for short) if no sequence of homotopy moves leads to a multicurve with fewer vertices.111

Figure 2.4. Homotopy moves 1�0, 2�0, and 3�3.

Figure 2.5. Electrical moves 1�0, 2�1, and 3�3.

Facial electrical transformations in any embedded graph G correspond to local operations in the112

medial graph G× that closely resemble homotopy moves. We call these 1�0, 2�1, and 3�3 moves,113

where the numbers before and after each arrow indicate the number of local vertices before and after114
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the move. We collectively refer to these operations and their inverses as electrical moves. A multicurve115

is electrically tight (or e-tight for short) if no sequence of electrical moves leads to another multicurve116

with fewer vertices. For multicurves on surfaces with boundary, both homotopy moves and electrical117

moves performed on boundary faces are forbidden. The fact that we use same name tight for both118

homotopy moves and electrical moves is not a coincidence; we will justify its usage in Section 3.2.119

3 Connection between electrical and homotopy moves120

For any connected multicurve (or 4-regular embedded graph) γ on surface Σ,121

• let X(γ) denote the minimum number of electrical moves required to tighten γ,122

• let H↓(γ) denote the minimum number of homotopy moves required to tighten γ, without ever123

increase the number of vertices; that is, no 0�1 and 0�2 moves are allowed.124

• let H(γ) denote the minimum number of homotopy moves required to tighten γ.125

It is not immediately obvious whether a multicurve γ that is tight under monotonic homotopy moves126

could be further tightened by allowing 0�1 and 0�2 moves or not. Hass and Scott [28] and de Graaf and127

Schrijver [26] independently proved that any multicurve γ can be tightened using monotonic homotopy128

moves, which implies that H↓(γ) = 0 if and only if H(γ) = 0. In other words, (standard) homotopy129

moves and monotonic homotopy moves share the same set of tight multicurves. Now H↓(γ) ≥ H(γ)130

follows for any multicurve γ.131

3.1 Smoothing lemma132

We would like to compare X (γ) with H↓(γ) and H(γ). The following key lemma follows from close133

reading of proofs by Truemper [50, Lemma 4] and several others [3,21,33,35] that every minor of a134

∆Y-reducible graph is also ∆Y-reducible. A proof to some special cases at the level of medial curves135

can be found in de Graaf [23, Proposition 5.1]. For the sake of completeness, we include a proof in136

Appendix B.137

Lemma 3.1 (Chang and Erickson [10, Lemma 3.1]). Let γ be any connected multicurve on surface Σ,138

and let γ̌ be a connected smoothing of γ. Applying any sequence of N electrical moves to γ to obtain γ′.139

Then one can apply a similar sequence of electrical moves of length at most N to γ̌ to obtain a (possibly140

trivial) connected smoothing γ̌′ of γ′.141

As a remark, using similar argument one can recover a result by Newmann-Coto [34]: any homotopy142

from multicurve γ to another multicurve γ′ that never removes vertices can be turned into a homotopy143

from a smoothing of γ to a smoothing of γ′. Chambers and Liokumovich [7] studied a similar problem144

where one wants to convert a homotopy between two simple curves on surface into an isotopy, without145

increasing the length of any intermediate curve by too much. They showed that the desired isotopy can146

be obtained from a clever Euler-tour argument on the graph of all possible complete smoothings of the147

intermediate curves.148

Using Lemma 3.1 one can show that X (γ)≥ H↓(γ) for every planar curve γ, a result implicit in the149

work of Noble and Welsh [35] and formally proved by Chang and Erickson [10].150

Lemma 3.2 (Smoothing Lemma [10]). X (γ̌) ≤ X (γ) for every connected smoothing γ̌ of every con-151

nected multicurve γ in the plane.152
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Lemma 3.3 (Monotonicity Lemma [10]). For every connected multicurve γ, there is a minimum-153

length sequence of electrical moves that simplifies γ to a simple closed curve that does not contain 0�1154

or 1�2 moves.155

Lemma 3.4 (Electrical-Homotopy Inequality [10]). X (γ)≥ H↓(γ) for every planar curve γ.156

3.2 Equivalence of tightness157

One of the main obstacles to generalize Lemmas 3.2, 3.3, and 3.4 to curves on arbitrary surface is that158

again we do not know a priori whether the set of tight multicurves under electrical moves is the same as159

those under homotopy moves. Such problem did not exist in the planar setting as all planar multicurves160

can be tightened to simple curves using either electrical or homotopy moves. We first show that every161

electrically tight multicurve is also homotopically tight.162

Lemma 3.5. Let γ be a connected multicurve on an arbitrary surface Σ. If γ is electrically tight, then γ163

is homotopically tight.164

Proof: Let γ be a connected multicurve in some arbitrary surface, and suppose γ is not homotopically165

tight. Results of Hass and Scott [28] and de Graaf and Schrijver [26] imply that γ can be tightened by a166

finite sequence of homotopy moves that never increases the number of vertices. In particular, applying167

some finite sequence of 3�3 moves to γ creates either an empty loop, which can be removed by a 1�0168

move, or an empty bigon, which can be removed by either a 2�0 move or a 2�1 move. Thus, γ is not169

electrically tight. �170

However, for the reverse direction, we don’t have a similar monotonicity result for electrical moves171

on arbitrary surfaces. A careful reading of the sequence of work by de Graaf and Schrijver [24,25,26,39,172

40,41,42] leads to a five-way equivalence that shows the two versions of tightness coincide when the173

given curve is primitive. Unfortunately their results do not generalize as some of the equivalences break174

down with the presence of non-primitive counterexamples. See Appendix A for more details.175

Routing set. Inspired by the routing problem studied by de Graaf and Schrijver [25], we introduce the176

notion of routing set. Despite its naïve look, the routing set satisfies a crucial property that encapsulates177

the whole difficulty of the problem, which allows us to bypass the heavy machinery developed for the178

primitive case. We then use the established equivalence of tightness to derive the monotonicity lemma179

for electrical moves on arbitrary multicurves.180

For any multicurve γ, the routing set of γ is the following collection of homotopy classes:181

route(γ) :=
¦

[γ̌] | γ̌ is a smoothing of γ
©

.182

Each homotopy class in route(γ) is referred as a route of γ.183

Lemma 3.6. Routing set of γ is invariant under electrical moves for any multicurve γ.184

Proof: Let γ′ be the multicurve obtained from performing one electrical move to γ. Because electrical185

moves are closed under inverses, we only need to prove that route(γ) ⊆ route(γ′).186

Let γ̌ be an arbitrary smoothing of γ; [γ̌] is in route(γ) by definition. By Lemma 3.1, one can obtain187

a smoothing γ̌′ of γ′ that is at most one electrical move away from γ̌.1 In particular, [γ̌′] is in route(γ′).188

1Although Lemma 3.1 is stated with respect to connected smoothings, the proof of the lemma (see Appendix B) reveals that
similar statement holds for arbitrary smoothings by allowing an additional 0�0 move that creates/contracts simple cycles. In
particular, such move does not change the homotopy class of a multicurve.
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If γ̌′ is equal to γ̌ or is obtained from γ̌ using a 1�0, 0�1, or 3�3 move, then immediately we have189

[γ̌] = [γ̌′] to be a route in route(γ′). If γ̌′ is obtained from γ̌ using a 2�1 move, consider the multicurve190

γ̌◦ obtained from γ̌ by performing a 2�0 move (on the same empty bigon) instead. γ̌◦ is a smoothing191

of γ̌′, which in turn is a smoothing of γ′. Because 2�0 is a homotopy move, [γ̌] = [γ̌◦] is a route in192

route(γ′). Similarly when γ̌′ is obtained from γ̌ using a 1�2 move, we consider γ̌ as a smoothing of γ̌′193

thus [γ̌] is a route in route(γ′). This concludes the proof. �194

The intersection number of a homotopy class [γ] is defined to be the minimum number of vertices195

among all curves homotopic to γ. The main routes of γ are those routes of γ that achieve the maximum196

intersection number.197

Lemma 3.7. Any homotopically tight multicurve is also electrically tight.198

Proof: Assume for contradiction that there is an h-tight multicurve γ that is not e-tight. Tighten γ using199

electrical moves to an e-tight multicurve γ′ with less number of vertices than γ. Now by Lemma 3.6 the200

routing set of γ and γ′ is the same; in particular, [γ′] is a main route of both γ and γ′. However since201

both γ and γ′ are h-tight, the intersection number of [γ] is strictly greater than the intersection number202

of [γ′] and thus [γ′] cannot be a main route of γ, a contradiction. �203

3.3 Monotonicity of electrical moves204

As a corollary of Lemma 3.7, we are ready to generalize the monotonicity lemma (Lemma 3.3) to205

multicurves on general surfaces.206

Lemma 3.8. Let γ be any connected multicurve γ on surface Σ, and let γ̌ be a connected smoothing207

of γ, satisfying route(γ) = route(γ̌). Then X (γ̌)≤ X (γ) holds.208

Proof: Let γ be a connected multicurve with n(γ) vertices, and let γ̌ be a connected smoothing of γ. If209

X (γ) equals to zero, then γ is both e-tight and h-tight by Lemma 3.5. The fact that route(γ) = route(γ̌)210

implies that [γ] is a route of γ̌ and its intersection number is equal to n(γ). If γ̌ is a proper smoothing of211

γ, then the intersection number of any route of γ̌ is strictly less then n(γ), a contradiction. As a result,212

the only smoothing of γ satisfying the condition is γ itself, and therefore the inequality trivially holds.213

Otherwise, applying a minimum-length sequence of electrical moves that tightens γ. By Lemma 3.1214

there is another sequence of electrical moves of length at most X (γ) that tightens γ̌. We immediately215

have X (γ̌)≤ X (γ) and the lemma is proved. �216

Lemma 3.9. For any connected multicurve γ, there is a minimum-length sequence of electrical moves217

that tightens γ that does not contain 0�1 or 1�2 moves.218

The proof follows almost verbatim from Lemma 3.3 after substituting Lemma 3.8 for Lemma 3.2 and219

applying Lemma 3.6.220

Proof: Consider a minimum-length sequence of electrical moves that tights γ. For any integer i ≥ 0, let221

γi denote the result of the first i moves in this sequence. Minimality of the tightening sequence implies222

that X (γi) decreases as i grows. Now let i be an arbitrary index such that γi is obtained from performing223

a 0�1 or 1�2 move on γi−1. Then γi−1 is a connected proper smoothing of γi, and by Lemma 3.6,224

route(γi−1) = route(γi) holds. Now Lemma 3.8 implies that X (γi−1)≤ X (γi), a contradiction. �225
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4 Two-terminal plane graphs226

Most applications of electrical reductions, starting with Kennelly’s computation of effective resistance [31],227

designate two vertices of the input graph as terminals and require a reduction to a single edge between228

those terminals. In this context, electrical transformations that delete either of the terminals are forbidden;229

specifically: leaf contractions when the leaf is a terminal, series reductions when the degree-2 vertex is230

a terminal, and Y�∆ transformations when the degree-3 vertex is a terminal. An important subtlety231

here is that not every 2-terminal planar graph can be reduced to a single edge using only facial electrical232

transformations. The simplest bad example is the three-vertex graph shown in Figure 4.1.233

Figure 4.1. A facially irreducible 2-terminal plane graph; solid vertices are the terminals.

In this section, we show that in the worst case, Ω(n2) facial electrical transformations are required234

to reduce a 2-terminal plane graph with n vertices as much as possible. The medial graph G× of any235

2-terminal plane graph G is properly considered as a multicurve embedded in the annulus; the faces of236

G× that correspond to the terminals are removed from the surface. The main strategy is to lower bound237

X (G×) by some function of H(G×), then defer to the quadratic lower bound for untangling annular curve238

using homotopy moves [12]. To this end, we generalize Lemma 3.4 to annular curves; such result is239

obtained by the understanding of tight multicurves on the annulus.240

First, we prove in Section 4.1 that any annular curve can be tightened to a unique family of curves.241

Next in Section 4.2, we generalize the results by Chang and Erickson [10], in particular the electrical-242

homotopy inequality (Lemma 3.4), to the annular case. We prove our quadratic lower bound in243

Section 4.3. Existing algorithms for reducing an arbitrary 2-terminal plane graphs to a single edge244

rely on an additional operation which we call a terminal-leaf contraction, in addition to facial electrical245

transformations. We discuss this subtlety in more detail in Section 4.4.246

4.1 Tight annular curves247

The winding number of a directed closed curve γ in the annulus is the number of times any generic248

path π from one (fixed) boundary component to the other crosses γ from left to right, minus the number249

of times π crosses γ from right to left. Two directed closed curves in the annulus are homotopic if and250

only if their winding numbers are equal.251

The depth of any multicurve γ in the annulus is the minimum number of times a path from one252

boundary to the other crosses γ; thus, depth is essentially an unsigned version of winding number. Just as253

the winding number around the boundaries is a complete homotopy invariant for curves in the annulus,254

the depth turns out to be a complete invariant for electrical moves on the annular multicurves.255

Lemma 4.1. Electrical moves do not change the depth of any annular multicurve.256

For any integer d > 0, let αd denote the unique closed curve in the annulus with d − 1 vertices and257

winding number d. Up to isotopy, this curve can be parametrized in the plane as258

αd(θ ) :=
�

(cos(θ ) + 2) cos(dθ ), (cos(θ ) + 2) sin(dθ )
�

.259

In the notation of our other papers [10,11], αd is the flat torus knot T (d, 1).260

The following lemmas are direct consequences of Lemma 3.7; here we provide simple proofs using261

only winding number and depth of annular curves.262
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Lemma 4.2. For any integer d > 0, the curve αd is both h-tight and e-tight.263

Proof: Every connected multicurve in the annulus with either winding number d or depth d has at least264

d + 1 faces (including the faces containing the boundaries of the annulus) and therefore, by Euler’s265

formula, has at least d − 1 vertices. �266

Lemma 4.3. If γ is an h-tight connected annular multicurve, then γ= αd for some d.267

Proof: A multicurve in the annulus is h-tight if and only if its constituent curves are h-tight and disjoint.268

Thus, any connected h-tight multicurve is actually a single closed curve. Any two curves in the annulus269

with the same winding number are homotopic [30]. Finally, up to isotopy, αd is the only closed curve in270

the annulus with winding number d and d − 1 vertices [27, Lemma 1.12]. �271

Corollary 4.4. A connected multicurve γ in the annulus is e-tight if and only if γ= αdepth(γ); therefore,272

any annular multicurve γ is e-tight if and only if γ is h-tight.273

4.2 Smoothing lemma in the annulus274

Equipped with the understanding of tight annular curves, we are ready to extend the results in Section 3.1275

to the annulus.276

Lemma 4.5. For any connected smoothing γ̌ of any connected multicurve γ in the annulus, we have277

X (γ̌) + 1
2 depth(γ̌)≤ X (γ) + 1

2 depth(γ).278

Proof: Let γ be an arbitrary connected multicurve in the annulus, and let γ̌ be an arbitrary connected279

smoothing of γ. Without loss of generality, we can assume that γ is non-simple, since otherwise the280

lemma is vacuous.281

If γ is already e-tight, then γ= αd for some integer d ≥ 2 by Corollary 4.4. (The curves α0 and α1282

are simple.) First, suppose γ̌ is a connected smoothing of γ obtained by smoothing a single vertex283

x . The smoothed curve γ̌ contains a single empty loop if x is the innermost or outermost vertex of284

γ, or a single empty bigon otherwise. Applying one 1�0 or 2�0 move transforms γ̌ into the curve285

αd−2, which is e-tight by Lemma 4.2. Thus we have X (γ̌) = 1 and depth(γ̌) = d − 2, which implies286

X (γ̌) + 1
2 depth(γ̌) = X (γ) + 1

2 depth(γ). As for the general case when γ̌ is obtained from γ by smoothing287

more than one vertices, the statement follows from the previous case by induction on the number of288

smoothed vertices.289

If γ is not e-tight, applying a minimum-length sequence of electrical moves that tightens γ into290

some curve γ′. By Lemma 3.1 there is another sequence of electrical moves of length at most X (γ)291

that tightens γ̌ to some connected smoothing γ̌′ of γ′, which can be further tightened electrically to292

an e-tight curve using arguments in the previous paragraph because γ′ is e-tight. This implies that293

X (γ̌) ≤ X (γ) + 1
2(depth(γ′)− depth(γ̌′)). By Lemma 4.1, γ and γ′ have the same depth, and γ̌ and γ̌′294

have the same depth. Therefore X (γ̌) + 1
2 depth(γ̌)≤ X (γ) + 1

2 depth(γ) and the lemma is proved. �295

Lemma 4.6. For every connected multicurve γ in the annulus, there is a minimum-length sequence of296

electrical moves that tightens γ to αdepth(γ) without 0�1 or 1�2 moves.297

The proof follows almost verbatim from Lemma 3.3 and 3.9 after substituting Lemma 4.5 for298

Lemma 3.2.299
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Proof: Consider a minimum-length sequence of electrical moves that tightens an arbitrary connected300

multicurve γ in the annulus. For any integer i ≥ 0, let γi denote the result of the first i moves in this301

sequence. Suppose γi has one more vertex than γi−1 for some index i. Then γi−1 is a connected proper302

smoothing of γi , and depth(γi) = depth(γi−1) by Lemma 4.1; so Lemma 4.5 implies that X (γi−1)≤ X (γi),303

contradicting our assumption that the reduction sequence has minimum length. �304

Lemma 4.7. X (γ) + 1
2 depth(γ)≥ H↓(γ)≥ H(γ) for every closed curve γ in the annulus.305

Proof: Let γ be a closed curve in the annulus. If γ is already e-tight, then X (γ) = H↓(γ) = 0 by Lemma 3.5306

(or Corollary 4.4), so the lemma is trivial. Otherwise, consider a minimum-length sequence of electrical307

moves that tightens γ. By Lemma 4.6, we can assume that the first move in the sequence is neither 0�1308

nor 1�2. If the first move is 1�0 or 3�3, the theorem immediately follows by induction on X (γ), since309

by Lemma 4.1 neither of these moves changes the depth of the curve.310

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be the result311

if we perform the 2�0 move on the same empty bigon instead. The minimality of the sequence implies312

X (γ) = X (γ′) + 1, and we trivially have H↓(γ) ≤ H↓(γ◦) + 1. Because γ is a single curve, γ◦ is also a313

single curve and therefore a connected proper smoothing of γ′. Thus, Lemma 4.1, Lemma 4.5, and314

induction on the number of vertices imply315

X (γ) +
1
2

depth(γ) = X (γ′) +
1
2

depth(γ′) + 1316

≥ X (γ◦) +
1
2

depth(γ◦) + 1317

≥ H↓(γ◦) + 1318

≥ H↓(γ),319
320

which completes the proof. �321

4.3 Quadratic lower bound322

Bullseyes. For any k > 0, let Bk denote the 2-terminal plane graph that consists of a path of length k323

between the terminals, with a loop attached to each of the k − 1 interior vertices, embedded so that324

collectively they form concentric circles that separate the terminals. We call each graph Bk a bullseye.325

For example, B1 is just a single edge; B2 is shown in Figure 4.1; and B4 is shown on the left in Figure 4.2.326

The medial graph B×k of the kth bullseye is the curve α2k. Because different bullseyes have different327

medial depths, Lemma 4.1 implies that no bullseye can be transformed into any other bullseye by facial328

electrical transformations.329

Figure 4.2. The bullseye graph B4 and its medial graph α8.

The following corollary is now immediate from the electrical-homotopy inequality for annular curves330

(Lemma 4.7).331
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Theorem 4.8. Let G be a 2-terminal plane graph, and let γ be any unicursal smoothing of G×. Reducing G332

to a bullseye requires at least H(γ)− 1
2 depth(γ) facial electrical transformations.333

Chang et al. [12] presented an infinite family of contractible curves in the annulus parametrized by334

their number of vertices n that require Ω(n2) homotopy moves to tighten. Every contractible curve is the335

medial graph of some 2-terminal plane graph (because they have even depth and thus the faces can be336

two-colored [47]). Euler’s formula implies that every n-vertex curve in the annulus has exactly n+ 2337

faces (including the boundary faces) and therefore has depth at most n+ 1.338

Corollary 4.9. Reducing a 2-terminal plane graph to a bullseye requires Ω(n2) facial electrical transfor-339

mations in the worst case.340

4.4 Terminal-leaf contractions341

The electrical reduction algorithms of Feo [19], Truemper [50], and Feo and Provan [20] rely exclusively342

on facial electrical transformations, plus one additional operation.343

• Terminal-leaf contraction: Contract the edge incident to a terminal vertex with degree 1. The344

neighbor of the deleted terminal becomes a new terminal.345

Terminal-leaf contractions are also called FP-assignments, after Feo and Provan [14, 21, 22]. Later346

algorithms for reducing plane graphs with three or four terminals [3,14,22] also use only facial electrical347

transformations and terminal-leaf contractions.348

Formally, terminal-leaf contractions are not electrical transformations, as they can change the value349

one wants to compute. For example, if the edges in the graph shown in Figure 4.1 represent 1Ω350

resistors, a terminal-leaf contraction changes the effective resistance between the terminals from 2Ω351

to 1Ω. However, both Gilter [21] and Feo and Provan [20] observed that any sequence of facial electrical352

transformations and terminal-leaf contractions can be simulated on the fly by a sequence of planar353

electrical transformations. Specifically, we simulate the first leaf contraction at either terminal by354

simply marking that terminal and proceeding as if its unique neighbor were a terminal. Later electrical355

transformations involving the neighbor of a marked terminal may no longer be facial, but they will356

still be planar; terminal-leaf contractions at the unique neighbor of a marked terminal become series357

reductions. At the end of the sequence of transformations, we perform a final series reduction at the358

unique neighbor of each marked terminal.359

Unfortunately, terminal-leaf contractions change both the depth of the medial graph and the curve360

invariants that imply the quadratic homotopy lower bound. As a result, our quadratic lower bound proof361

breaks down if we allow terminal-leaf contractions.362

5 Planar electrical transformations363

Finally, we extend our earlier Ω(n3/2) lower bound for reducing plane graphs—without terminals using364

only facial electrical transformations—to the larger class of planar electrical transformations. Recall365

that a plane graph G unicursal if its medial graph G× is the image of a single closed curve. As in our366

earlier work [10], we analyze electrical transformations in an unicursal plane graph G in terms of a367

certain invariant of the medial graph of G called defect, first introduced by Aicardi [2] and Arnold [4,5].368

Our extension to non-facial electrical transformations is based on the following surprising observation:369

Although the medial graph of G depends on its embedding, the defect of the medial graph of G does not.370

Theorem 5.1. Let G and H be planar embeddings of the same abstract planar graph. If G is unicursal,371

then H is unicursal and defect(G×) = defect(H×).372
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The goal of the section is to prove Theorem 5.1.373

5.1 Defect374

Let γ be an arbitrary closed curve on the sphere. Choose an arbitrary basepoint γ(0) and an arbitrary375

orientation for γ. For any vertex x of γ, we define sgn(x) = +1 if the first traversal through x crosses the376

second traversal from right to left, and sgn(x) = −1 otherwise. Two vertices x and y are interleaved,377

denoted x Ç y , if they alternate in cyclic order—x , y , x , y—along γ. Finally, following Polyak [36], we378

can define379

defect(γ) := − 2
∑

xÇy

sgn(x) · sgn(y),380

where the sum is taken over all interleaved pairs of vertices of γ.381

Trivially, every simple closed curve has defect zero. Straightforward case analysis [36] implies that382

the defect of a curve does not depend on the choice of basepoint or orientation. Moreover, any homotopy383

move changes the defect of a curve by at most 2; see the paper by Chang and Erickson [10, Section 2.1]384

for an explicit case breakdown. Defect is also preserved by any homeomorphism from the sphere to385

itself, including reflection.386

5.2 Navigating between planar embeddings387

Short history of planar embeddings. A classical result of Adkisson [1] and Whitney [53] is that every388

3-connected planar graph has an essentially unique planar embedding. Mac Lane [32] described how to389

count the planar embeddings of any biconnected planar graph, by decomposing it into its triconnected390

components. Stallmann [43,44] and Cai [6] extended Mac Lane’s algorithm to arbitrary planar graphs,391

by decomposing them into biconnected components. Mac Lane’s decomposition is also the basis of the392

SPQR-tree data structure of Di Battista and Tamassia [15,16], which encodes all planar embeddings of393

an arbitrary planar graph.394

Whitney [49, 54] showed that any planar embedding of a 2-connected planar graph G can be395

transformed into any other embedding by a finite sequence of split reflections, defined as follows. A396

split curve is a simple closed curve σ whose intersection with the embedding of G consists of two vertices397

x and y; without loss of generality, σ is a circle with x and y at opposite points. A split reflection398

modifies the embedding of G by reflecting the subgraph inside σ across the line through x and y .399

Lemma 5.2. Let G be an arbitrary 2-connected planar graph. Any two planar embeddings of G can be400

transformed into one other by a finite sequence of split reflections.401

To navigate among the planar embeddings of arbitrary connected planar graphs, we need two402

additional operations. First, we allow split curves that intersect G at only a single cut vertex; a cut403

reflection modifies the embedding of G by reflects the subgraph inside such a curve. More interestingly,404

we also allow degenerate split curves that pass through a cut vertex x of G twice, but are otherwise405

simple and disjoint from G. The interior of a degenerate split curve σ is an open topological disk. A406

cut eversion is a degenerate split reflection that everts the embedding of the subgraph of G inside such407

a curve, intuitively by mapping the interior of σ to an open circular disk (with two copies of x on its408

boundary), reflecting the interior subgraph, and then mapping the resulting embedding back to the409

interior of σ. Structural results of Stallman [43,44] and Di Battista and Tamassia [16, Section 7] imply410

the following.411

Lemma 5.3. Let G be an arbitrary connected planar graph. Any planar embedding of G can be trans-412

formed into any other planar embedding of G by a finite sequence of split reflections, cut reflections,413

and cut eversions.414
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Figure 5.1. Top row: A regular split reflection and a cut reflection. Bottom row: a cut eversion.

5.3 Tangle flips415

Now consider the effect of the operations stated in Lemma 5.3 on the medial graph G×. By assumption,416

G is unicursal so that G× is a single closed curve. Let σ be any (possibly degenerate) split curve for417

G. Embed G× so that every medial vertex lies on the corresponding edge in G, and every medial edge418

intersects σ at most once. By the Jordan curve theorem, we can assume without loss of generality that419

σ is a circle, and that the intersection points γ ∩σ are evenly spaced around σ. A tangle of γ is the420

intersection of γ with either disk bounded by σ; each tangle consists of one or more subpaths of γ called421

strands. We arbitrarily refer to the two tangles defined by σ as the interior and exterior tangles of σ.422

Split curve σ intersects at most four edges of G×, so the tangle of G× inside σ has at most two strands.423

Moreover, reflecting (or everting) the subgraph of G inside σ induces a flip of this tangle of G×. Any424

tangle can be flipped by reflecting the disk containing it, so that each strand endpoint maps to a different425

strand endpoint; see Figure 5.2. Straightforward case analysis implies that flipping any tangle of G×426

with at most two strands transforms G× into another closed curve; see Figure 5.3.427

Figure 5.2. Flipping tangles with one and two strands.

Lemma 5.4. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with one strand428

yields another closed curve γ′ with defect(γ′) = defect(γ).429

Proof: Let σ be a simple closed curve that crosses γ at exactly two points. These points decompose σ430

into two subpaths α ·β , where α is the unique strand of the interior tangle and β is the unique strand of431

the exterior tangle. Let Σ denote the interior disk of σ, and let φ : Σ→ Σ denote the homeomorphism432

that flips the interior tangle. Flipping the interior tangle yields the closed curve γ′ := rev(φ(α)) · β ,433

where rev denotes path reversal.434

No vertex of α is interleaved with a vertex of β; thus, two vertices in γ′ are interleaved if and only435

if the corresponding vertices in γ are interleaved. Every vertex of rev(φ(α)) has the same sign as the436

corresponding vertex of α, since both the orientation of the vertex and the order of traversals through437

the vertex changed. Thus, every vertex of γ′ has the same sign as the corresponding vertex of γ. We438

conclude that defect(γ′) = defect(γ). �439

A tangle is tight if each strand is simple and each pair of strands crosses at most once. Any tangle can440

be tightened—that is, transformed into a tight tangle—by continuously deforming the strands without441
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crossing σ or moving their endpoints, and therefore by a finite sequence of homotopy moves. Let γåσ442

and γ äσ denote the closed curves that result from tightening the interior and exterior tangles of σ,443

respectively.2 The following lemma that flipping any 2-strand tangle does not change its defect follows444

from our inclusion-exclusion formula for defect [9, Lemma 5.4]; we give a simpler proof here to keep445

the paper self-contained.446

Lemma 5.5. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with two strands447

yields another closed curve γ′ with defect(γ′) = defect(γ).448

Proof: Let σ be a simple closed curve that crosses γ at exactly four points. These four points naturally449

decompose γ into four subpaths α ·δ · β · ε, where α and β are the strands of the interior tangle of σ,450

and δ and ε are the strands of the exterior tangle. Flipping the interior tangle either exchanges α and β ,451

reverses α and β , or both; see Figure 5.3. In every case, the result is a single closed curve γ′. We classify452

each vertex of γ as interior if it lies on α and/or β , and exterior otherwise. Similarly, we classify pairs of453

interleaved vertices are either interior, exterior, or mixed.454
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Figure 5.3. Flipping all six types of 2-strand tangle.

An interior vertex x and an exterior vertex y are interleaved if and only if x is an intersection point455

of α and β and y is an intersection point of δ and ε. Thus, the total contribution of mixed vertex pairs456

to Polyak’s formula defect(γ) = −2
∑

xÇy sgn(x) · sgn(y) is457

−2
∑

x∈α∩β

∑

y∈δ∩ε

sgn(x) · sgn(y) = − 2

 

∑

x∈α∩β

sgn(x)

! 

∑

y∈δ∩ε

sgn(y)

!

.458

Consider any sequence of homotopy moves that tightens the interior tangle with strands α and β . Any459

2�0 move involving both α and β removes one positive and one negative vertex; no other homotopy460

move changes the number of vertices in α∩ β or the signs of those vertices. Thus, tightening α and β461

leaves the sum
∑

x∈α∩β sgn(x) unchanged. Similarly, tightening the exterior tangle δ ∪ ε leaves the sum462
∑

y∈δ∩ε sgn(y) unchanged. But after tightening both tangles, either α and β are disjoint, or δ and ε463

are disjoint, or both, as γ is a single closed curve. Thus, at least one of the sums
∑

x∈α∩β sgn(x) and464
∑

y∈δ∩ε sgn(y) is equal to zero. We conclude that mixed vertex pairs do not contribute to the defect.465

The curve γåσ obtained by tightening α and β has at most one interior vertex (and therefore no466

interior vertex pairs); the exterior vertices of γåσ are precisely the exterior vertices of γ. Similarly, the467

curve γäσ obtained by tightening both δ and ε has at most one exterior vertex; the interior vertices of468

γäσ are precisely the interior vertices of γ. It follows that defect(γ) = defect(γäσ) + defect(γåσ).469

2We recommend pronouncing å as “tightened inside” and ä as “tightened outside”; note that the symbols å and ä resemble
the second letters of “inside” and “outside”.
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Finally, let γ′ be the result of flipping the interior tangle. The curve γ′ äσ is just a reflection of γäσ,470

which implies that defect(γ′äσ) = defect(γäσ), and straightforward case analysis implies γ′åσ = γåσ.471

We conclude that defect(γ′) = defect(γ′åσ)+defect(γ′äσ) = defect(γåσ)+defect(γäσ) = defect(γ). �472

Lemmas 5.3, 5.4, and 5.5 now immediately imply Theorem 5.1.473

5.4 Back to planar electrical moves474

Each planar electrical transformation in a plane graph G induces the same change in the medial graph G×475

as a finite sequence of 1- and 2-strand tangle flips (hereafter simply called “tangle flips”) followed by a476

single electrical move. For an arbitrary connected multicurve γ, let X̄(γ) denote the minimum number477

of electrical moves in a mixed sequence of electrical moves and tangle flips that tightens γ. Similarly, let478

H̄(γ) denote the minimum number of homotopy moves in a mixed sequence of homotopy moves and479

tangle flips that tightens γ. We emphasize that tangle flips are “free” and do not contribute to either480

X̄ (γ) or H̄(γ).481

Our lower bound on planar electrical moves follows our earlier lower bound proof for facial electrical482

moves almost verbatim; the only subtlety is that the embedding of the graph can effectively change at483

every step of the reduction. We repeat the arguments here to keep the presentation self-contained.484

Lemma 5.6. X̄ (γ̌)≤ X̄ (γ) for every connected proper smoothing γ̌ of every connected multicurve γ on485

the sphere.486

Proof: Let γ be a connected multicurve, and let γ̌ be a connected proper smoothing of γ. The proof487

proceeds by induction on X̄ (γ). If X̄ (γ) = 0, then γ is already tight, so the lemma is vacuously true.488

First, suppose γ̌ is obtained from γ by smoothing a single vertex x . Consider an optimal mixed489

sequence of tangle flips and electrical moves that tightens γ. This sequence starts with zero or more490

tangle flips, followed by a electrical move. Let γ′ be the multicurve that results from the initial sequence491

of tangle flips; by definition, we have X̄ (γ) = X̄ (γ′). Moreover, applying the same sequence of tangle492

flips to γ̌ yields a connected multicurve γ̌′ such that X̄ (γ̌) = X̄ (γ̌′). Thus, we can assume without loss of493

generality that the first operation in the sequence is an electrical move.494

Now let γ′ be the result of this move; by definition, we have X̄ (γ) = X̄ (γ′) + 1. As in the proof of495

Lemma 4.5, there are several subcases to consider, depending on whether the move from γ to γ′ involves496

the smoothed vertex x , and if so, the specific type of move. In every subcase, by Lemma 3.1 we can497

apply at most one electrical move to γ̌ to obtain a (possibly trivial) smoothing γ̌′ of γ′, and then apply498

the inductive hypothesis on γ′ and γ̌′ to prove the statement. We omit the straightforward details.499

Finally, if γ̌ is obtained from γ by smoothing more than one vertex, the lemma follows immediately500

by induction from the previous analysis. �501

Lemma 5.7. For every connected multicurve γ, there is an intermixed sequence of electrical moves and502

tangle flips that tightens γ that contains exactly X̄ (γ) electrical moves, and does not contain 0�1 or 1�2503

moves.504

Proof: Consider an optimal sequence of electrical moves and tangle flips that tightens γ, and let γi505

denote the result of the first i moves in this sequence. If any γi has more vertices than its predecessor506

γi−1, then γi−1 is a connected proper smoothing of γi , and Lemma 5.6 implies a contradiction. �507

Lemma 5.8. X̄ (γ)≥ H̄(γ) for every closed curve γ on the sphere.508
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Proof: Let γ be a closed curve on the sphere. The proof proceeds by induction on X̄ (γ). If X̄ (γ) = 0,509

then γ is simple and thus H̄(γ) = 0, so assume otherwise.510

Consider an optimal sequence of electrical moves and tangle flips that tightens γ, and let γi be the511

curve obtained by applying a prefix of the sequence up to and including the first electrical move. The512

minimality of the sequence implies that X̄ (γ) = X̄ (γ′) + 1. By Lemma 5.7, we can assume without loss of513

generality that the first electrical move in the sequence is neither 0�1 nor 1�2, and if this first electrical514

move is 1�0 or 3�3, the theorem immediately follows by induction.515

The only remaining move to consider is 2�1. Let γ◦ denote the result of applying the same sequence516

of tangle flips to γ, but replacing the final 2�1 move with a 2�0 move, or equivalently, smoothing517

the vertex of γ′ left by the final 2�1 move. We immediately have H̄(γ) ≤ H̄(γ◦) + 1. Because γ◦ is a518

connected proper smoothing of γ′, Lemma 5.6 implies X̄ (γ◦)< X̄ (γ′) = X̄ (γ)− 1. Finally, the inductive519

hypothesis implies that X̄ (γ◦)≥ H̄(γ◦), which completes the proof. �520

Lemma 5.9. H̄(γ)≥ |defect(γ)|/2 for every closed curve γ on the sphere.521

Proof: Each homotopy move decreases |defect(γ)| by at most 2, and Lemmas 5.4 and 5.5 imply that522

tangle flips do not change |defect(γ)| at all. Every simple curve has defect 0. �523

Theorem 5.10. Let G be an arbitrary planar graph, and let γ be any unicursal smoothing of G× (defined524

with respect to any planar embedding of G). Reducing G to a single vertex requires at least |defect(γ)|/2525

planar electrical transformations.526

Proof: The minimum number of planar electrical transformations required to reduce G is at least X̄ (G×).527

Because γ is a single curve, it must be connected, so Lemma 5.6 implies that X̄ (G×)≥ X̄ (γ). The theorem528

now follows immediately from Lemmas 5.8 and 5.9. �529

Finally, Hayashi et al. [29] and Even-Zohar et al. [18] describe infinite families of planar closed530

curves with defect Ω(n3/2); see also [10, Section 2.2].531

Corollary 5.11. Reducing any n-vertex planar graph to a single vertex requires Ω(n3/2) planar electrical532

transformations in the worst case.533

6 Open problems534

Our results suggest several open problems. Perhaps the most compelling, and the primary motivation535

for our work, is to find either a subquadratic upper bound or a quadratic lower bound on the number536

of (unrestricted) electrical transformations required to reduce any planar graph without terminals to a537

single vertex. Like Gitler [21], Feo and Provan [20], and Archdeacon et al. [3], we conjecture that O(n3/2)538

facial electrical transformations suffice. However, proving the conjecture appears to be challenging.539

Another direction is to prove a quadratic lower bound for graphs on surfaces with positive genus under540

crossing-free electrical transformations. To generalize Theorem 5.1 to surface-embedded graphs, we need541

an extension of Lemma 5.3 to navigate through all the possible embeddings. Using the theory of large-542

edgewidth (LEW) embeddings, a result by Thomassen [48, Theorem 6.1] shows that any embedding of a543

surface-embedded graph can be obtained from the LEW-embedding (if there’s one) by a finite sequence of544

split reflections. From here it is not hard to construct a toroidal curve that admits an LEW-embedding and545

has quadratic defect. The main difficulty is that we don’t have a similar electrical-homotopy inequality546

for arbitrary surfaces.547

Finally, none of our lower bound techniques imply anything about non-planar electrical transforma-548

tions or about electrical reduction of non-planar graphs. Indeed, the only lower bound known in the549
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most general setting, for any family of electrically reducible graphs, is the trivial Ω(n). It seems unlikely550

that planar graphs can be reduced more quickly by using non-planar electrical transformations, but we551

can’t prove anything. Any non-trivial lower bound for this problem would be interesting.552
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A Equivalence between electrical and homotopic tightness for primitive664

curves665

A closed curve γ is primitive if γ is not homotopic to a proper multiple of some other closed curve. A666

multicurve is primitive if all its constituent curves are primitive. We show a five-way equivalence between667

electrical and homotopic tightness for primitive multicurves, which is implicit in the work by de Graaf668

and Schrijver [24,25,26,39,40,41,42].669

Let γ be a multicurve on an orientable surface Σ such that each constituent curve of γ is primitive.670

Define the µ -function as671

µ(γ,σ) := min
σ′∼σ
σ′ôγ

cr(γ,σ′),672

where cr(γ,σ′) is the number of crossings between γ and σ′, and the minimum ranges over every closed673

curve σ′ homotopic to the given closed curve σ on Σ, intersecting γ transversely.3 Denote µγ as the674

single-variable function µ(γ, ·). The notion of µ-function is deeply related to the representativity or675

facewidth of a graph studied in topological graph theory [37,38,48].676

The µ-function is a higher-genus analogue to the depth function defined in the annulus (see Sec-677

tion 4.1); in particular, both µ and depth are invariant under isotopy of γ and the electrical moves [38].678

Lemma A.1 (Robertson and Vitray [38, Proposition 14.4]). Electrical moves do not change µγ for679

any multicurve γ on surface Σ.680

Proof: For any face of γ intersected by some closed curve σ that could be deleted after an electrical681

move, exhaustive case analysis implies that there is another closed curve σ′ that avoids that face. �682

Multicurve γ satisfies simplicity conditions [40] if (1) any lifting of γi in the universal cover Σ̂ does683

not self-intersect for any constituent curve γi of γ, and (2) any distinct liftings of γi and γ j in Σ̂ intersect684

each other at most once for any pair of (possibly identical) constituent curves γi and γ j of γ. Multicurve685

γ is minimally crossing [40,42] if each constituent curve of γ has minimum number of self-intersections686

in its homotopy class, and every pair of constituent curves has minimum intersections with each other, in687

their own homotopy classes. In notation, one has688

cr(γi) = min
γ′i∼γi

cr(γ′i) and cr(γi ,γ j) = min
γ′i∼γi

γ′j∼γ j

cr(γ′i ,γ
′
j)689

for all constituent curves γi and γ j of γ; cr(γi) denotes the number of self-intersections of curve γi.690

Multicurve γ is crossing-tight [40,42] if µγ 6= µγ̌ for any proper smoothing γ̌ of γ.691

Our proof of equivalence relies on machineries developed extensively in the sequence of work by de692

Graaf and Schrijver [24,25,26,39,40,41,42] who did all the weight-lifting. However the original work693

does not address the problem of relating electrical and homotopy moves.694

Theorem A.2. Let γ be a multicurve on an orientable surface whose constituent curves are all primitive.695

The following statements are equivalent: (1) Multicurve γ satisfies simplicity conditions, (2) γ is696

minimally crossing, (3) γ is crossing-tight, (4) γ is e-tight, and (5) γ is h-tight.697

3In Schrijver [42], the µ-function is defined with respect to the graph corresponding to γ through medial construction; the
function defined here is denoted as µ′ in his paper.
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Proof: (1)⇔ (2)⇔ (3): Schrijver [40, Proposition 12] showed that γ satisfies simplicity conditions if698

and only if γ is minimally crossing and each constituent curve is primitive. Later in the same paper [40,699

Theorem 5] he also showed that γ is minimally crossing and each constituent curve is primitive if and700

only if γ is crossing-tight. An alternative proof using the monotonicity of homotopy process can be found701

in de Graaf’s thesis [23].702

(3)⇒ (4): In another paper Schrijver [42, Theorem 2] showed that two crossing-tight multicurves γ703

and γ′ can be transformed into each other using only 3�3 moves if (and only if) µγ = µγ̌. This result704

implies that if multicurve γ is crossing-tight then γ is e-tight, as electrical moves preserves the µ-function705

by Lemma A.1.706

(4)⇒ (5): Any e-tight multicurve must be h-tight by de Graaf and Schrijver [26] (see Lemma 3.5).707

(5)⇒ (1): If γ is h-tight and primitive, then by Hass and Scott [27, Lemma 3.4] multicurve γ satisfies708

simplicity conditions. To elaborate, assume for contradiction that γ violates the simplicity conditions. As709

γ is h-tight one can push each constituent curve of γ close to its unique geodesic on the surface without710

even decreases the number of vertices, similar to the algorithm of de Graaf and Schrijver [26]. Therefore711

all the intersections between lifts of constituent curves of γ remains after the push. The primitiveness of712

the curve γ guarantees that each lift of any constituent curve does not self-intersect, and two different713

lifts of the same constituent curve intersects at most once on Σ̂. Between the lifts of two distinct geodesics714

there is at most one intersection in the universal cover, and thus the same holds for the lifts of two715

distinct constituent curves of γ. This concludes the proof. �716

B Proving Lemma 3.1717

Proof: We prove the statement by induction on the number of electrical moves in the sequence and the718

number of smoothed vertices. If γ̌= γ then the statement trivially holds. Otherwise, we first consider719

the special case where γ̌ is obtained from γ by smoothing a single vertex x . Without loss of generality let720

γ′ be the result of the first electrical move. There are two nontrivial cases to consider.721

First, suppose the move from γ to γ′ does not involve the smoothed vertex x . Then we can apply the722

same move to γ̌ to obtain a new multicurve γ̌′; the same multicurve can also be obtained from γ′ by723

smoothing x .724

1→0

2→1 = 1→0

3→3 2→1 =

=

1→2 = =

Figure B.1. Cases for the proof of the Lemma 3.1; the circled vertex is x .



22 Hsien-Chih Chang, Marcos Cossarini, and Jeff Erickson

Now suppose the first move does involve x . In this case, we can apply at most one electrical move725

to γ̌ to obtain a (possibly trivial) smoothing γ̌′ of γ′. There are eight subcases to consider, shown in726

Figure B.1. One subcase for the 1�0 move is impossible, because γ̌ is connected. In the remaining 1�0727

subcase and one 2�1 subcase, the curves γ̌, γ̌′, and γ′ are all isomorphic. In all remaining subcases, γ̌′ is728

a connected proper smoothing of γ′.729

Finally, we consider the more general case where γ̌ is obtained from γ by smoothing more than one730

vertex. Let γ̃ be any intermediate curve, obtained from γ by smoothing just one of the vertices that were731

smoothed to obtain γ̌. As γ̌ is a connected smoothing of γ̃, the curve γ̃ itself must be connected too. Our732

earlier argument implies that there is a sequence of electrical moves that changes γ̃ to a smoothing γ̃′733

of γ′. The inductive hypothesis implies that there is a sequence of electrical moves that changes γ̌ to a734

smoothing γ̌′ of γ̃′, which is itself a smoothing of γ′. This completes the proof. �735
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