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Abstract

Any generic planar closed curve with n crossings can be turned into a simple closed curve by
applying O(n3/2) homotopy moves without ever increasing the number of self-crossings; this improves
over the O(n2) upper bound from Steinitz [Ency. Math. Wiss. III 1916], and matches the best lower
bound. We prove the existence of a positive move that decreases the depth-sum potential at every step.
Using similar techniques, we show that any 2-terminal plane graph with n vertices can be reduced to
a single edge between the terminals using O(n3/2) electrical transformations, consisting of degree-1
reductions, series-parallel reductions, and ∆Y-transformations; this proves a conjecture of Feo and
Provan that was open for more than 30 years.

1 Introduction

1.1 Problems and History

Any generic planar closed curve γ can be transformed into another generic planar closed curve by
applying the following elementary moves:

• 1�0: Remove an empty loop.

• 2�0: Separate two subpaths that bound an empty bigon.

• 3�3: Flip an empty triangle formed by three subpaths; equivalently, move one subpath over the
opposite crossing between the other two subpaths.

Figure 1. Homotopy moves 1�0, 2�0, and 3�3.

We call these local combinatorial changes together with their inverses the homotopy moves. The names
of the moves are mnemonic, where the number before and after the arrow represents the local number
of crossings before and after the move, respectively.

Homotopy moves are natural ways to discretize any continuous curve deformation (called a homo-
topy); such operations have been formally studied since Titus [29] but its usage can at least be traced
back to Steinitz [20,27,28] in his proof that every 3-connected planar graph is the skeleton of a convex
polytope. Naturally, homotopy moves serve as a complexity measure of how difficult it is to turn one
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planar curve into another. Because every curve is homotopic to a simple circle in the plane and thus
every two planar curves are homotopic, we can assume the target curve to be simple without loss of
generality. We refer to the process of turning a planar curve into a simple circle as simplification.

A simplification process is monotonic if no extra crossings are ever created throughout. (In other
words, a sequence of homotopy moves is monotonic if no 0�1 and 0�2 moves are allowed.) This is
a natural and desirable property to have that fits our intuition for curve untangling—we can always
untangle two strands that cross each other twice by pulling them apart.1 A careful reading reveals that
Steinitz’s algorithm implemented such strategy (named the bigon-reduction method) by finding a bigon
that is minimal in containment in the input curve which can then be emptied and removed using a
sequence of monotonic homotopy moves. Let n be the number of self-crossings in the input curve. Every
non-simple curve must contain a bigon, and each minimal bigon along with its two crossings can be
removed using O(n) moves; therefore Steinitz’s algorithm simplifies any n-crossing generic planar curve
using O(n2) monotonic homotopy moves. (The same O(n2) bound can also be derived from Francis’
work on regular homotopy [17], if we do not require monotonicity.) A naïve Ω(n) lower bound can
be observed from the fact that every homotopy move removes up to two crossings at a time. In 2015,
Chang and Erickson [9] derived an Ω(n3/2) lower bound for both the monotonic and non-monotonic
settings using a curve invariant2 called defect [1,4,5], by demonstrating an n-crossing planar curve with
defect Θ(n3/2). In their journal version [10] they provided a matching upper bound if the simplification
process is not required to be monotonic. Since then, generalizations of the problem (say to higher-genus
surfaces) have been studied [7,8,11]. But the exact complexity for the monotonic version of the planar
curve simplification problem remained open.

Electrical transformations. From an algorithmic design point of view, enforcing the monotonicity
requirement can be motivated by its intimate relationship to the well-studied graph operations called
the electrical transformations, consisting of six operations in three dual pairs: degree-1 reductions, series-
parallel reductions, and ∆Y transformation, as shown in Figure 2. Electrical transformations were first
introduced to analyze resistor networks [21,25], and later on found applications as a general framework
to solve combinatorial problems on planar graphs [2,12,13,16,18,19,22,23].3

Figure 2. Electrical transformations and their corresponding medial electrical moves.

A quantitative relation between the electrical transformations and the (monotonic) homotopy moves
was discovered [7,10,24] through the lens of the medial construction. Given a plane graph G, create a
node for each edge in G and connect two nodes if the corresponding two edges share both a vertex and
a face in G. This creates a 4-regular plane graph, which naturally decomposes into a collection of curves.
From this perspective, the set of electrical transformations turns into a set of local operations on curves
which looks almost identical to the set of homotopy moves. The main difference is that the series-parallel
reductions turn into 2�1 move that removes one single crossing from a bigon instead of two, while

1As opposed to knot diagrams, where there are examples that one has to increase the total number of crossings before
making further progress (for example the Culprit).

2an integer-valued function on the curves that changes by a constant when applying homotopy moves; this is what computer
scientists would call a potential function

3A fairly comprehensive list of citations can be found in Chang’s thesis [6].
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altering the number of constitute curves (in particular, medial electrical moves might transform a closed
curve into a multicurve).

In many applications, one wants to solve some optimization problems on a planar graph between
two specific vertices called terminals, say computing the effective resistance of a resistor network. This
means that we do not want to remove these terminals at any time during the electrical reduction process.
Such requirement can be carried out by adding punctures or holes to the corresponding faces of the
medial multicurve in the plane, so that no electrical moves can be performed there. In this sense, the
complexity of reducing 2-terminal plane graphs is closely tied to the number of homotopy moves required
to simplify multicurves in the annulus. This is because the number of electrical transformations required
to reduce a plane graph G is at least at many as the number of monotonic homotopy moves required to
simplify the corresponding medial multicurve [10]; an extra term needs to be subtracted if we are in
the 2-terminal case [7]. (See Section 4 for one particular subtlety about terminal-leaf contractions.) It
is less clear whether any n-vertex plane graph can be reduced efficiently, if at all. When no terminals
are presented, a quadratic upper bound can be extracted from the proof of Steinitz’s convex polytope
theorem [27, 28]. Akers [2] and Lehman [22] conjectured that any 2-terminal plane graph can be
reduced to a unique edge between the two terminals, which was verified first by Epifanov [14]. Later
work of Truemper [30] and Feo and Provan [15] provided more efficient methods to electrical reductions
for both the 0- and 2-terminal cases. (In fact, all known algorithms for electrical reductions on plane
graphs without terminals can be modified to work for the 2-terminal case.)

Feo-Provan conjecture. The algorithm of Feo and Provan [15] takes O(n ·depth(γ)) steps to electrically
reduce any n-vertex 2-terminal planar graph G, where depth(γ) is the depth of the deepest face in some
medial multicurve γ of G. The correctness depends on the existence of a positive homotopy move such
that performing the move will decrease the total sum of depths of the faces. While depth(γ) can be
as large as Ω(n) in the worst case, a typical planar graph (like a regular

p
n-by-

p
n grid) has depth

O(
p

n). It is tempting to guess that the worst-case quadratic bound is not tight; in fact, Feo and Provan
themselves suspected that their algorithm/analysis can in fact be improved:

“... there are compelling reasons to think that O(|V |3/2) is the smallest possible order ...”,

possibly referring to the earlier experimental results [16]. The same conjecture is repeated by Archdeacon,
Colbourn, Gitler, and Provan [3], this time pointing to the potential improvements to Truemper’s grid-
embedding method [30]:

“It is possible that a careful implementation and analysis of the grid-embedding schemes
can lead to an O(n

p
n)-time algorithm for the general planar case.”

However, despite decades of research, the conjecture remained open until this day.

1.2 Our results

In this paper we present two main results. First, any generic n-crossing planar simple closed curve can
be simplified using at most O(n3/2) monotonic homotopy moves. Together with the worse-case Ω(n3/2)
lower bound [9], we settle the answer to the exact complexity of monotonic planar curve simplification
problem. Second, we show that any n-vertex 2-terminal plane graph can be reduced to a single edge
using at most O(n3/2) electrical transformations, and thus resolve the Feo-Provan conjecture affirmatively.
Since every next electrical move can be found in O(1) time using a heap data structure, the reduction
process can be implemented in O(n3/2) time as well.
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Technical contribution. The technical heart of Feo and Provan’s algorithm [15] is the positive-move
lemma. When stated in the language of curves, it says that any non-tight closed curve γ must have a
homotopy move that decreases the sum of the depths of all faces. The main obstacle in adapting the
original proof to our setting is that Feo and Provan’s proof crucially relies on the fact that the underlying
multicurve is closed (that is, every constituent curve is a closed curve in the plane). In order to obtain
the subquadratic bound we adapt the useful tangle framework from Chang and Erickson [10], by finding
a tangle with lots of crossings inside compared to the number of strands. This way one can charge the
number of moves performed within the tangle to the number of crossings removed in the end, and
achieve a better amortized bound. (See Section 3.1.)

For this purpose we need the existence of positive moves within each useful tangle. However, because
there are no canonical ways to define the depth function on the faces of a tangle, Feo and Provan’s proof
does not extend immediately—in fact, positive moves might not exist when the depth functions are
not defined carefully. We overcome this obstacle by providing an alternative proof to the positive-move
lemma, which can then be generalized to the tangle setting. To this end, we introduce a way to view
the construction of multicurves from a different angle using the contour representations. By performing
induction on the multicurves constructed based on the contours, we show that there is always a positive
move within a tangle, unless the tangle is already tight. See Section 3.2 for an introduction to the
contour representations, followed by a complete proof for the positive-move lemma in the tangle setting
in Sections 3.3 and 3.4.

For the application of electrical reductions on 2-terminal plane graphs, we have to worry that the
positive move guaranteed by the lemma in fact containing the puncture. Fortunately, with the usefulness
assumption on the tangle, we can find a backup positive face that is not punctured. (More details can be
found in Section 4.)

2 Preliminaries

A closed curve on surface Σ is a continuous map γ from a simple circle S1 to Σ. An open curve, also
referred to as a strand, is a continuous map γ from the interval [0, 1] to Σ, whose two endpoints γ(0) and
γ(1) both lie on the boundary of the surface Σ. A curve is either an open or a closed curve. A multicurve
γ on surface Σ is a collection of curves on Σ; each curve in the collection is a constituent curve of γ. We
say a multicurve is closed if all its constituent curves are closed. Notice that when the surface Σ is the
plane, all curves and multicurves must be closed. In this paper, all curves and multicurves are assumed
to be generic, where each crossing must be a transverse double point. We will only consider surfaces that
are subsets of the plane; in particular, we only talk about multicurves in either the plane, a disk, or a
double-punctured plane (an annulus).

The image of any generic closed multicurve naturally corresponds to a 4-regular planar graph with
a planar embedding (a plane graph), whose vertices are crossings of the multicurve and the edges are
maximal subpaths between the vertices. We define the faces of a multicurve γ to be the components of
the complement of γ as a subset of the surface. We define the∞-face to be the only unbounded face
of γ. Define the depth of a face f of γ to be the minimum number of intersections between γ and any
path from f to the∞-face (counting multiplicity at the vertices). We say that two faces are adjacent if
there is a path from one to the other that intersects γ exactly once. The degree of a face is the number of
crossings of γ that are on the boundary of the face. An empty loop, a bigon, and a triangle are faces of
degree 1, 2, and 3 respectively. Throughout the rest of the paper we omit the word “empty” for simplicity.

Tangle. We define a tangle of a planar multicurve γ to be the intersection of a closed topological disk T
with γ imposing the condition that the boundary of the disk is transverse to γ and does not contain any
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Figure 3. Multicurve with its faces labeled by their depths.

crossings (see Figure 4). A tangle T can be identified with a multicurve on a disk. The definition of depth
of the faces in a tangle is more subtle and crucial to our results; we defer its definition and discussion
to Section 3.2. We call a tangle tight if all strands are simple, and every pair of strands intersect at
most once. Unlike a planar multicurve which can always be simplified in the plane, a multicurve within
a tangle can at most be tightened (i.e., make it tight); not every crossing can be removed using only
homotopy moves.

Figure 4. Left: a tight tangle. Right: a tangle that is not tight.

Positive moves. A face in the multicurve is positive if we can perform a homotopy move to remove or
decrease its depth by one. We say that a homotopy move is positive if the corresponding face before the
move is positive. Note that performing a positive move will decrease the total sum of the face depths,
but the number of crossings might stay unchanged (for example, when the positive move performed is a
3�3 move). To state the result in full generality without worrying about whether the image of the input
multicurve is connected or not, we will automatically perform a 0�0 move whenever an isolated closed
simple curve shows up and remove it from the surface. This is necessary as otherwise an isolated circle
in a face might prevent future homotopy moves to be carried out. Thus without loss of generality we can
assume no isolated closed simple curves exist.

3 Monotonic Homotopy Moves

In this section we prove that it takes O(n3/2)monotonic moves to simplify an n-crossing planar multicurve.
First we review the useful tangle framework by Chang and Erickson [10] and reduce the problem to
finding a positive move for both planar curves and tangles. Then we introduce the contour representation
and its equivalent definition and structures in Section 3.2. We prove the positive-move lemma, first
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in the plane and then within a tangle with some extra assumptions, using contour representations in
Section 3.3. Finally, in Section 3.4, we remove the extra assumptions.

3.1 Untangling Curves through Useful Tangles

A useful tangle of γ [10] is a tangle such that the number of crossings of γ inside T is at least quadratic
in the number of strands. In other words, let m be the number of crossings in tangle T ; then m ≥ s2,
where σ is the boundary of T and s := |σ∩γ|/2 is the number of strands in T . Notice that the boundary
of a useful tangle σ can intersect an n-vertex multicurve γ in at most O(

p
n) places.

Lemma 3.1 (Chang and Erickson [10, Lemma 4.4]). Let γ be an arbitrary planar multicurve with n
vertices.4 There is always a useful tangle of depth at most O(

p
n).

Tightening all the strands inside a useful tangle T will reduce the number of crossings in γ by at least m/2
as any tight tangle has at most

�s
2

�

crossings. One can charge the homotopy moves spent on tightening
the tangle to the removal of crossings. Therefore, to obtain an O(n3/2) upper bound, it is sufficient to
bound the number of homotopy moves by O(

p
n) times the number of crossings in the tangle.

Let T be a tangle and γ′ be the corresponding multicurve inside T . Fix an arbitrary basepoint p0 near
the boundary of the tangle, disjoint from γ′. Define depth(p,γ′) to be the minimum number of times
a path from p to p0 crosses γ′. Any two points within the same face of γ′ have the same depth, and
therefore the depth of a face depth( f ) is well-defined. The depth of the tangle T , depth(T ), is defined to
be the maximum depth over all faces of γ′.

Lemma 3.2. Any non-tight m-vertex tangle T can be tightened using at most O(m ·depth(T ))monotonic
homotopy moves.

We postpone the proof to Lemma 3.2 and use it first to prove the following theorem.

Theorem 3.3. Every n-vertex multicurve γ can be simplified in O(n3/2) monotonic moves.

Proof: Let T be a (nontrivial) useful tangle of γ of depth O(
p

n) guaranteed by Lemma 3.1. Define s to
be the number of strands of T and m to be the number of crossings in T . By Lemma 3.2, tightening T
takes O(m

p
n) moves. Since T is useful, m ≥ s2. Also, every tight tangle has at most s(s−1)

2 crossings.

Hence, tightening the tangle removes at least m− s(s−1)
2 ≥ m

2 crossings in at most O(m
p

n) moves. So
each crossing takes amortized O(

p
n)moves to remove. If γ is a non-simple multicurve, we can iteratively

find a useful tangle and tighten it until γ is simple. The process terminates because at each iteration we
remove at least one crossing. As the process took amortized O(

p
n) moves to remove each intersection,

multicurve γ can be simplified in at most O(n
p

n) moves in total. �

The rest of the section is devoted to a proof to Lemma 3.2.

3.2 Contour representation

Let T be a tangle with the corresponding multicurve γ in T . We also fix an arbitrary basepoint p0 at the
boundary of T and define the depth of the faces accordingly. For each integer j, define the region F j to
be the union of points inside tangle T whose depth is at least j. Each region might consist of several
components, where the closures of two of them possibly share vertices (but not edges). The boundary of

4Chang and Erickson [10, Lemma 4.4] only stated the lemma for single closed curves; however, the proof directly generalizes
to multicurves as well.
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each component is either a simple closed curve or a boundary-to-boundary curve in T ; we refer to the
former as a closed contour and the latter as an open contour. Denote the region bounded by a contour κ
not containing the basepoint p0 as Dκ. The collection of contours for γ forms a nested family; contour κ
is the ancestor of contour κ′ if region Dκ properly contains Dκ′ .

We use a contour tree T to represent this containment relationship. There might be multiple top-level
contours not contained by anyone else even when the input multicurve is closed and connected. So we
add an auxiliary node as the root of T, whose children are these inclusion-wise maximal contours. More
explicitly, each node (except for the root) corresponds to a contour κ and its children are precisely all
the contours κ1, . . . ,κs immediately contained inside κ. The uniqueness of the contour tree depends on
the choice of the basepoint p0. We call κ the parent contour and κ1, . . . ,κs the children contours. We say
that two or more contours are siblings if they have the same parent. We define the depth of a contour κ
to be the depth of the face within Dκ with smallest depth.

Smoothings and shortcuts. Smoothing is the operation to replace an arbitrarily small neighborhood
of a vertex v in a multicurve γ with two simple disjoint paths. The resulting object is still a multicurve.
There are two possible smoothings at each vertex, based on how one reconnects the four endpoints at
the boundary of the small neighborhood. The collection of contours of γ can be obtained by performing
smoothings on every vertex based on the depths of the four incident faces by merging the two with
minimal identical depths as illustrated in Figure 5.

Figure 5. Smoothing vertices based on the depths of the four incident faces.

Note that two different multicurves can have the same collection of contours, since crossings are
lost in the smoothing process. To keep all the information, we also draw segments joining two sibling
contours or between parent-children contours, representing the crossings. Such segments are called
shortcuts.

Figure 6. The star indicates the basepoint. Left: a tangle multicurve γ. Middle: contour representation of γ. Right: simplified
contour representation of γ.

The contour-shortcut multigraph S is defined so that the nodes are the contours and edges are shortcuts
between the contours. Given a contour-shortcut multigraph S, one can reverse the smoothing process
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by collapsing the shortcuts into a point, transforming S back into a multicurve. Each shortcut then
corresponds exactly to a single crossing in γ. The contours together with the shortcuts inherit a canonical
planar embedding from the multicurve γ. We will refer to the contour-shortcut multigraph of γ together
with its embedding as the contour representation of γ.

We emphasize that there might be multiple shortcuts between a pair of contours, and each of them is
recorded in S. Also, not every pair of parent-child contours in the contour tree T has shortcuts between
them. (See Figure 6 for an example.)

Structure of contour representations. The benefit of treating a multicurve as adding shortcuts to a
collection of contours is that we are able to consider intermediate multicurve objects as we perform
induction on the contour tree T. Formally, fix a contour tree T of a multicurve γ with respect to a fixed
basepoint. For each node (except the root) with associated contour κ of T, we construct the multicurve
associated with κ, denoted as γκ, whose contour tree is exactly the subtree of T rooted at κ (after adding
an auxiliary root). The vertices in γκ correspond to shortcuts that are in the region Dκ bounded by κ.

κ

κ

κ

Figure 7. Left: contour representation at the subtree rooted at κ. Middle: contour-shortcut multigraph of γκ. Right:
multicurve associated with contour κ.

Denote the subgraph of S induced on the children of the contour κ in T as S(κ). The shortcuts
presented in S(κ) are precisely the sibling-sibling shortcuts between children of κ.

Fix a child κ′ of κ. We define a region of κ′ as a maximal subset of Dκ \ Dκ′ in which every pair of
points has a path connecting them that does not cross a shortcut between κ and κ′ (see Figure 8 for an
example). This definition has an exception: whenever we have that κ and κ′ are open contours and
there is at least one shortcut between κ and κ′, there are going to be at exactly two regions of κ′ having
exactly one shortcut on the boundary. In this case, we will replace those two regions by a single region
that is the union of the two. We will call this single region the last region. Fix a region of κ′ and two
shortcuts between κ′ and κ. We say that the region is bounded by the two shortcuts if the two shortcuts
are on the boundary of the region. Note that there can be two different regions bounded by the same
two shortcuts. We say κ′ is outermost if it has at most one non-empty region and it has at most one
sibling-sibling shortcut. Note that if κ′ is the only contour in S(κ), it will be trivially outermost.

Lemma 3.4. Let κ be an arbitrary contour.

(a) The subgraph S(κ) forms a forest.

(b) There is no path of shortcuts connecting one open contour to another open contour in S(κ).

(c) If κ is closed with at least two children, then S(κ) has at least two outermost contours.
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Figure 8. A region of κ3 is colored blue. The only outermost components in S(κ) are κ1, κ4, and κ5.

(d) If κ is open with at least one closed children, then S(κ) has at least one closed outermost contour.

Proof: We will prove items (a)–(d) in order.

(a) If there is a cycle in S(κ), consider the subset of contours κ1, . . . ,κs together with the shortcuts
connecting them into a cycle Γ . A closed curve can be found in the image of the union of such contours
and shortcuts. Therefore, by definition, no faces within the closed curve should have the same depth as
the faces in between κ and its children. This is a contradiction to the way we resolve the shortcuts in Γ
into vertices (the two faces incident to a shortcut should have the same depth).

(b) Again, if there is a path Π connecting two open contours in S(κ), then we can draw a boundary-
to-boundary curve along the contours on path Π and the shortcuts, and the faces on the side of the
boundary-to-boundary curve that do not contain the basepoint must have larger depths, which is a
contradiction to how the shortcuts were constructed.

(c) All contours we consider here are closed since they are children of a closed contour. Let κ1 be any
leaf contour in S(κ). (By leaf contour, we mean a contour that is a leaf in its component in S(κ), which is
a tree by (a).) Note that a leaf contour that is not outermost will have at least two non-empty regions.
At least one region of κ1 is non-empty since S(κ) has at least two contours.

Suppose that exactly one of the regions of κ1 is non-empty. Then, κ1 is outermost. Now, pick a leaf
contour κ2 in the non-empty region of κ1. If κ2 is not outermost, we run the following inductive process.

• Inductive hypothesis: κn is a leaf contour in S(κ) fulfilling (a) all {κ1,κ2, . . . ,κn−1} lie in the same
region of κn and (b) at least two regions of κn are non-empty.

• Inductive step: We pick κn+1 to be any leaf contour in S(κ) inside the non-empty region Rn of
κn that does not contain {κ1,κ2, . . . ,κn−1}. If only one region of κn+1 is non-empty, then κn+1
is outermost. If instead at least two regions of κn+1 are non-empty, we go to the next step of
the induction. For doing so, we have to show that {κ1,κ2, . . . ,κn} lie in the same region of κn+1.
Note that the intersection between the boundary of the region Rn and the boundary of Dκ forms
a segment. Among the shortcuts between κn+1 and κ, let s be the shortcut that is closest to
one of the endpoints of the segment and s′ the one that is closest to the other endpoint. (Note
there are at least two shortcuts between κn+1 and κ since κn+1 is not outermost.) Now, note that
{κ1,κ2, . . . ,κn} lie in a region bounded by s and s′, as desired.

This process must stop since there are finitely many contours and the κi we built are all different. The
process stopping means we get an outermost contour. Thus, in the case that exactly one of the regions of
κ1 is non-empty, we get the two outermost contours.
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Now suppose instead that at least two of the regions of κ1 are non-empty. Pick two non-empty
regions of κ1 and run the following process on each. We pick a leaf contour κ2 in S(κ) from a non-empty
region of κ1. If κ2 is not outermost, we run the previous inductive process. It is easy to see that the
outermost contour coming from the induction is inside the region we started with. Since we ran the
process in two different regions of κ1, there are two different outermost contours, as desired.

(d) Fix a closed leaf contour κ1 in S(κ). If κ1 is outermost, we are done. So we assume κ1 has two
non-empty regions. Consider a non-empty region R of κ1 that is not the last region. As R is non-empty, it
contains a leaf contour, κ2 in S(κ). As R is not the last region, κ2 is closed (since open contours can only
lie in the last region). If κ2 is outermost, we are done. If it is not, we can run the inductive process from
(c). This is valid since all the contours κi considered in the induction will be inside R which means they
will be closed. This inductive process gives us a closed outermost contour, as desired. �

3.3 Existence of positive moves

Given a pair of parent-child contours κ and κ′, we say that two shortcuts between κ and κ′ are consecutive
if they, together with κ′ and κ, form the boundary of some region of κ′.

We call a face exposed if it is adjacent to the∞-face, and protected if it is not exposed. Notice that all
faces in a contour κ that have the same depth as κ in γ become exposed in γκ. Also, if there are two
contours κ and κ′ in T where κ is the parent of κ′, then any protected face in γκ′ must be protected
in γκ as well. Now, assume we have an exposed face in γκ′ of degree 2 (an exposed bigon). If there
are no shortcuts connecting the exposed bigon to κ or its sibling contours, then it becomes a protected
bigon in γκ. Adding a single shortcut from the exposed bigon to κ turns the bigon into a protected
positive triangle in γκ. Adding two consecutive shortcuts from the exposed bigon to κ then transfers the
exposed bigon from γκ′ to γκ assuming the condition that S(κ) has exactly one contour. As we will see in
Proposition 3.3(c), this condition can be weakened to that of κ′ being an outermost contour if we allow
ourselves to lose an exposed bigon. We will rely on this transfer operation extensively in our proofs.

Let κ and κ′ be a pair of parent-child contours.

(a) Every protected positive face of γκ′ must also be a protected positive face of γκ.

(b) If S(κ) has exactly one contour, then any exposed bigon in γκ′ either becomes a protected positive
face or transfers to γκ.

(c) If κ′ is an outermost contour, then any exposed bigon in γκ′ except possibly one either becomes a
protected positive face or transfers to γκ.

Proof: Items (a) and (b) follow from the discussion above. Let us look at item (c). If there is any
exposed bigon that does not become a protected positive face and does not transfer to γκ, then that
means that there are at least two shortcuts from the exposed bigon to κ and those two shortcuts bound a
non-empty region. Hence, by the definition of outermost, all other regions are empty. It is easy to see
that for any other exposed bigon, it either becomes a protected positive face or transfers to γκ. �

The previous proposition motivates the definition we gave for an outermost contour as follows.
Suppose that κ and κ′ are a parent-child pair as before, that κ′ has an exposed bigon, and that there are
two consecutive shortcuts connected from the exposed bigon to κ. Then the exposed bigon cannot be
transferred from κ′ to κ if the regions bounded by the two shortcuts are “blocked” (i.e., are non-empty).
So, we need most regions bounded by the shortcuts between κ′ and κ to be empty.

Now we are ready to prove the existence of positive moves. First, we present the simpler case when
the contour representation of the multicurve only consists of closed contours. We need some notation to
state the lemma. We say that a multicurve γ fulfills (α,β) if it has at least α protected positive faces and
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β exposed bigons. Further, we say that γ fulfills (L) if it has one protected loop, and γ fulfills (S) if it is
simple.

Lemma 3.5. Every closed multicurve γ fulfills at least one of the following: (S), (L), (2, 0), (1, 2), (0, 4).

Proof: We prove the lemma by induction on the height of the contour tree T of γ. Let κ be an arbitrary
contour in T. We show γκ satisfies the statement, assuming the same holds for the multicurves associated
with all the descendants of κ. If γκ is simple then it fulfills (S). Otherwise, we separate into the case when
S(κ) has exactly one contour and when S(κ) has at least two outermost contours based on Lemma 3.4(c).

Suppose S(κ) has exactly one contour, call it κ′.

• Suppose γκ′ fulfills (L) or (2, 0), then so does γκ since the faces will remain protected.

• Suppose γκ′ fulfills (S). We further divide into subcases based on σ, the number of shortcuts
between κ and κ′. Note that σ = 0 cannot happen because we assume in Section 2 that there
are no isolated simple closed curves; σ = 1 implies that γκ fulfills (L); σ ∈ {2, 3} implies that γκ
fulfills (1,2); σ ≥ 4 implies that γκ fulfills (0,4).

• Suppose γκ′ fulfills (1,2). By Proposition 3.3(b), either one of the two exposed bigons becomes
protected so that γκ fulfills (2,0) or both exposed bigons transfer to γκ so that γκ fulfills (1,2).

• Suppose γκ′ fulfills (0,4). By Proposition 3.3(b), there are three cases. (a) γκ fulfills (2,0) by
protecting two faces, (b) γκ fulfills (1,2) by protecting one face and transferring two exposed
bigons, or (c) γκ fulfills (0,4) by transferring all four exposed bigons.

Now suppose that S(κ) has at least two outermost contours, call two of them κ1 and κ2. If either γκ1

or γκ2
fulfills (2,0) or (L) then so does γκ since the faces will remain protected by Proposition 3.3(a).

Otherwise, we show that if each γκi
fulfills (S), (1, 2), or (0, 4), then γκ fulfills (2, 0), (1, 2) or (0, 4). It

suffices to show that for each i ∈ {1,2}, either γκi
has a protected positive face or two exposed bigons

are created/transferred to γκ.

• Suppose γκi
fulfills (S). By definition of outermost contour, κi is a leaf. So it has at most one

shortcut to its sibling contours. Thus, there needs to be at least three shortcuts between κi and κ
for γκ to not protect a face. Adding at least three such shortcuts assures us that κi has at least
three regions. At least two are empty since κi is an outermost contour. So at least two exposed
bigons will be transferred to γκ if γκ does not protect a face.

• Suppose γκi
fulfills (1, 2). Then γκi

contains a protected positive face by Proposition 3.3(a).

• Suppose γκi
fulfills (0,4). Because κi has at most one shortcut to the siblings, γκi

has at least
three exposed bigons that have to be transferred to γκ for them to not be protected. So by
Proposition 3.3(c) there are at least two exposed bigons that will either be protected or transferred.

In either of the cases given by Lemma 3.4(c), the statement of the Lemma 3.5 is satisfied. �

Corollary 3.6. Every non-simple closed multicurve γ has a positive face.

Proof: The corollary holds in all cases of Lemma 3.5, because any exposed bigon in γ is positive. �

Now we can extend the positive-move lemma to arbitrary tangles.

Lemma 3.7. Let γ be a multicurve in a tangle with contour tree T. If γκ0
has an exposed bigon for some

contour κ0 with depth smaller than the minimum depth of a closed contour of T, then γ has an exposed
bigon or a protected positive face.
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Proof: We prove by induction on the height of the contour tree T. Let κ′ be an arbitrary contour in T

with parent κ such that κ0 is a descendant of κ′. If γκ′ has a protected positive face, so does γκ. If γκ′
has an exposed bigon, it must be transferred to γκ since κ′ has no closed contours as siblings to block
the transfer operation. �

Lemma 3.8. Let γ be a multicurve in a tangle with contour tree T. If there are closed contours in T, γ
has a positive move.

Proof: Let κ be the parent of a closed contour with minimal depth. We first show that γκ has a protected
positive face or an exposed bigon. Note that κ must be open. Thus, Lemma 3.4(d) gives us a closed
outermost contour κ′ in S(κ). Applying Lemma 3.5 to γκ′ gives us that it fulfills one of (S), (L), (2,0),
(1, 2), or (0,4);

• Suppose γκ′ fulfills (L), (2, 0), or (1, 2), then γκ will have a protected positive face since the faces
will remain protected by Proposition 3.3(a).

• Suppose γκ′ fulfills (S). As κ′ has at most one shortcut to other siblings, we need at least three
shortcuts to κ to prevent the face from becoming a protected positive face, which forces γκ to have
an exposed bigon.

• Suppose γκ′ fulfills (0, 4). By Proposition 3.3(c), there are two cases: either γκ protects a positive
face or γκ transfers all but one of the exposed bigons.

If γκ has a protected positive face, then so does γ by repeatedly applying Proposition 3.3(a). Else, γ
satisfies Lemma 3.7 with κ and therefore also has a positive face. �

3.4 Getting the first exposed bigon

What is left is to argue that in a non-tight tangle without closed contours, some open contour is always
incident to an exposed bigon so the induction can be kicked off. For this purpose, we will introduce
yet another alternative view to the contour representation for tangles consisting of only open contours.
Choose an arbitrary basepoint p0 and fix the depths of the faces; let d be the depth of the tangle. Prepare
d horizontal lines at various heights called levels. For each j from 1 to d, draw every open contour of
depth j on the j-th horizontal line as a line segment from left to right, sorted based on their appearance
as we traverse the boundary of the tangle disk in counterclockwise order starting from the basepoint.
(Because the contours are disjoint, without loss of generality one can take the first encounter point.) We
do not distinguish between a contour κ and its associated horizontal segment. Between two adjacent levels
j and j + 1, we align the segments so that the child contours of depth j + 1 have their segments lying
below the segment corresponding to the parent contour at depth j. Now the shortcuts can be drawn as
vertical ladders between two contours at neighboring levels. We call this the ladder representation of the
tangle multicurve.

Every tangle strand can now be viewed as a path on the ladder representation between two horizontal
segment endpoints. One important observation is that any such path must go monotonically from left to
right, start at a left segment endpoint and keep following the segment to the right, turn at every ladder
encountered to the corresponding neighboring segment until some right segment endpoint is reached.

The multicurve γκ associated with a contour κ corresponds to the contour representation given by
all the segments at and below segment κ. A face in the ladder representation naturally corresponds
to a bounded face in the tangle not incident to the boundary. Whenever we look at a segment κ, it is
convenient to work with the multicurve associated with κ. For instance, when we talk about a face
bounded by two consecutive ladders on segment κ′ at level j + 1 to some segment κ at level j such that

12



Figure 9. Top left: a tangle without closed contours which was deformed so that the endpoints of all strands lie in a line.
Bottom left: contour representation of the tangle. Right: ladder representation of the tangle.

there are no ladders to the deeper levels in between, we will refer to the face as an exposed bigon (in the
multicurve γκ) even when there might be other ladders in between leading upwards to level j − 1.

Now let us prove the existence of an exposed bigon in a non-tight tangle.

Lemma 3.9. Let γ be a non-tight tangle whose contour tree has no closed contours. Then there is an
exposed bigon in γκ for some contour κ.

Proof: Any non-tight tangle multicurve γmust contain either an empty loop (which is impossible because
there are no closed contours) or a bigon formed by two strands α and β . Consider the two strands as
paths in the ladder representation, which must meet at two different ladders. The observation above
implies that neither path can be monotonically walking upwards or downwards because of the way a
strand traces the ladder representation; in fact, one of the paths must turn at two ladders of maximal
levels in consecutive and the other path must turn at two consecutive ladders of minimal levels. The face
in between the two minimal level consecutive ladders, say between depth- j contour κ and depth-( j + 1)
contour κ′, corresponds to an exposed bigon in γκ because no ladder connecting to deeper levels are
presented. This proves the lemma. �

Corollary 3.10. Any multicurve γ in a non-tight tangle has a positive face.

Proof: Let T be the contour tree of γ. If T has a closed contour, then the result follows from Lemma 3.8.
If it has no closed contours, then Lemma 3.9 gives us an exposed bigon in some γκ and the result follows
from Lemma 3.7. �

With Corollary 3.10 and the fact that the sum of the face depths of an m-vertex tangle T will not
exceed O(m · depth(T )), this concludes the proof of Lemma 3.2.

4 Electrical Transformations

In this section we resolve affirmatively the Feo-Provan conjecture, which says that every n-vertex 2-
terminal plane graph can be electrically reduced in O(n3/2) steps. The argument is presented completely
from the medial multicurve perspective, and we will prove the equivalent statement that any n-crossing
connected multicurve in the annulus can be simplified using O(n3/2) medial electrical moves.
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Terminal-leaf contraction. One subtlety about curve simplification in the annulus is that not all curves
can be completely simplified. Such issue has been observed since the early work and was thoroughly
discussed [7,18]. In fact, a quadratic lower bound exists if we restrict ourselves to the setting where
all the medial electrical moves have to perform on actual empty faces [7, 11]. Fortunately, since our
problem is motivated by solving combinatorial problems on general planar graphs, we will allow one
extra operation.

• Terminal-leaf contraction [15,18]: Contract an edge incident to a degree-1 vertex that is a terminal.
The neighbor on the other side of the edge becomes the new terminal.

Figure 10. Terminal-leaf reduction.

From the curve perspective, terminal-leaf contraction is equivalent to performing a smoothing at
an otherwise empty loop containing a single hole/puncture of the annulus. Using the terminal-leaf
contraction one can again prove that every 2-terminal plane graph can be reduced to a single edge
between the terminals. All the existing algorithms that perform electrical reductions on 2-terminal plane
graphs always include terminal-leaf contractions as one of the allowed operations. On the flip side, an
Ω(n3/2) lower bound still stands even when the terminal-leaf contractions are presented [7].

4.1 Backup exposed bigon

When there are no terminals, the whole argument for the case of monotonic homotopy moves applies
here without much change. The main difference is that every 2�0 move needs to be replaced by a 2�1
move. The most important observation here is that both 2�0 and 2�1 moves decrease the sum of face
depths, and the depth of the faces around the empty bigon do not change after a 2�1 move. Although
2�1 move changes the number of constituent curves, the argument from Section 3 works for arbitrary
multicurves just fine.

When terminals are presented, the situation becomes more interesting as the positive face guaranteed
by Corollary 3.6 and Corollary 3.10 can now be pinned by a puncture. In case that the first exposed
bigon is pinned, we show that there is a second exposed bigon by utilizing the fact that the tangle is
useful with lots of excess crossings. To see the reason why usefulness is necessary, consider the following
instructional example in Figure 11.

The tangle given by the ladder representation in the example has s strands and
∑

1≤i<s 2i = s(s− 1)
shortcuts (and thus not useful). If we consider the intermediate multicurve associate with each level j,
there is always an exposed bigon in the middle, forming a “tower” from bottom to top and preventing the
existence of positive faces (except at the top). Now let us put a puncture in the topmost exposed bigon.
Suddenly all the “former” exposed bigons in the earlier levels are now rendered useless for the purpose
of the induction proof for Lemma 3.5, because if we base the induction on any of these exposed bigons,
we will eventually find the face with the puncture and no moves can be performed there. Formally,
we say two exposed bigons (at two different levels i < j of the ladder representation and thus in two
different associated multicurve γκi

and γκ j
) are related if the exposed bigon at level i was transferred

iteratively from the exposed bigon at level j.
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Figure 11. Ladder graph of a tangle where the puncture (drawn as a star) lying in the topmost exposed bigon kills off all the
s− 1 “former” exposed bigons below (marked with red crosses).

Fortunately, with some more extra shortcuts we can safely find a second exposed bigon that does not
lead to the punctured face, for the open contour case.

Lemma 4.1. Let γ be the multicurve of a useful tangle (that is, an s-strand tangle with at least s2

crossings), whose contour representation has no closed contours. Then there is at least one exposed
bigon not related to the punctured face.

Proof: First we assume that there is exactly one contour at every level of the ladder representation. By
assumption there are at least s2 > s(s− 1) crossings in γ. This implies that there are two consecutive
levels j − 1 and j, such that level- j has at least three more ladders going up than level-( j − 1). Therefore
in γκ j

we have at least two exposed bigons. Because the “related” relationship forms a forest, one of the
two exposed bigons must be not related to the punctured face, and thus the lemma is proved.

Now we deal with the case when there is more than one contour appears in a level. Assume for
contradiction that there are at most one exposed bigon. Then at every contour the number of ladders
going up must be at most two plus the sum of the ladders going down to the children contours, so the
total number of all ladders/crossings is again at most s(s−1). (The top level has at most 2(s−1) ladders.
Otherwise, by pigeonhole, there is a level with at least 3 more ladders than the previous level.) This
contradicts to the fact that the tangle is useful. �

Closed contours. In the presence of closed contours, there are some extra complications that can be
resolved by a careful analysis. We sketch a proof below and postpone the complete proof to the full
version of this paper.

If there are two closed contours not containing each other, then we are essentially done by first
finding an outermost child contour from each, apply Lemma 3.5 and Proposition 3.3 to either obtain a
positive move or transfer an exposed bigon. The puncture can lie in one of the two closed contours and
the other move/bigon will be available. In case when all closed contours are nesting, take the maximal
closed contour κ′ containing everyone else. The contour tree at κ′ must be a path and all contours in κ′

must be outermost by Lemma 3.4(d). Let the parent contour of κ′ be κ, and let κ′′ be the only sibling
(open) contour κ′ connects to (if exists). Consider the shallowest closed descendant contour κ∗ of κ not
containing the puncture.

• First assume κ∗ exists. Apply Lemma 3.5 on κ∗. If there are any positive moves, they do not
contain the puncture and thus we are done. If there are four exposed bigons, by Proposition 3.3(c)
we have at least one transferred out without containing the puncture. If κ∗ is simple, having at
most three shortcuts to the parent induces a positive move; having at least four shortcuts transfers
at least two exposed bigons. Either case we are fine.
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• If there is no such contour κ∗, the puncture must lie in the deepest contour κ∗. By assumption
the multicurve is connected, κ∗ has at least one shortcut to its parent κ∗∗. If there is exactly one
shortcut to κ∗∗ and κ∗∗ is closed, we apply terminal-leaf contraction. If there are at least two
shortcuts to κ∗∗ and κ∗∗ is closed, κ∗∗ has the only child and has two exposed bigons, which we
can transfer out by Proposition 3.3(b) to the maximal closed contour κ′, then transfers to κ by
Proposition 3.3(c). If κ∗ = κ′ and there are no shortcut to κ (and one shortcut to κ′′), we apply
terminal-leaf contraction. If κ∗ = κ′ and there are at least two shortcuts to κ, there is an exposed
bigon on κ.

The only problematic case is when there is exact one shortcut to κ′′ and one to κ. This means
locally there are only two crossings. In the context of getting a second exposed bigon, such local
configuration can only show up in a face of the ladder representation. If we requires a useful
tangle to have more than s(s− 1) + 2 crossings then we are guaranteed to get a second exposed
bigon unrelated to the puncture.

4.2 Proof of Feo-Provan conjecture

The proof of the following lemma is similar to Lemma 3.7 together with Lemma 3.8.

Lemma 4.2. Let γ be a multicurve in a tangle, possibly containing a puncture. If some γκ0
has an

exposed bigon unrelated to the puncture, then γ admits a positive move.

Theorem 4.3. Any connected annular n-crossing multicurve can be simplified using O(n3/2) electrical
moves and terminal-leaf contractions.

Proof: Similar to Lemma 3.2 and Theorem 3.3, we will tighten each useful tangle T using at most
O(m · depth(T)) electrical moves and charge the number of moves spent to the number of crossings
removed, and therefore each crossing takes amortized O(

p
n) moves to remove. When there are no

useful tangles remain, we simplify the multicurve (now with O(
p

n) depth) using the original algorithm
by Feo and Provan, which takes O(n3/2) moves.

To argue that we can tighten each useful tangle using at most O(m · depth(T )) electrical moves, we
use Lemma 4.1 to find an exposed bigon not related to the punctured face. Plug in this exposed bigon
into Lemma 4.2 gives us a positive face; and now the number of moves is bounded by the total sum of
face depths, which is O(m · depth(T )). �

Corollary 4.4. Any connected n-vertex 2-terminal plane graph can be reduced using O(n3/2) electrical
transformations and terminal-leaf contractions.

4.3 Concluding remark

In this section we resolve the Feo-Provan conjecture that every 2-terminal plane graph can be electrically
reduced using O(n3/2) electrical transformations. Feo and Provan never specify the order to resolve
the positive moves when they stated the conjecture. Song [26] demonstrated that if you always take
the shallowest positive move there are examples where it takes Ω(n2) moves. Gitler, in his thesis [18],
conjectured that the Feo-Provan algorithm uses at most O(n3/2) moves if we always choose a positive
move at the deepest level.5 We take the liberty in interpreting the original conjecture and perform the
positive moves with respect to the current useful tangle. The stronger claim by Gitler remains unsolved.

5“We have proposed that by imposing in the Feo-Provan algorithm that reductions should always be done at the highest
contour possible and until it admits no other reduction could provide a [sic] O(n

p
n) version of the algorithm.”
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