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Abstract

We study the problem of determining whether an n-node graph G has an even hole, i.e., an
induced simple cycle consisting of an even number of nodes. Conforti, Cornuéjols, Kapoor,
and Vušković gave the first polynomial-time algorithm for the problem, which runs in O(n40)
time. Later, Chudnovsky, Kawarabayashi, and Seymour reduced the running time to O(n31).
The best previously known algorithm for the problem, due to da Silva and Vušković, runs in
O(n19) time. In this paper, we solve the problem in O(n11) time. Moreover, if G has even holes,
our algorithm also outputs an even hole of G in O(n11) time.

1 Introduction

A hole is an induced simple cycle consisting of at least four nodes. A hole is even (respectively, odd)
if it consists of an even (respectively, odd) number of nodes. See Figure 1 for an illustration. Even-
hole-free graphs have been extensively studied in the literature (see, e.g., [1, 12–14, 19, 20, 29, 37]).
See Vušković [41] for a recent survey. This paper studies the problem of determining whether a
graph has even holes. Let n (respectively, m) be the number of nodes (respectively, edges) of the
input graph. Conforti, Cornuéjols, Kapoor, and Vušković [11, 15] gave the first polynomial-time
algorithm for the problem, which runs in O(n40) time [6]. Later, Chudnovsky, Kawarabayashi,
and Seymour [6] reduced the running time to O(n31). Chudnovsky et al. [6] also observed that the
running time can be further reduced to O(n15) as long as prisms can be detected efficiently, but
Maffray and Trotignon [30] showed that detecting prisms is NP-hard. The best previously known
algorithm for the problem, due to da Silva and Vušković [20], runs in O(n19) time. We solve the
problem in O(n11) time, as stated in the following theorem.

∗The current version slightly improves upon the preliminary version [3] appeared in SODA 2012: (a) The time
complexity for recognizing even-hole-free n-node m-edge graphs G is reduced from O(m2n7) to O(m3n5), which is an
improvement if m = o(n2); and (b) if G has even holes, the current version shows how to output an even hole of G also
in O(m3n5) time.
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Figure 1: C = v1c2c3v2c7c8v1 is a clean even hole of the 11-node graph G, since MG(C) =
N2,2

G (C) = ∅. C ′ = c1c2 · · · c9c1 is an odd hole with MG(C
′) = {v2}.

Theorem 1.1. It takes O(m3n5) time to determine whether an n-node m-edge connected graph has even
holes.

Technical overview Throughout the paper, a k-hole (respectively, k-cycle and k-path) is a k-node
hole (respectively, cycle and path). Our recognition algorithm for even-hole-free graphs consists
of two phases. The first phase (see Lemma 2.3) either (1) ensures that the input graph G has even
holes via the existence of a “beetle” (see §2 and Figure 2(a)) or a 4-hole in G or (2) produces a
set T of “trackers” (H,u1u2u3), where H is a beetle-free and 4-hole-free induced subgraph of G
that contains path u1u2u3. T has the following even-hole-preserving property (see Property 1):
If G has even holes, thenT has a “lucky” tracker (H,u1u2u3) in that H has a shortest even hole C
of G such that (a) C contains path u1u2u3 and (b) the neighborhood of C in H is “super clean”
(i.e., MH(C) = N2,2

H (C) = N1,2
H (C) = N4

H(C) = ∅ using notation to be defined in §2). The second
phase applies an algorithm (see Lemma 2.4) on each tracker (H,u1u2u3) ∈ T to either ensure
that H has even holes or ensure that (H,u1u2u3) is not lucky. If all trackers in T are not lucky, the
even-hole-preserving property ofT implies that G is even-hole-free. Otherwise, G has an induced
subgraph H containing an even hole, implying that G has even holes.

The recognition algorithm for beetle-free graphs (see the proof of Lemma 2.3) in the first phase
is based on Chudnovsky and Seymour’s three-in-a-tree algorithm [9] (see Lemma 3.1). If G has
beetles or 4-holes, G has even holes. Otherwise, if G has even holes, the neighborhood of each
shortest even hole C of G is “clean” (i.e., N1,2

G (C) = N4
G(C) = ∅, see the proof of Lemma 2.2). To

further ensure that the neighborhood of C is super clean, we generate a set S of “super cleaners”
(S, u1u2u3), where S is a node subset of G and u1u2u3 is a path of G, such that at least one super
cleaner (S, u1u2u3) ∈ S satisfies u1u2u3 ⊆ C ⊆ H = G \ S and MH(C) = N2,2

H (C) = ∅ for
some shortest even hole C of G (see the proof of Lemma 2.3). The set T consisting of the trackers
(G \ S, u1u2u3) with (S, u1u2u2) ∈ S has the required even-hole-preserving property.

The algorithm applied on each tracker T = (H,u1u2u3) ∈ T in the second phase is a decom-
position algorithm (see, e.g., the categorization of Vušković [41, §4]) based upon an observation
of da Silva and Vušković [20] (see Lemma 4.9) that if a connected graph H is even-hole-free, star-
cutset-free, and non-path 2-join-free, then H is an extended clique tree. Since even holes can be
efficiently detected in an extended clique tree (see Lemma 4.6, which is a slightly faster imple-
mentation of the algorithm of da Silva and Vušković [20]), our algorithm performs two stages of
even-hole-preserving decompositions on H , first via star-cutsets and then via non-path 2-joins,
until each of the resulting graph either is an extended clique tree or has O(1) nodes. If all of the
resulting graphs are even-hole-free, T is not lucky; otherwise, H has even holes. An immediate
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challenge for the first stage of decompositions is that there are no known polynomial-time de-
tection algorithms for star-cutsets. Fortunately, as noted by Chvátal [10] (see Lemma 4.3), if H is
dominated-node-free, a star-cutset of H has to be a full star-cutset of H , which can be efficiently de-
tected. Thus, at the beginning of each decomposition in the first stage, we preprocess (H,u1u2u3)
by deleting all dominated nodes of H and carefully updating nodes u1, u2, and u3 such that the
luckiness of (H,u1u2u3) is preserved (see Lemma 4.4). The correctness of this preprocessing step
relies on the fact that H is beetle-free and the requirement for (H,u1u2u3) to be lucky that the
neighborhood of some shortest even hole C in H with u1u2u3 ⊆ C is super clean. Path u1u2u3
is crucial in the stage of decompositions via star-cutsets for the dominated-node-free graph H .
Specifically, if S is a star-cutset of H , by merely examining the neighborhood of path u1u2u3 in H ,
we can efficiently identify a connected component B of H\S such that (H[S∪B], u1u2u3) preserves
the luckiness of (H,u1u2u3) (see Step 3 in the proof of Lemma 4.1). We then let H = H[C ∪ B]
and repeat the above procedure for O(n) iterations until H is star-cutset-free. The second stage,
i.e., decompositions via non-path 2-joins for star-cutset-free graphs, is based upon the detection
algorithm for non-path 2-joins of Charbit et al. [4] (see Lemma 4.8). This stage decomposes an m-
edge star-cutset-free graph into a set of O(m) smaller graphs, each of which either consists of O(1)
nodes or is an extended clique tree (see the proof of Lemma 4.2).

Related work Even-hole-free planar graphs [33] can be recognized in O(n3) time. It is NP-
complete to determine whether a graph has an even (respectively, odd) hole that contains a given
node [2]. The strong perfect graph theorem of Chudnovsky, Robertson, Seymour, and Thomas [7]
states that a graph G is perfect if and only if both G and the complement of G are odd-hole-
free. Although perfect graphs can be recognized in O(n9) time [5], the tractability of recogniz-
ing odd-hole-free graphs remains open (see, e.g., [25]). Polynomial-time algorithms for detecting
odd holes are known for planar graphs [24], claw-free graphs [28, 36], and graphs with bounded
clique numbers [16]. Graphs without holes (i.e., chordal graphs) can be recognized in O(m + n)
time [34, 35, 38]. Graphs without holes consisting of five or more nodes (i.e., weakly chordal
graphs) can be recognized in O(m2 + n) time [31, 32]. It takes O(n2) time to detect a hole that
contains any o((log n/ log logn)2/3) given nodes in an O(1)-genus graph [26, 27]. See [8, 17, 21, 42]
for more results on odd-hole-free graphs.

Road map The rest of the paper is organized as follows. Section 2 gives the preliminaries and
proves Theorem 1.1 by Lemmas 2.3 and 2.4. Section 3 proves Lemma 2.3. Section 4 proves
Lemma 2.4. Section 5 concludes the paper by explaining how to augment Theorem 1.1 into
an O(m3n5)-time algorithm that outputs an even hole of an n-node m-edge graph with even holes.

2 Preliminaries and the topmost structure of our proof

Unless clearly specified otherwise, all graphs throughout the paper are undirected and simple.
Let |S| be the cardinality of set S. Let G be a graph. Let V (G) consist of the nodes in G. For any
subgraph H of G, let G[H] denote the subgraph of G induced by V (H). Subgraphs H and H ′

of graph G are adjacent in G if some node of H and some node of H ′ are adjacent in G. For any
subset U of V (G), let G \ U = G[V (G) \ U ]. For any subgraph H of G, let NG(H) consist of the
nodes of V (G) \ V (H) that are adjacent to H in G and let NG[H] = NG(H) ∪ V (H).
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Figure 2: (a) A beetle B, where B[{b1, b2, b3, b4}] is a diamond. (b) If x ∈ N4
G(C), then G[C ∪{x}] is

a beetle B, where B[{u1, u2, u3, x}] is a diamond. (c) A node x ∈ N1,2
G (C).

Let C be a hole of G. A node x ∈ V (G) \ V (C) is a major node [6] of C in G if at least three
distinct nodes of NC(x) are pairwise non-adjacent in G. Let MG(C) consist of the major nodes of C
in G. For instance, in Figure 1, MG(C) = ∅ and MG(C

′) = {v2}.

Lemma 2.1 (Chudnovsky et al. [6, Lemma 2.2]). If C is a shortest even hole of graph G and x ∈MG(C),
|NC(x)| is even.

If x ∈ NG(C) \MG(C), 1 ≤ |NC(x)| ≤ 4 and C[NC(x)] has at most two connected components.
Moreover, if C[NC(x)] is not connected, each connected component of C[NC(x)] has at most two
nodes. Let N i

G(C) with 1 ≤ i ≤ 4 consist of the nodes x ∈ NG(C) \MG(C) such that |NC(x)| = i

and C[NC(x)] is connected. Let N i,j
G (C) with 1 ≤ i ≤ j ≤ 2 consist of the nodes x ∈ NG(C)\MG(C)

such that C[NC(x)] is not connected and the two connected components of C[NC(x)] has i and j
nodes, respectively. We have

NG(C) = N1
G(C) ∪N2

G(C) ∪N3
G(C) ∪N4

G(C) ∪N1,1
G (C) ∪N1,2

G (C) ∪N2,2
G (C) ∪MG(C). (1)

We say that C is a clean hole of G if MG(C) = N2,2
G (C) = ∅. For any 3-path u1u2u3 of G, a clean

hole C of G that contains path u1u2u3 is a u1u2u3-hole of G if C is a shortest even hole of G. For
instance, if G is as shown in Figure 1, C = v1c2c3v2c7c8v1 is a v1c2c3-hole of G. If H is an induced
subgraph of G and u1u2u3 is a 3-path of H , we call (H,u1u2u3) a tracker of G. A tracker (H,u1u2u3)
of G is lucky if H contains a u1u2u3-hole of G. If G has lucky trackers, G has even holes. The
following even-hole-preserving property of T reduces the problem of determining whether G is
even-hole-free to the problem of determining whether all trackers in T are not lucky.

Property 1. If G has even holes, T contains a lucky tracker of G.

An induced subgraph of G is a beetle of G if it consists of (1) a 4-cycle b1b2b3b4b1 with exactly one
chord b2b4 (i.e., a diamond [15, 29] of G) and (2) a tree I of G\{b4} having exactly three leaves b1, b2,
and b3 with the property that I\{b1, b2, b3} is an induced tree of G not adjacent to b4. See Figure 2(a)
for an illustration. At least one of the three cycles in B \{b2}, B \{b1, b4}, and B \{b3, b4} is an even
hole of G. Nodes b5, b6, b7, and b8 need not be distinct. For instance, as illustrated by Figure 2(b),
if C is a hole of G and x is a node of N4

G(C), then G[C ∪ {x}] is a beetle of G.
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Lemma 2.2. If G is a beetle-free graph, NG(C) ⊆ N1,1
G (C) ∪ N1

G(C) ∪ N2
G(C) ∪ N3

G(C) holds for any
clean shortest even hole C of G.

Proof. By MG(C) = N2,2
G (C) = ∅ and Equation (1), it suffices to show N1,2

G (C) = N4
G(C) = ∅.

If x ∈ N4
G(C) as illustrated by Figure 2(b), then G[C ∪ {x}] is a beetle of G, a contradiction. If x ∈

N1,2
G (C), then let u, v1, and v2 be the nodes of NC(x) such that v1 and v2 are adjacent in C, as

illustrated by Figure 2(c). Let P1 be the path of C \ {v2} between u and v1. Let P2 be the path
of C \{v1} between u and v2. Either G[{x}∪P1] or G[{x}∪P2] is an even hole of G shorter than C,
a contradiction. The lemma is proved.

2.1 Proving Theorem 1.1

Lemma 2.3. It takes O(m3n5) time to complete either one of the following tasks for any n-node m-edge
graph G. Task 1: Ensuring that G has even holes. Task 2: (a) Ensuring that G has no beetles and (b)
obtaining a set T of O(m2n) trackers of G that satisfies Property 1.

Lemma 2.4. Given a tracker T = (H,u1u2u3) of an n-node beetle-free graph G, it takes O(mn4) time to
either ensure that H has even holes or ensure that T is not lucky.

Proof of Theorem 1.1. We apply Lemma 2.3 on G in O(m3n5) time. If Task 1 is completed, then the
theorem is proved. If Task 2 is completed, then G has no beetles and we have a set T of O(m2n)
trackers of G that satisfies Property 1. By Property 1 of T and Lemma 2.4, one can determine
whether G has even holes in time |T| ·O(mn4) = O(m3n5). The theorem is proved.

3 Proving Lemma 2.3

A clique of G is a complete subgraph of G. A clique of G is maximal if it is not contained by other
cliques of G. We need the following four lemmas to prove Lemma 2.3.

Lemma 3.1 (Chudnovsky and Seymour [9]). It takes O(n4) time to determine whether an n-node graph
has an induced tree that contains three given nodes.

Lemma 3.2 (da Silva and Vušković [19, Section 2] and Farber [22, Proposition 2]). If G is an n-node
m-edge 4-hole-free graph, it takes O(mn2) time to either ensure that G has even holes or obtain all O(n2)
maximal cliques of G.

Lemma 3.3 (Chudnovsky, Kawarabayashi, and Seymour [6, Lemma 4.2]). Any shortest even hole C
of a 4-hole-free graph G contains an edge v1v2 with N2,2

G (C) ⊆ NG(v1) ∩NG(v2).

Lemma 3.4. For any shortest even hole C of a 4-hole-free graph G, if G[MG(C)] is not a clique of G, there
is a node u of C with MG(C) ⊆ NG(u).

Before proving Lemma 3.4, we first prove Lemma 2.3 using Lemmas 3.1, 3.2, 3.3, and 3.4.

Proof of Lemma 2.3. We claim that G has beetles if and only if at least one of the O(m3n) choices of
node b4 and three distinct edges b1b5, b2b6, and b3b7 of G satisfies the following conditions.

• G[{b1, b2, b3, b4}] is the 4-cycle b1b2b3b4b1 with exactly one chord b2b4.
• The edges between {b1, b2, b3} and {b5, b6, b7} are exactly b1b5, b2b6, and b3b7.
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• {b5, b6, b7} ∩ {b1, b2, b3, b4} = ∅, but nodes b5, b6, and b7 need not be distinct.
• An induced tree I ′ of G \ ((NG[b1] ∪ · · · ∪NG[b4]) \ {b5, b6, b7}) contains {b5, b6, b7}.

The claim can be verified by seeing that if I ′′ is the minimal subtree of I ′ that contains {b5, b6, b7},
then I = I ′′ ∪ {b1b5, b2b6, b3b7} is a tree of G \ {b4} with leaf set {b1, b2, b3} having the property
that I \ {b1, b2, b3} is an induced tree of G not adjacent to b4. By the claim and Lemma 3.1, it
takes O(m3n5) time to determine whether G has beetles. It takes O(n4) time to determine whether
G has 4-holes. If G has 4-holes or beetles, G has even holes. The lemma is proved by completing
Task 1 in O(m3n5) time. The rest of the proof assumes that G is 4-hole-free and beetle-free.

By Lemma 3.2, it takes O(mn2) time to either ensure that G has even holes or obtain the O(n2)
maximal cliques of G. If G has even holes, the lemma is proved by completing Task 1 in O(mn2)
time. Otherwise, let T consist of the trackers of G that are in the form of (G \ S1, u1u2u3) or (G \
S2, u1u2u3) with

S1 = S1(u1, u2, u3, v1, v2) = (NG(v1) ∩NG(v2)) ∪ (NG(u2) \ {u1, u3});
S2 = S2(u1, u2,K) = (NG(u1) ∩NG(u2)) ∪ V (K),

where u1u2 and v1v2 are edges of G and K is a maximal clique of G. We have |T| = O(m2n) +
O(mn2) = O(m2n). Since all O(n2) maximal cliques of G are available,T can be computed in time
O(m2n) ·O(n+m) = O(m3n) time. To ensure the completion of Task 2, it remains to show thatT
satisfies Property 1. Suppose that G has even holes. Let C be an arbitrary shortest even hole of G.
The following case analysis shows that T contains lucky trackers of G.

Case 1: MG(C) ⊆ NG(u2) holds for a node u2 of C. Let u1 and u3 be the neighbors of u2 in C. By
MG(C) ⊆ NG(u2)\{u1, u3} and Lemma 3.3, there is an edge v1v2 of C with MG(C)∪N2,2

G (C) ⊆ S1.
By the choices of u1 and u3, we have (NC(u2) \ {u1, u3}) ∩ C = ∅. Since v1v2 is an edge of hole C,
we have NG(v1) ∩ NG(v2) ∩ C = ∅. Thus, S1 ∩ C = ∅, implying that C is a clean hole of G \ S1

containing path u1u2u3. Since C is a shortest even hole of G, C is also a shortest even hole of G\S1.
Therefore, C is a u1u2u3-hole of G \ S1.

Case 2: MG(C) 6⊆ NG(u) holds for all nodes u of C. By Lemma 3.4, G[MG(C)] is a clique of G.
Let K be a maximal clique of G with MG(C) ⊆ V (K). Combining with Lemma 3.3, there is an
edge u1u2 of C with MG(C) ∪ N2,2

G (C) ⊆ S2. We have V (K) ∩ C = ∅ or else MG(C) ∩ C = ∅
implies MG(C) ⊆ V (K) \ {u} ⊆ NG(u) for any node u ∈ V (K) ∩ C, a contradiction. Since u1u2 is
an edge of C, we have NG(u1) ∩ NG(u2) ∩ C = ∅. Thus, S2 ∩ C = ∅, implying that C is a clean
hole of G \ S2 containing path u1u2u3, where u3 is the neighbor of u2 in C other than u1. Since C
is a shortest even hole of G, C is also a shortest even hole of G \ S2. Therefore, C is a u1u2u3-hole
of G \ S2.

The rest of the section proves Lemma 3.4. An edge u1u2 of hole C is a gate [6] of C with respect
to major nodes x1 and x2 of C if the following conditions hold:

Condition G1: There are two edges u1x2 and u2x1 and at least one of edges u1x1 and u2x2.
Condition G2: There is a node u0 of C \ {u1, u2} such that x1 (respectively, x2) is not adjacent to

C \ V (P1) (respectively, C \ V (P2)), where P1 (respectively, P2) is the path of C
between u2 (respectively, u1) and u0 that contains u1 (respectively, u2).

See Figure 3 for an illustration.
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Figure 4: Illustrations for the proof of Lemma 3.4.

Lemma 3.5 (Chudnovsky et al. [6, Lemmas 2.3 and 2.4]). The following statements hold for any shortest
even hole C of a 4-hole-free graph G.

1. If x1 and x2 are non-adjacent nodes of MG(C), there is a gate of C with respect to x1 and x2 in G.
2. If X is a subset of MG(C) with |X| = 3 such that G[X] has at most one edge, X ⊆ NG(u) holds for

some node u of C.

Proof of Lemma 3.4. Let x1 and x2 be two non-adjacent nodes of MG(C). Let U consist of the
nodes u of C that are adjacent to both of x1 and x2. By Lemma 3.5(1), there is a gate u1u2 of C with
respect to x1 and x2. We have ∅ 6= U ⊆ {u1, u2, u0}, where u0 is a node of C ensured by Condi-
tion G2. Assume u0 ∈ U for contradiction. By Condition G1, u0 is adjacent u1 or u2 in G or else
one of u1x1u0x2u1 and u2x1u0x2u2 would be a 4-hole of G. If u0 is adjacent to u1 as illustrated by
Figure 3(b), then Condition G2 implies NC(x1) = {u0, u1, u2}, which contradicts with x1 ∈MG(C).
If u0 is adjacent to u2 as illustrated by Figure 3(c), then Condition G2 implies NG(x2) = {u0, u1, u2},
which contradicts with x2 ∈ MG(C). We have u0 6∈ U , and thus U ⊆ {u1, u2}. The lemma holds
trivially if |MG(C)| = 2. To prove the lemma for |MG(C)| ≥ 3, we first show the claim: “Each
node x ∈ MG(C) \ {x1, x2} is adjacent to U .” If one of x1 and x2 is not adjacent to x, the claim
follows from Lemma 3.5(2). If both of x1 and x2 are adjacent to x, each node u ∈ U is adjacent to x
in G or else ux1xx2u is a 4-hole, a contradiction. The claim is proved.

By the above claim, the lemma holds if |MG(C)| = 3 or |U | = 1. It remains to consider the cases
with |MG(C)| ≥ 4 and U = {u1, u2} (thus, there are edges u1x1 and u2x2) by showing that either u1
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or u2 is adjacent to each node x ∈MG(C). Assume x3 ∈MG(C)\NG(u2) and x4 ∈MG(C)\NG(u1)
for contradiction. By the above claim, G has edges u1x3 and u2x4. We know x3 /∈ NG(x4) or else
u1u2x4x3u1 is a 4-hole. See Figure 4(a). Observe that x4 cannot be adjacent to both of x1 and x2
or else u1x1x4x2u1 is a 4-hole. Case 1: x4 is not adjacent to x2. By Lemma 3.5(2), a node u3 of C is
adjacent to all of x2, x3, and x4. Since u3 is adjacent to both of x3 and x4, we have u3 /∈ {u1, u2}.
See Figure 4(b). If C has edge u2u3, u1x3u3u2u1 is a 4-hole; otherwise, u2x2u3x4u2 is a 4-hole, a
contradiction. Case 2: x4 is not adjacent to x1. By Lemma 3.5(2), a node u3 of C is adjacent to all
of x1, x3, and x4. Since u3 is adjacent to both of x3 and x4, we have u3 /∈ {u1, u2}. See Figure 4(c).
If C has edge u2u3, u1x3u3u2u1 is a 4-hole; otherwise, u2x1u3x4u2 is a 4-hole, a contradiction. The
lemma is proved.

4 Proving Lemma 2.4

Subset S of V (H) is a star-cutset [10] of graph H if S ⊆ NH [s] holds for some node s of S and the
number of connected components of H \ S is more than that of H .

Lemma 4.1. For any tracker T = (H,u1u2u3) of an n-node m-edge beetle-free connected graph G, it
takes O(mn3) time to complete one of the following three tasks. Task 1: Ensuring that H has even holes.
Task 2: Ensuring that T is not lucky. Task 3: Obtaining a star-cutset-free induced subgraph H ′ of H such
that if T is lucky, H ′ has even holes.

Lemma 4.2. It takes O(mn4) time to determine if an n-node m-edge star-cutset-free graph has even holes.

Proof of Lemma 2.4. We apply Lemma 4.1 on the input tracker T = (H,u1u2u3) of G in O(mn3)
time. If Task 1 or 2 is completed, the lemma is proved. If Task 3 is completed, since H ′ is star-
cutset-free, Lemma 4.2 implies that it takes O(mn4) time to determine whether H ′ has even holes.
Since H ′ is an induced subgraph of H , if H ′ has even holes, so does H ; otherwise, T is not lucky.
The lemma is proved.

Subsection 4.1 proves Lemma 4.1. Subsection 4.2 proves Lemma 4.2.

4.1 Proving Lemma 4.1

A star-cutset S of graph H is full if S = NH [s] holds for some node s of S. No polynomial-time
algorithms are known for detecting star-cutsets (see, e.g., [15]), but full star-cutsets in an n-node
m-edge graph can be detected in O(mn) time. Node x dominates node y in graph H if x 6= y
and NH [y] ⊆ NH [x]. Node y is dominated in H if some node of H dominates y in H . We need the
following three lemmas to prove Lemma 4.1.

Lemma 4.3 (Chvátal [10, Theorem 1]). A graph without dominated nodes and full star-cutsets has no
star-cutsets.

Lemma 4.4. If T = (H,u1u2u3) is a tracker of an n-node m-edge beetle-free connected graph G, it
takes O(mn2) time to obtain a tracker T ′ = (H ′, u′1u

′
2u
′
3) of G, where H ′ is a dominated-node-free in-

duced subgraph of H , such that if T is lucky, so is T ′.
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Figure 5: An illustration for the proof of Lemma 4.4.

Proof. We first prove the following claim for any beetle-free graph H : “If a node x of H dominates
a node y of a clean shortest even hole C of H , then C ′ = H[C ∪ {x} \ {y}] is a clean shortest even hole
of H .” Let u and v be the neighbors of y on C. Since C is a hole and y ∈ C, we know x /∈ C,
implying x ∈ NH(C). Since x dominates y and |NC [y]| = 3, there is a connected component
of C[NC(x)] with at least 3 nodes. By Lemma 2.2, we have x ∈ N3

H(C), implying NC(x) = {u, y, v}.
Thus, C ′ is a shortest even hole of H . Assume z ∈ MH(C ′) ∪ N2,2

H (C ′) for contradiction. By y ∈
N3

H(C ′), z 6= y. By C \ {y} = C ′ \ {x}, exactly one of x and y is adjacent to z in H or else
z ∈ MH(C) ∪ N2,2

H (C), contradicting to the fact that C is clean. Case 1: z ∈ N2,2
H (C ′). If z ∈

NH(y) \NH(x), we have z ∈ MH(C), contradicting to the assumption that C is a clean hole of H .
If z ∈ NH(x) \ NH(y), we have z ∈ N1,2

H (C), contradicting to Lemma 2.2. Case 2: z ∈ MH(C ′).
By |NC′(z)| ≥ 3 and Lemma 2.1, |NC′(z)| ≥ 4. By MH(C) = N2,2

H (C) = ∅ and Lemma 2.2,
|NC(z)| ≤ 3. By C \ {x} = C \ {y}, we have z ∈ NH(x) \ NH(y), |NC(z)| = 3, and |NC′(z)| = 4.
By Lemma 2.2, z ∈ N3

H(C). See Figure 5 for an illustration. Thus, C[NC(z)] is a 3-path, implying
that H[C ′ ∪ {z}] is a beetle B of H in which B[NB[z]] is a diamond, a contradiction. The claim is
proved.

The algorithm first iteratively updates (H,u1u2u3) by the following steps until H has no dom-
inated nodes, and then outputs the resulting (H,u1u2u3) as (H ′, u′1u

′
2u
′
3).

Step 1: Let x and y be two nodes of H such that x dominates y.
Step 2: If there is an i ∈ {1, 2, 3}with y = ui, then let ui = x.
Step 3: Let H = H \ {y}.

It takes O(mn) time to detect nodes x and y such that x dominates y. Each iteration of the loop
decreases |V (H)| by one via Step 3. Therefore, the overall running time is O(mn2). Graph H ′ is
a dominated-node-free induced subgraph of the initial H . It suffices to ensure that if the tracker
T = (H,u1u2u3) of G at the beginning of an iteration is lucky, the tracker at the end of the iteration,
denoted T ′ = (H ′, u′1, u

′
2, u
′
3), remains lucky. Let C be a u1u2u3-hole of H . If y /∈ C, C is a u′1u

′
2u
′
3-

hole of H ′ = H \{y}. If y ∈ C, the above claim ensures that C ′ = H[C∪{x}\{y}] is a clean shortest
even hole of H . Since x dominates y, hole C ′ contains path u′1u

′
2u
′
3. Thus, C ′ is a u′1u

′
2u
′
3-hole of H ′.

Either way, (H ′, u′1u
′
2u
′
3) is lucky. The lemma is proved.

Lemma 4.5. If (H,u1u2u3) is a lucky tracker of graph G and S is a full star-cutset of H , one of the
following two conditions holds.
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Condition B1: For each u1u2u3-hole C of H , there exists a connected component B of H \ S satisfying
C ⊆ H[B ∪ S].

Condition B2: There are two non-adjacent nodes s1 and s2 of S and two connected components B1 and B2

of H \ S with {s1, s2} ⊆ NH(B1) and {s1, s2} ⊆ NH(B2).

Proof. Let s be a node of S with NH [s] = S. Let C be a u1u2u3-hole of H . Assume that Condition B1
does not hold. There exist two distinct connected components B1 and B2 of H \ S such that
V (C) ∩ V (B1) 6= ∅ and V (C) ∩ V (B2) 6= ∅. Thus, C[S] has at least two connected components.
Let s1 and s2 be two nodes in distinct connected components of C[S]. By {s1, s2} ⊆ NH [s], we
have s /∈ C or else s, s1, and s2 are in the same connected component of C[S]. By Lemma 2.2, we
have s ∈ N1,1

H (C), implying {s1, s2} = V (C) ∩ S. It follows that both s1 and s2 are adjacent to
both B1 and B2. Let paths P1 and P2 be the two connected components of C \ {s1, s2}. B1 has to
contain one of P1 and P2 and B2 has to contain other one of P1 and P2. Therefore, Condition B2
holds. The lemma is proved.

Proof of Lemma 4.1. Let T0 be the initial given tracker (H,u1u2u3) of G. The algorithm iteratively
updates (H,u1u2u3) by the following three steps until Task 1, 2, or 3 is completed.

Step 1: Apply Lemma 4.4 in O(mn2) time on tracker T = (H,u1u2u3) to obtain a tracker T ′ =
(H ′, u′1u

′
2u
′
3) of G, where H ′ is a dominated-node-free induced subgraph of H , such that

if T is lucky, so is T ′. Determine in O(mn) time whether H ′ has full star-cutsets. If H ′

has full star-cutsets, then let (H,u1u2u3) = (H ′, u′1u
′
2u
′
3) and proceed to Step 2; Otherwise,

complete Task 3 by outputting H ′.
Step 2: Let S be a full star-cutset of H . If Condition B2 of Lemma 4.5 holds, then complete Task 1

by outputting that G has even holes. Otherwise, proceed to Step 3.
Step 3: If either one of the following statements hold for U = {u1, u2, u3}:

• U ⊆ S and a connected component B of H \ S is adjacent to both u1 and u3;
• U 6⊆ S and U ⊆ B ∪ S holds for a connected component B of H \ S,

then let H = H[B ∪ S] and proceed to the next iteration of the loop. Otherwise, complete
Task 2 by outputting that T0 is not lucky.

Step 1 does not increase |V (H)|. If Step 3 updates H , then |V (H)| is decreased by at least one,
since H \ S has more than one connected component. The algorithm halts in O(n) iterations.
Step 1 takes O(mn2) time. Step 2 takes O(mn2) time: For any two non-adjacent nodes s1 and s2
in S, it takes O(m) time to determine whether s1 and s2 have two or more common neighboring
connected components of H \ S. Step 3 takes O(m) time. The overall running time is O(mn3).

We first show the following claim for each iteration of the algorithm: “If the (H,u1u2u3) at the
beginning of an iteration is a lucky tracker of G, then (1) the intermediate (H,u1u2u3) throughout the
iteration remains a lucky tracker of G, and (2) Step 3, if reached, proceeds to the next iteration.” It suffices
to consider the situation that Step 3 is reached and focus on the update operation that replaces H
with H[B ∪ S] via Step 3. By definition of Step 2, Condition B2 does not hold. By Lemma 4.5,
Condition B1 holds. That is, there is a connected component B∗ of H \ S such that H[B∗ ∪ S]
contains some u1u2u3-hole C of H . We prove the claim by showing that B∗ has to be the connected
component B of H \ S in Step 3. Since B∗ = B holds trivially for the case {u1, u2, u3} 6⊆ S, we
assume {u1, u2, u3} ⊆ S. If s ∈ C, there are exactly two nodes of C that are adjacent to s in H ;
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Figure 6: An illustration for the proof of Lemma 4.1.

otherwise, Lemma 2.2 implies that s has at most three neighbors of H in C. Either way, we have
|V (C)∩S| ≤ 3. Since u1u2u3 is a path of even hole C, nodes u1 and u3 are not adjacent in H . Since
Condition B2 does not hold, at most one connected component of H \S can be adjacent to both u1
and u3 in H . By V (C) ⊆ B∗ ∪ S and |V (C) ∩ S| ≤ 3, we have (NC(u1) ∪ NC(u3)) \ {u2} ⊆ B∗,
implying B∗ = B. The claim is proved.

For the correctness of the algorithm, we consider the three possible steps via which the algo-
rithm halts. Step 1: Since H ′ is dominated-node-free and full-star-cutset-free, Lemma 4.3 implies
that H ′ has no star-cutsets. By the above claim, Task 3 is completed. Step 2: Condition B2 holds.
Let P1 be a shortest path between s1 and s2 in H[B1∪{s1, s2}]. Let P2 be a shortest path between s1
and s2 in H[B2 ∪ {s1, s2}]. Since s1 and s2 are not adjacent, at least one of the three cycles of graph
P1 ∪ P2 ∪ {ss1, ss2} is an even hole of H . Since H is an induced subgraph of G, G has even holes.
See Figure 6 for an illustration. Task 1 is completed. Step 3: By the above claim, if T0 is lucky,
Step 3 always proceeds to the next iteration of the loop. Thus, Task 2 is completed. The lemma is
proved.

4.2 Proving Lemma 4.2

4.2.1 Extended clique trees

Graph H is an extended clique tree [20] if there is a set S of two or less nodes of H such that each
biconnected component of H \ S is a clique. da Silva and Vušković [20, §2.3] described an O(n5)-
time algorithm to determine whether an n-node extended clique tree contains even holes, which
can actually be implemented to run in O(n4) time.

Lemma 4.6. It takes O(n4) time to determine whether an n-node extended clique tree has even holes.

Proof. Let H0 be the n-node extended clique tree. Let x and y be two nodes of H0 such that each
biconnected component of H = H0 \ {x, y} is a clique. For nodes u and v of H , let P (u, v) be
the shortest path of H between u and v and let p(u, v) be the number of edges in P (u, v). We
spend O(n4) time to store the following information in a table M1 for every two nodes u and v
of H : (i) p(u, v) and (ii) whether or not P (u, v) \ {u, v} is adjacent to x (respectively, y). With M1, it
takes O(n2) time to determine whether H0 has an even hole that contains y but not x: H0 \ {x} has
an even hole if and only if there are two non-adjacent neighbors u and v of y in H such that p(u, v)
is even and P (u, v)\{u, v} is not adjacent to y. Similarly, with M1, it takes O(n2) time to determine
whether H0 has an even hole that contains x but not y.

To determine whether H0 has an even hole containing both x and y, we store in a table M2

for every four nodes u1, v1, u2, v2 whether or not P (u1, v1) and P (u2, v2) are both disjoint and
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Figure 7: (a) A connected non-path 2-join V1|V2 of graph H with split (X1, Y1, X2, Y2), where X1 =
{u1, u2}, X2 = {v1, v2}, Y1 = {u4, u5}, Y2 = {v5}, V1 = X1 ∪ Y1 ∪ {u3}, and V2 = X2 ∪ Y2 ∪ {v3, v4}.
(b) The parity-preserving blocks of decomposition H1 and H2 of H for the connected 2-join V1|V2

with respect to the split (X1, Y1, X2, Y2).

non-adjacent. It takes O(n2) time to compute the connected components of H \ NH [P (u1, v1)].
Paths P (u1, v1) and P (u2, v2) are both disjoint and non-adjacent if and only if u2 and v2 are in the
same connected component of H \ NH [P (u1, v1)]. Therefore, M2 can also be computed in O(n4)
time. With tables M1 and M2, it takes O(n4) time to determine whether H0 has an even hole
containing both x and y: Case 1: x and y are adjacent in H0. H0 has an even hole containing both x
and y if and only if there are nodes u and v such that (1) H0[{u, x, y, v}] is path uxyv, (2) p(u, v)
is odd, and (3) P (u, v) \ {u, v} is not adjacent to {x, y}. Case 2: x and y are not adjacent in H0. H0

has an even hole containing both x and y if and only if there are nodes ux, vx, uy, vy of H such that
(1) H0[{ux, x, vx}] is path uxxvx and H0[{uy, y, vy}] is path uyyvy, (2) p(ux, uy) + p(vx, vy) is even,
and (3) P (ux, uy) and P (vx, vy) are both disjoint and non-adjacent. The lemma is proved.

4.2.2 2-joins and non-path 2-joins

We say that V1|V2 is a 2-join [18, 40] of a graph H with split (X1, Y1, X2, Y2) if (1) V1 and V2 form
a disjoint partition of V (H) with |V1| ≥ 3 and |V2| ≥ 3, (2) X1 and Y1 (respectively, X2 and Y2)
are disjoint non-empty subsets of V1 (respectively, V2), and (3) each node of X1 is adjacent to each
node of X2, each node of Y1 is adjacent to each node of Y2, and there are no other edges between V1

and V2. See Figure 7(a) for an example.

Lemma 4.7 (Trotignon et al. [40, Lemma 3.2]). If V1|V2 is a 2-join of a star-cutset-free graph H with
split (X1, Y1, X2, Y2), then the following statements hold for each i ∈ {1, 2}.

1. Each connected component of H[Vi] contains at least one node in Xi and at least one node in Yi.
2. Each node of Vi has a neighbor in Vi.
3. Each node of Xi has a non-neighbor in Yi. Each node of Yi has a non-neighbor in Xi.
4. |Vi| ≥ 4.

A 2-join V1|V2 of H with split (X1, Y1, X2, Y2) is a non-path 2-join [39] of H if H[V1] is not a path
between a node of X1 and a node of Y1 and H[V2] is not a path between a node of X2 and a node
of Y2. For instance, the 2-join in Figure 7(a) is a non-path 2-join. (Non-path 2-joins are called 2-joins
by da Silva and Vušković [20, §1.3].)
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Lemma 4.8 (Charbit et al. [4, Theorem 4.1]). Given an n-node connected graph H , it takes O(n4) time
to either output a non-path 2-join of H together with a split or ensure that H has no non-path 2-joins.

Lemma 4.9 (da Silva and Vušković [20, Corollary 1.3]). A connected graph that is even-hole-free, star-
cutset-free, and non-path-2-join-free is an extended clique tree.

Combining Lemmas 4.6, 4.8, and 4.9, we have the following lemma.

Lemma 4.10. Given an n-node star-cutset-free graph H , it takes O(n4) time to either (a) determine whether
H has even holes or (b) obtain a non-path 2-join of H with a split.

Proof. It takes O(n4) time to determine whether the graph H is an extended clique tree: For any
set S of two or less nodes of H , it takes O(n2) time to obtain the biconnected components of
subgraph H \S [23] and determine whether all of them are cliques. If H is an extended clique tree,
Lemma 4.6 implies that it takes O(n4) time to determine whether H has even holes. If H is not an
extended clique tree, Lemma 4.8 implies that it takes O(n4) time to either obtain a non-path 2-join
of H with a split or ensure that H has no non-path 2-joins. If H has no non-path 2-joins, Lemma 4.9
implies that H has even holes.

4.2.3 Parity-preserving blocks of decomposition for connected 2-joins

A 2-join V1|V2 with split (X1, Y1, X2, Y2) is connected [40] if, for each i ∈ {1, 2}, there is an induced
path Pi of H[Vi] between a node xi of Xi and a node yi of Yi such that V (Pi)\{xi, yi} ⊆ Vi\(Xi∪Yi).
For instance, the 2-join V1|V2 in Figure 7(a) is connected. By Lemma 4.7(1), any 2-join of a star-
cutset-free graph is connected with respect to any split.

Let V1|V2 be a connected 2-join of graph H with split (X1, Y1, X2, Y2). For each i ∈ {1, 2},
let Pi be a shortest induced path Pi of H[Vi] between a node xi of Xi and a node yi of Yi with
V (Pi) \ {xi, yi} ⊆ Vi \ (Xi ∪ Yi). If |V (Pi)| is even (respectively, odd), then let pi = 4 (respectively,
pi = 5). The parity-preserving blocks of decomposition [40] of H for 2-join V1|V2 with respect to split
(X1, Y1, X2, Y2) are the following graphs H1 and H2.

• H1 consists of (a) H[V1], (b) a p2-path between nodes x2 and y2, (c) edges x2x for all nodes x
of X1, and (d) edges y2y for all nodes y of Y1.
• H2 consists of (a) H[V2], (b) a p1-path between nodes x1 and y1, (c) edges x1x for all nodes x

of X2, and (d) edges y1y for all nodes y of Y2.

See Figure 7(b) for an example of H1 and H2.

Lemma 4.11 (Trotignon and Vušković [40, Lemma 3.8]). If V1|V2 is a connected 2-join of a star-cutset-
free graph H with split (X1, Y1, X2, Y2), the parity-preserving blocks of decomposition H1 and H2 of H
for V1|V2 with respect to (X1, Y1, X2, Y2) are star-cutset-free graphs such that H is even-hole-free if and
only if both H1 and H2 are even-hole-free.

Lemma 4.12. Let H be an n-node m-edge star-cutset-free graph. Either one of the parity-preserving
blocks H1 and H2 of decomposition for an arbitrary non-path 2-join of H with respect to an arbitrary
split has at most n nodes and m− 1 edges.

Proof. We prove the lemma for H1. The proof for H2 is similar. Let V1|V2 be the non-path 2-join.
Let (X1, Y1, X2, Y2) be the split. Let P2 be a shortest path of H[V2] between a node of X2 and a
node of Y2. For the case that |V (P2)| is even, we have p2 = 4. By Lemma 4.7(4), |V2| ≥ 4, implying
|V (H1)| = n− |V2|+ p2 ≤ n. By the following case analysis, H1 has at most m− 1 edges.

13



• |V (P2)| ≥ 6: By P2 ⊆ H[V2], H[V2] has at least five edges. Thus, H1 has at most m− 2 edges.
• |V (P2)| = 4: Since V1|V2 is a non-path 2-join of H , P2 ( H[V2]. If V (P2) = V2, H[V2] has

at least four edges. If V (P2) ( V2, Lemma 4.7(2) implies that H[V2] has at least four edges.
Either way, H1 has at most m− 1 edges.
• |V (P2)| = 2: Lemma 4.7(3) ensures |X2| ≥ 2 and |Y2| ≥ 2. Lemma 4.7(1) implies that H[V2]

has at least two edges. By |X2| ≥ 2 and |Y2| ≥ 2, the number of edges between V1 and V2 in
H is at least two more than the number of edges between V1 and V (H1)\V1 in H1. Therefore,
H1 has at most m− 1 edges.

As for the case that |V (P2)| is odd, we have p2 = 5. The following case analysis shows that H1 has
at most n nodes and at most m− 1 edges.

• |V (P2)| ≥ 5: By |V2| ≥ 5, we have |V (H1)| ≤ n. P2 has at least four edges. Since V1|V2 is
a non-path 2-join of H , P2 ( H[V2]. If V (P2) = V2, then H[V2] has at least five edges. If
V (P2) ( V2, then Lemma 4.7(2) implies that H[V2] has at least five edges. Either way, H1 has
at most m− 1 edges.
• |V (P2)| = 3: By Lemma 4.7(4), the proper subset Z = V2\V (P2) of V2 is non-empty. We know

Z ∩ (X2 ∪ Y2) 6= ∅ or else V (P2) would be a star-cutset of H . Assume Z ∩X2 6= ∅ without
loss of generality. Let B be an arbitrary connected component of H[Z] with B ∩X2 6= ∅. We
know that B is adjacent to Y2 in H or else NH [x] \ Z would be a star-cutset of H , where x
is the endpoint of P2 in X2. Since P2 is a shortest path between a node of X2 and a node
of Y2, at least one node of B is not in X2 ∪ Y2. Therefore, |V2| ≥ 5, implying |V (H1)| ≤ n.
Moreover, H[V2] has at least four edges. By |X2| ≥ 2, the number of edges between V1 and V2

in H is at least one more than the number of edges between V1 and V (H1) \ V1 in H1. Thus,
H1 has at most m− 1 edges.

The lemma is proved.

4.2.4 Proving Lemma 4.2

We now prove Lemma 4.2 by Lemmas 4.10, 4.11 and 4.12.

Proof of Lemma 4.2. Assume without loss of generality that the given n-node m-edge star-cutset-
free graph H0 is connected. Let set H initially consist of a single graph H0. We then repeat the
following loop until H = ∅ or we output that H0 has even holes. Let H be a graph in H . Case 1:
H has at most 11 edges. It takes O(1) time to determine whether H has even holes. If H has even
holes, we output that H0 has even holes. Otherwise, we delete H from H . Case 2: H has at least
12 edges. We first delete H from H and then apply Lemma 4.10 on H . If H has even holes, we
output that H0 has even holes. If we obtain a non-path 2-join V1|V2 of H with split (X1, Y1, X2, Y2),
we add to H the parity-preserving blocks H1 and H2 of decomposition for V1|V2 with respect to
(X1, Y1, X2, Y2). If the above loop stops withH = ∅, we output that H0 has no even holes.

The correctness of our algorithm follows immediately from Lemma 4.11. By Lemma 4.12, each
graph ever in H throughout our algorithm has at most n nodes. By Lemma 4.10, each iteration
of the loop takes O(n4) time. It remains to show that the loop halts in O(m) iterations. Observe
that each iteration increases the overall number of edges of the graphs in H by no more than 10.
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Let f(m) be the maximum number of iterations of the above loop in which Lemma 4.10 is applied.
Lemma 4.12 implies

f(m) ≤
{

0 if m ≤ 11
max{1 + f(m1) + f(m2) | m1,m2 ≤ m− 1,m1 +m2 ≤ m+ 10} if m ≥ 12.

By induction on m, we show f(m) ≤ max(m − 11, 0), which clearly holds for m = 1, 2, . . . , 11.
If m ≥ 12, the inductive hypothesis implies

f(m) ≤ max{1 + max(m1 − 11, 0) + max(m2 − 11, 0) | m1,m2 ≤ m− 1,m1 +m2 ≤ m+ 10}
≤ max{max(m1 +m2 − 21,m1 − 10,m2 − 10, 1) | m1,m2 ≤ m− 1,m1 +m2 ≤ m+ 10}
≤ max(m− 11,m− 11,m− 11, 1)

= max(m− 11, 0).

By f(m) = O(m), the number of iterations of the above loop is O(m). The lemma is proved.

5 Concluding remarks

For any classG of induced subgraphs, one can augment a recognition algorithm forG-free graphs
into a G-detection algorithm for an n-node graph G with a factor-O(n) increase in the time com-
plexity by a node-deletion method: (1) Let H = G. (2) For each node v of G, if H \ {v} is not
G-free, then let H = H \ {v}. (3) Output the resulting graph H . See, e.g., [41, §4] for the case that
G consists of even holes. Thus, Theorem 1.1 immediately yields a detection algorithm that runs
in time O(m3n6) = O(n12). However, our O(m3n5)-time recognition algorithm can be augmented
into an even-hole-detection algorithm without increasing the time complexity.

The combination of the proofs of Theorem 1.1 and Lemma 2.3 actually gives two algorithms.
The first algorithm determines if G is both beetle-free and 4-hole-free. The second algorithm de-
termines if a beetle-free and 4-hole-free graph G is also even-hole-free. We first describe how to
augment the first algorithm into an O(m3n5)-time detection algorithm. Since it takes O(n4) time
to detect a 4-hole in G, it suffices to show how to detect an even hole in a graph G with beetles in
O(m3n5) time. As stated in the proof of Lemma 2.3, for each of the O(m3n) choices of node b4 and
edges b1b5, b2b6, and b3b7, it takes O(n4) time via Lemma 3.1 to determine if b4, b1b5, b2b6, and b3b7
are contained by a beetle B in which {b1, b2, b3, b4} induces a diamond. Once we know that there
exists a beetle B containing a particular choice of b4, b1b5, b2b6, and b3b7, by an augmented version
of Lemma 3.1 via the above node-deletion method, it takes O(n5) time to actually detect such a
beetle B. Therefore, if G has beetles, it takes O(m3n) · O(n4) + O(n5) = O(m3n5) time to find a
beetle of G, in which an even hole of G can be detected in O(n) time.

The second algorithm can also be augmented into an O(m3n5)-time detection algorithm for
a beetle-free graph G that has even holes. By Lemma 2.3, we obtain in O(m3n5) time a set T
of O(m2n) trackers that satisfies Property 1. Since G has even holes, there must be a tracker
(H,u1u2u2) of T such that H contains an even hole of G, which according to Lemma 2.4 can be
found in time O(m2n) · O(mn4) = O(m3n5). By the proof of Lemma 2.4, H is ensured to have
even holes in two ways. (1) If it is ensured through completing Task 1 of Lemma 4.1, the proof
of Lemma 4.1 actually gives a constructive proof for the existence of an even hole of H , which is
also an even hole of G. (2) If it is ensured through completing Task 3 of Lemma 4.1 and then by
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Lemma 4.2, we have a star-cutset-free induced subgraph H ′ of H that has even holes. We then
apply the above node-deletion method on H ′ using Lemma 4.2 to detect in O(mn5) time an even
hole of H ′, which is also an even hole of H and G. Therefore, if G is a 4-hole-free and beetle-free
graph that has even holes, it takes time O(m3n5)+O(mn5) = O(m3n5) to output an even hole of G.
Combining the above two detection algorithms, we have an O(m3n5)-time algorithm to output an
even hole in an n-node m-edge graph with even holes.
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[18] G. Cornuéjols and W. Cunningham. Compositions for perfect graphs. Discrete Mathematics,
55(3):245–254, 1985.
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