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Abstract4

We improve our earlier lower bounds on the number of electrical transformations required to5

reduce an n-vertex plane graph in the worst case [SOCG 2016] in two different directions. Our6

previous Ω(n3/2) lower bound applies only to facial electrical transformations on plane graphs with7

no terminals. First we provide a stronger Ω(n2) lower bound when the graph has two or more8

terminals, which follows from a quadratic lower bound on the number of homotopy moves in the9

annulus, described in a companion paper. Our second result extends our earlier Ω(n3/2) lower bound10

to the wider class of planar electrical transformations, which preserve the planarity of the graph but11

may delete cycles that are not faces of the given embedding. This new lower bound follows from12

the observation that the defect of the medial graph of a planar graph is the same for all its planar13

embeddings.14
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1 Introduction1

Consider the following set of local operations performed on any graph:2

• Leaf contraction: Contract the edge incident to a vertex of degree 1.3

• Loop deletion: Delete the edge of a loop.4

• Series reduction: Contract either edge incident to a vertex of degree 2.5

• Parallel reduction: Delete one of a pair of parallel edges.6

• Y�∆ transformation: Delete a vertex of degree 3 and connect its neighbors with three new edges.7

• ∆�Y transformation: Delete the edges of a 3-cycle and join the vertices of the cycle to a new8

vertex.9

These operations and their inverses, which we call electrical transformations following Colin de10

Verdière et al. [11], have been used for over a century to analyze electrical networks [25]. Steinitz11

[31,32] proved that any planar network can be reduced to a single vertex using these operations. Several12

decades later, Epifanov [15] proved that any planar graph with two special vertices called terminals can13

be similarly reduced to a single edge between the terminals; simpler algorithmic proofs of Epifanov’s14

theorem were later given by Feo [17], Truemper [33,34], and Feo and Provan [18]. These results have15

since been extended to planar graphs with more than two terminals [3,12,19,20] and to some families16

of non-planar graphs [19,35].17

Despite decades of prior work, the complexity of the reduction process is still poorly understood.18

Steinitz’s proof implies that O(n2) electrical transformations suffice to reduce any n-vertex planar graph19

to a single vertex; Feo and Provan’s algorithm reduces any 2-terminal planar graph to a single edge in20

O(n2) steps. While these are the best upper bounds known, several authors have conjectured that they21

can be improved. Without any restrictions on which transformations are permitted, the only known22

lower bound is the trivial Ω(n). However, we recently proved that if all electrical transformations are23

required to be facial, meaning any deleted cycle must be a face of the given embedding, then reducing a24

plane graph without terminals to a single vertex requires Ω(n3/2) steps in the worst case [8].25

In this paper, we extend our earlier lower bound in two directions. First, in Section 3, we con-26

sider plane graphs with two terminals. In this setting, leaf deletions, series reductions, and Y�∆27

transformations that delete terminals are forbidden. We prove in Section 3 that Ω(n2) facial electrical28

transformations are required in the worst case to reduce a 2-terminal plane graph as much as possible.29

Not every 2-terminal plane graph can be reduced to a single edge between the terminals using only30

facial electrical transformations. However, we show that any 2-terminal plane graph can be reduced31

to a unique minimal graph called a bullseye using a finite number of facial electrical transformations.32

Our lower bound ultimately reduces to a recent Ω(n2) lower bound on the number of homotopy moves33

required to simplify a contractible closed curve in the annulus, which we describe in a companion34

paper [10].35

In Section 4, we consider a wider class of electrical transformations that preserve the planarity36

of the graph, but are not necessarily facial. Our second main result is that Ω(n3/2) planar electrical37

transformations are required to reduce a planar graph (without terminals) to a single vertex in the worst38

case. Like our earlier lower bound for facial electrical transformations, our proof ultimately reduces to a39

study of a certain curve invariant, called the defect, of the medial graph (viewed as a closed curve) of the40

given plane graph G. A key step in our new proof is the following surprising observation: Although the41

definition of the medial graph of G depends on the embedding of G, the defect of the medial graph is42

the same for all planar embeddings of G.43
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2 Background1

2.1 Types of Electrical Transformations2

We distinguish between three increasingly general types of electrical transformations in plane graphs:3

facial, planar, and arbitrary. (For ease of presentation, we assume throughout the paper that plane4

graphs are actually embedded on the sphere instead of the plane.)5

An electrical transformation in a plane graph G is facial if any deleted cycle is a face of G. All6

leaf contractions, series reductions, and Y�∆ transformations are facial, but loop deletions, parallel7

reductions, and ∆�Y transformations may not be facial. Facial electrical transformations form three8

dual pairs, as shown in Figure 2.1; for example, any series reduction in G is equivalent to a parallel9

reduction in the dual graph G∗.10

Figure 2.1. Facial electrical transformations in a plane graph G and its dual G∗.

An electrical transformation in G is planar if it preserves the planarity of the underlying graph.11

Equivalently, an electrical transformation is planar if the vertices of the cycle deleted by the transforma-12

tion are all incident to a common face (in the given embedding) of G. All facial electrical transformations13

are trivially planar, as are all loop deletions and parallel reductions. The only non-planar electrical14

transformation is a ∆�Y transformation whose three vertices are not incident to a common face; any15

such transformation introduces a K3,3 minor into the graph, connecting the three vertices of the ∆ to an16

interior vertex, an exterior vertex, and the new Y vertex.17

Figure 2.2. A non-planar ∆�Y transformation.

2.2 Multicurves and Medial Graphs18

Formally, a closed curve in a surface M is a continuous map γ: S1→ M . A closed curve is simple if it is19

injective. A multicurve is an collection of one or more disjoint closed curves. We consider only generic20

closed curves and multicurves, which are injective except at a finite number of (self-)intersections, each21

of which is a transverse double point. A multicurve is connected if its image in the surface is connected;22

we consider only connected multicurves in this paper. The image of any (non-simple, connected)23

multicurve has a natural structure as a 4-regular map, whose vertices are the self-intersection points of24

the curve, edges are maximal subpaths between vertices, and faces are components of the complement25

of the curve in the surface. We do not distinguish between multicurves whose images are combinatorially26

equivalent maps.27

The medial graph G× of a plane graph G is another plane graph whose vertices correspond to28

the edges of G, and two vertices of G× are connected by an edge if the corresponding edges in G are29

consecutive in cyclic order around some vertex, or equivalently, around some face in G. Every vertex in30

every medial graph has degree 4; thus, every medial graph is the image of a multicurve. Conversely, the31
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image of every non-simple multicurve on the sphere is the medial graph of some plane graph. We call a1

plane graph G unicursal if its medial graph G× is the image of a single closed curve.2

Smoothing a multicurve γ at a vertex x replaces the intersection of γ with a small neighborhood3

of x with two disjoint simple paths, so that the result is another 4-regular plane graph. There are two4

possible smoothings at each vertex. More generally, a smoothing of γ is any multicurve obtained by5

smoothing a subset of its vertices. For any plane graph G, the smoothings of the medial graph G× are6

precisely the medial graphs of minors of G.7

Figure 2.3. Smoothing a vertex.

2.3 Local Moves8

A homotopy between two curves γ and γ′ on the same surface is a continuous deformation from one9

curve to the other, formally defined as a continuous function H : S1× [0, 1]→ M such that H(·, 0) = γ10

and H(·, 1) = γ′. The definition of homotopy extends naturally to multicurves. Classical topological11

arguments imply that two multicurves are homotopic if and only if one can be transformed into the12

other by a finite sequence of homotopy moves, shown in Figure 2.4. A multicurve is homotopically13

reduced if no sequence of homotopy moves leads to a multicurve with fewer vertices.14

Figure 2.4. Homotopy moves 1�0, 2�0, and 3�3.

Figure 2.5. Medial electrical moves 1�0, 2�1, and 3�3.

Facial electrical transformations in any plane graph G induce local transformations in the medial15

graph G× that closely resemble homotopy moves. We call these 1�0, 2�1, and 3�3 moves, where the16

numbers before and after each arrow indicate the number of local vertices before and after the move;17

see Figure 2.5. We collectively refer to these transformations and their inverses as medial electrical18

moves. A multicurve is electrically reduced if no sequence of medial electrical moves leads to another19

multicurve with fewer vertices.20

For multicurves on surfaces with boundary, both homotopy moves and medial electrical moves on21

boundary faces are forbidden.22

3 Two-Terminal Plane Graphs23

Most applications of electrical reductions, starting with Kennelly’s classical computation of effective24

resistance [25], designate two vertices of the input graph as terminals and require a reduction to a25

single edge between those terminals. In this context, electrical transformations that delete either of the26

terminals are forbidden; specifically: leaf contractions when the leaf is a terminal, series reductions when27

the degree-2 vertex is a terminal, and Y�∆ transformations when the degree-3 vertex is a terminal.28
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Epifanov [15] was the first to prove that any 2-terminal planar graph can be reduced to a single1

edge between the terminals using a finite number of electrical transformations, roughly 50 years after2

Steinitz proved the corresponding result for planar graphs without terminals [31,32]. Epifanov’s proof3

is non-constructive; algorithms for reducing 2-terminal planar graphs were later described by Feo [17],4

Truemper [33], and Feo and Provan [18]. (An algorithm in the spirit of Steinitz’s reduction proof can5

also be derived from results of de Graaf and Schrijver [21].)6

An important subtlety that complicates both Epifanov’s proof and its algorithmic descendants is7

that not every 2-terminal planar graph can be reduced to a single edge using only facial electrical8

transformations. The simplest bad example is the three-vertex graph shown in Figure 3.1; the solid9

vertices are the terminals. Although this graph has more than one edge, it has no reducible leaves, empty10

loops, cycles of length 2 or 3, or vertices with degree 2 or 3. (Later in this section, we prove that this11

graph cannot be reduced to an edge even if we allow “backward” facial electrical transformations that12

make the graph more complicated.)13

Figure 3.1. A facially irreducible 2-terminal plane graph.

In this section, we show that in the worst case, Ω(n2) facial electrical transformations are required14

to reduce an 2-terminal plane graph with n vertices as much as possible. First, we prove in Section 3.115

that any 2-terminal planar graph can be reduced to a unique minimal graph called a bullseye by facial16

electrical transformations. We prove our quadratic lower bound in Section 3.2.17

Existing algorithms for reducing an arbitrary 2-terminal plane graphs to a single edge rely on an addi-18

tional operation which we call a terminal-leaf contraction, in addition to facial electrical transformations.19

We discuss this subtlety in more detail in Section 3.3.20

3.1 Winding Number, Medial Depth, and Bullseyes21

The medial graph G× of any 2-terminal plane graph G is properly considered as a multicurve embedded22

in the annulus; the faces of G× that correspond to the terminals are removed from the surface.23

The winding number of a directed closed curve γ in the annulus is the number of times any generic24

path α from one boundary component to the other crosses γ from left to right, minus the number of25

times α crosses γ from right to left. Two directed closed curves in the annulus are homotopic if and only26

if their winding numbers are equal.27

The depth of any multicurve γ in the annulus is the minimum number of times a path from one28

boundary to the other crosses γ; thus, depth is essentially an unsigned version of winding number.29

Just as the winding number around the boundaries is a complete homotopy invariant for curves in30

the annulus, the depth of the medial graph turns out to be a complete invariant for facial electrical31

transformation of 2-terminal plane graphs.32

Lemma 3.1. Medial electrical transformations do not change the depth of any connected multicurve in33

the annulus. Thus, facial electrical transformations in any 2-terminal plane graph G do not change the34

depth of the medial graph G×.35

Proof: Let γ be a connected multicurve in the annulus. For any face of γ that could be deleted by a36

medial electrical move, exhaustive case analysis implies that there is a shortest path between the two37

boundary faces of γ that avoids that face. �38



Lower Bounds for Planar Electrical Reduction 5

For any integer d > 0, let αd denote the unique closed curve in the annulus with d − 1 vertices and1

winding number d. Up to isotopy, this curve can be parametrized in the plane as2

αd(θ) := ((cos(θ) + 2) cos(dθ), (cos(θ) + 2) sin(dθ)).3

In the notation of our other papers [8,9], αd is the flat torus knot T (d, 1).4

Similarly, for any k > 0, let Bk denote the 2-terminal plane graph that consists of a path of length k5

between the terminals, with a loop attached to each of the k− 1 interior vertices, embedded so that6

collectively they form concentric circles that separate the terminals. We call each graph Bk a bullseye.7

For example, B1 is just a single edge; B2 is shown in Figure 3.1; and B4 is shown on the left in Figure 3.2.8

The medial graph B×k of the kth bullseye is the curve α2k. Because different bullseyes have different9

medial depths, Lemma 3.1 implies that no bullseye can be transformed into any other bullseye by facial10

electrical transformations.11

Figure 3.2. The bullseye graph B4 and its medial graph α8.

Lemma 3.2. For any integer d > 0, the curve αd is both homotopically reduced and electrically reduced.12

Proof: Every connected multicurve in the annulus with either winding number d or depth d has at least13

d + 1 faces (including the faces containing the boundaries of the annulus) and therefore, by Euler’s14

formula, has at least d − 1 vertices. �15

Lemma 3.3. If γ is a homotopically reduced connected multicurve in the annulus, then γ = αd for some16

integer d.17

Proof: A multicurve in the annulus is homotopically reduced if and only if its constituent curves are18

homotopically reduced and disjoint. Thus, any connected homotopically reduced multicurve is actually a19

single closed curve. Any two curves in the annulus with the same winding number are homotopic [24].20

Finally, up to isotopy, αd is the only closed curve in the annulus with winding number d and d − 121

vertices [22, Lemma 1.12]. �22

Lemma 3.4. Let γ be a connected multicurve on any surface, possibly with boundary. If γ is electrically23

reduced, then γ is also homotopically reduced.24

Proof: Let γ be a connected multicurve in some arbitrary surface, and suppose γ is not homotopically25

reduced. A seminal result of de Graaf and Schrijver [21] implies that γ can be simplified by a finite26

sequence of homotopy moves1 that never increases the number of vertices. In particular, applying27

some finite sequence of 3�3 moves to γ creates either an empty loop, which can be removed by a 1�028

move, or an empty bigon, which can be removed by either a 2�0 move or a 2�1 move. Thus, γ is not29

electrically reduced. �30

1De Graaf and Schrijver’s result requires a fourth type of homotopy move, which moves an isolated simple contractible
constituent curve from one face of the rest of the multicurve to another. However, since this move can only be applied to
disconnected multicurves, it does not affect our argument.
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The following corollaries are now immediate.1

Corollary 3.5. A connected multicurve γ in the annulus is electrically reduced if and only if γ = αdepth(γ).2

Corollary 3.6. Let γ and γ′ be two connected multicurves in the annulus. Then γ can be transformed3

into γ′ by medial electrical moves if and only if depth(γ) = depth(γ′).4

Corollary 3.7. Let G be an arbitrary 2-terminal plane graph. G can be reduced to the bullseye Bk using5

a finite sequence of facial electrical transformations if and only if depth(G×) = 2k.6

Corollary 3.8. Let G and H be arbitrary 2-terminal plane graphs. G can be transformed to H using a7

finite sequence of facial electrical transformations if and only if depth(G×) = depth(H×).8

3.2 Quadratic Lower Bound9

For any connected multicurve γ, let X(γ) denote the minimum number of medial electrical moves10

required to reduce γ as much as possible, and let H(γ) denote the minimum number of homotopy moves11

required to reduce γ as much as possible. Our quadratic lower bound proof generally follows our earlier12

proof that X (γ)≥ H(γ) for any closed curve γ in the plane or the sphere [8, Lemma 3.3], which is based13

in turn on arguments of Truemper [33] and Noble and Welsh [27].14

Lemma 3.9. For any connected proper smoothing γ of any connected multicurve γ in the annulus, we15

have X (γ) + 1
2

depth(γ)≤ X (γ) + 1
2

depth(γ).16

Proof: Let γ be an arbitrary connected multicurve in the annulus, and let γ be an arbitrary connected17

proper smoothing of γ. Without loss of generality, we can assume that γ is non-simple, since otherwise18

the lemma is vacuous.19

First, suppose γ is a connected smoothing of γ obtained by smoothing a single vertex x . There are20

only two cases to consider: Either γ is electrically reduced or not.21

If γ is electrically reduced, then γ = αd for some integer d ≥ 2 by Corollary 3.5. (The curves α022

and α1 are simple.) The smoothed curve γ contains a single loop if x is the innermost or outermost23

vertex of γ, or a single bigon otherwise. Applying one 1�0 or 2�0 move transforms γ into the curve24

αd−2, which is electrically reduced by Lemma 3.2. Thus we have X (γ) = 1 and depth(γ) = d − 2, which25

implies X (γ) + 1
2

depth(γ) = X (γ) + 1
2

depth(γ).26

On the other hand, suppose γ is not reduced. We argue by induction on X (γ), with the set of27

reduced curves as a base case, closely following our earlier proof [8, Lemma 3.1]. Let γ′ be the result28

of the first medial electrical move in the minimum-length sequence that reduces γ. We immediately29

have X (γ′) = X (γ)− 1 and depth(γ′) = depth(γ). There are several subcases to consider, depending on30

whether the move from γ to γ′ involves the smoothed vertex x , and if so, on the type of move and how31

x is smoothed. In all cases, there is a connected multicurve γ′ that can be obtained both by applying at32

most one medial electrical move to γ and by smoothing at most two vertices of γ′.33

Specifically, if the move from γ to γ′ does not involve x , we can define γ′ = γ; the remaining eight34

subcases are illustrated in Figure 3.3. One subcase for the 0�1 move is impossible, because we have35

assumed that γ is connected. In the remaining 0�1 subcase and one 2�1 subcase, we can define36

γ′ = γ= γ′, and in all remaining subcases, γ′ is a proper smoothing of γ′.37

In every case, we have depth(γ) = depth(γ′) and depth(γ) = depth(γ′), and therefore38

X (γ) + 1
2

depth(γ) ≤ X (γ′) + 1+ 1
2

depth(γ′)39

≤ X (γ′) + 1+ 1
2

depth(γ′) (∗)40

≤ X (γ) + 1
2

depth(γ),41
42
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where the second inequality (∗) is either trivial (because γ′ = γ′) or follows from the induction hypothesis1

(because γ′ is a proper smoothing of γ′).2

1→0

2→1 = 1→0

3→3 2→1 =

=

1→2 = =

Figure 3.3. Cases for the proofs of Lemma 3.9 and 4.6; the circled vertex is x .

Finally, if γ is obtained from γ by smoothing more than one vertex, the lemma follows from the3

previous cases by induction on the number of vertices. �4

Lemma 3.10. For every connected multicurve γ in the annulus, there is a minimum-length sequence of5

medial electrical moves that reduces γ to αdepth(γ) without 0�1 or 1�2 moves.6

Proof: Consider a minimum-length sequence of medial electrical moves that reduces an arbitrary7

connected multicurve γ in the annulus. For any integer i ≥ 0, let γi denote the result of the first i moves8

in this sequence. Suppose γi has one more vertex than γi−1 for some index i. Then γi−1 is a connected9

proper smoothing of γi, and depth(γi) = depth(γi−1); so Lemma 3.9 implies that X (γi−1) ≤ X (γi),10

contradicting our assumption that the reduction sequence has minimum length. �11

Lemma 3.11. X (γ) + 1
2

depth(γ)≥ H(γ) for every closed curve γ in the annulus.12

Proof: Let γ be a closed curve in the annulus. If γ is already electrically reduced, then X (γ) = H(γ) = 013

by Lemma 3.4, so the lemma is trivial. Otherwise, let Σ be a minimum-length sequence of medial14

electrical moves that reduces γ as much as possible. By Lemma 3.10, we can assume that the first move15

in Σ is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the theorem immediately follows by16

induction on X (γ), since by Lemma 3.1 neither of these moves changes the depth of the curve.17

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be the18

result if we perform the 2�0 homotopy move on the same vertex instead. The minimality of Σ implies19

X (γ) = X (γ′)+ 1, and we trivially have H(γ)≤ H(γ◦)+ 1. Because γ is a single curve, γ◦ is also a single20

curve and therefore a connected proper smoothing of γ′. Thus, Lemmas 3.1 and 3.9 and the inductive21

hypothesis imply22

X (γ) + 1
2

depth(γ) = X (γ′) + 1
2

depth(γ′) + 123

≥ X (γ◦) + 1
2

depth(γ◦) + 124

≥ H(γ◦) + 125

≥ H(γ),26
27

which completes the proof. �28
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Theorem 3.12. Let G be an arbitrary 2-terminal plane graph, and let γ be any unicursal smoothing1

of G×. Reducing G to a bullseye requires at least H(γ)− 1
2

depth(γ) facial electrical transformations.2

In a companion paper [10], we describe an infinite family of contractible curves in the annulus that3

require Ω(n2) homotopy moves to simplify. Because these curves are contractible, they have even depth,4

and thus are the medial graphs of 2-terminal plane graphs. Euler’s formula implies that every n-vertex5

curve in the annulus has exactly n+ 2 faces (including the boundary faces) and therefore has depth at6

most n+ 1.7

Corollary 3.13. Reducing a 2-terminal plane graph to a bullseye requires Ω(n2) facial electrical trans-8

formations in the worst case.9

3.3 Terminal-Leaf Contractions10

The electrical reduction algorithms of Feo [17], Truemper [33], and Feo and Provan [18] rely exclusively11

on facial electrical transformations, plus one additional operation.12

• Terminal-leaf contraction: Contract the edge incident to a terminal vertex with degree 1. The13

neighbor of the deleted terminal becomes a new terminal.14

Terminal-leaf contractions are also called FP-assignments, after Feo and Provan [12, 19, 20]. Later15

algorithms for reducing plane graphs with three or four terminals [3,12,20] also use only facial electrical16

transformations and terminal-leaf contractions.17

Formally, terminal-leaf contractions are not electrical transformations, as they can change the value18

one wants to compute. For example, if the edges in the graph shown in Figure 3.1 represent 1Ω19

resistors, a terminal-leaf contraction changes the effective resistance between the terminals from 2Ω20

to 1Ω. However, both Gilter [19] and Feo and Provan [18] observed that any sequence of facial electrical21

transformations and terminal-leaf contractions can be simulated on the fly by a sequence of planar22

electrical transformations. Specifically, we simulate the first leaf contraction at either terminal by23

simply marking that terminal and proceeding as if its unique neighbor were a terminal. Later electrical24

transformations involving the neighbor of a marked terminal may no longer be facial, but they will25

still be planar; terminal-leaf contractions at the unique neighbor of a marked terminal become series26

reductions. At the end of the sequence of transformations, we perform a final series reduction at the27

unique neighbor of each marked terminal.28

Unfortunately, terminal-leaf contractions change both the depth of the medial graph and the curve29

invariants that imply the quadratic homotopy lower bound. As a result, our quadratic lower bound30

proof breaks down if we allow terminal-leaf contractions. Indeed, we conjecture that any 2-terminal31

plane graph can be reduced to a single edge using only O(n3/2) facial electrical transformations and32

terminal-leaf contractions, matching the lower bound proved in Section 4.33

4 Planar Electrical Transformations34

Finally, we extend our earlier Ω(n3/2) lower bound for reducing plane graphs without terminals using35

only facial electrical transformations to the larger class of planar electrical transformations. As in our36

earlier work [8], we analyze electrical transformations in an unicursal plane graph G in terms of a37

certain invariant of the medial graph of G called defect, first introduced by Aicardi [2] and Arnold [4,5].38

Our extension to non-facial electrical transformations is based on the following surprising observation:39

Although the medial graph of G depends on its embedding, the defect of the medial graph of G does not.40
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4.1 Defect1

Let γ be an arbitrary closed curve on the sphere. Choose an arbitrary basepoint γ(0) and an arbitrary2

orientation for γ. For any vertex x of γ, we define sgn(x) = +1 if the first traversal through x crosses the3

second traversal from right to left, and sgn(x) =−1 otherwise. Two vertices x and y are interleaved,4

denoted x Ç y , if they alternate in cyclic order—x , y , x , y—along γ. Finally, following Polyak [28], we5

can define6

defect(γ) := − 2
∑

xÇy

sgn(x) · sgn(y),7

where the sum is taken over all interleaved pairs of vertices of γ.8

Trivially, every simple closed curve has defect zero. Straightforward case analysis [28] implies that9

the defect of a curve does not depend on the choice of basepoint or orientation. Moreover, any homotopy10

move changes the defect of a curve by at most 2; see our previous paper [8, Section 2.1] for an explicit11

case breakdown. Defect is also preserved by any homeomorphism from the sphere to itself, including12

reflection.13

4.2 Tangle Flips14

Now let σ be a simple closed curve that intersects γ only transversely and away from its vertices. By15

the Jordan curve theorem, we can assume without loss of generality that σ is a circle, and that the16

intersection points γ∩σ are evenly spaced around σ. A tangle of γ is the intersection of γ with either17

disk bounded by σ; each tangle consists of one or more subpaths of γ called strands. We arbitrarily18

refer to the two tangles defined by σ as the interior and exterior tangles of σ.19

A tangle is tight if each strand is simple and each pair of strands crosses at most once. Any tangle can20

be tightened—that is, transformed into a tight tangle—by continuously deforming the strands without21

crossing σ or moving their endpoints, and therefore by a finite sequence of homotopy moves. Let γåσ22

and γ äσ denote the closed curves that result from tightening the interior and exterior tangles of σ,23

respectively.224

Figure 4.1. Flipping tangles with one and two strands.

Finally, we can flip any tangle by reflecting the disk containing it, so that each strand endpoint maps25

to a different strand endpoint; see Figure 4.1. Straightforward case analysis implies that flipping any26

tangle of γ with at most two strands transforms γ into another closed curve. The main result of this27

section is that the resulting curve has the same defect as γ.28

Lemma 4.1. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with one strand29

yields another closed curve γ′ with defect(γ′) = defect(γ).30

Proof: Let σ be a simple closed curve that crosses γ at exactly two points. These points decompose σ31

into two subpaths α ·β , where α is the unique strand of the interior tangle and β is the unique strand of32

the exterior tangle. Let Σ denote the interior disk of σ, and let φ : Σ→ Σ denote the homeomorphism33

that flips the interior tangle. Flipping the interior tangle yields the closed curve γ′ := rev(φ(α)) · β ,34

where rev denotes path reversal.35

2We recommend pronouncing å as “tightened inside” and ä as “tightened outside”; note that the symbols å and ä resemble
the second letters of “inside” and “outside”.
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No vertex of α is interleaved with a vertex of β; thus, two vertices in γ′ are interleaved if and only1

if the corresponding vertices in γ are interleaved. Every vertex of rev(φ(α)) has the same sign as the2

corresponding vertex of α, since both the orientation of the vertex and the order of traversals through3

the vertex changed. Thus, every vertex of γ′ has the same sign as the corresponding vertex of γ. We4

conclude that defect(γ′) = defect(γ). �5

Lemma 4.2. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ with two strands6

yields another closed curve γ′ with defect(γ′) = defect(γ).7

Proof: Let σ be a simple closed curve that crosses γ at exactly four points. These four points naturally8

decompose γ into four subpaths α ·δ · β · ε, where α and β are the strands of the interior tangle of σ,9

and δ and ε are the strands of the exterior tangle. Flipping the interior tangle either exchanges α and β ,10

reverses α and β , or both; see Figure 4.2. In every case, the result is a single closed curve γ′.11
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Figure 4.2. Flipping all six types of 2-strand tangle.

The identity defect(γ′) = defect(γ) follows from our inclusion-exclusion formula for defect [7,12

Lemma 5.4]; we give a simpler complete proof here to keep the paper self-contained.13

We classify each vertex of γ as interior if it lies on α and/or β , and exterior otherwise. Similarly, we14

classify pairs of interleaved vertices are either interior, exterior, or mixed.15

An interior vertex x and an exterior vertex y are interleaved if and only if x is an intersection point16

of α and β and y is an intersection point of δ and ε. Thus, the total contribution of mixed vertex pairs17

to Polyak’s formula defect(γ) =−2
∑

xÇy sgn(x) · sgn(y) is18

−2
∑

x∈α∩β

∑

y∈δ∩ε
sgn(x) · sgn(y) = − 2







∑

x∈α∩β
sgn(x)













∑

y∈δ∩ε
sgn(y)






.19

Consider any sequence of homotopy moves that tightens the interior tangle with strands α and β . Any20

2�0 move involving both α and β removes one positive and one negative vertex; no other homotopy21

move changes the number of vertices in α∩ β or the signs of those vertices. Thus, tightening α and β22

leaves the sum
∑

x∈α∩β sgn(x) unchanged. Similarly, tightening the exterior tangle δ ∪ ε leaves the sum23
∑

y∈δ∩ε sgn(y) unchanged. But after tightening both tangles, either α and β are disjoint, or δ and ε24

are disjoint, or both, as γ is a single closed curve. Thus, at least one of the sums
∑

x∈α∩β sgn(x) and25
∑

y∈δ∩ε sgn(y) is equal to zero. We conclude that mixed vertex pairs do not contribute to the defect.26

The curve γåσ obtained by tightening α and β has at most one interior vertex (and therefore no27

interior vertex pairs); the exterior vertices of γåσ are precisely the exterior vertices of γ. Similarly, the28

curve γäσ obtained by tightening both δ and ε has at most one exterior vertex; the interior vertices of29

γäσ are precisely the interior vertices of γ. It follows that defect(γ) = defect(γäσ) + defect(γåσ).30
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Finally, let γ′ be the result of flipping the interior tangle. The curve γ′ äσ is just a reflection of γäσ,1

which implies that defect(γ′äσ) = defect(γäσ), and straightforward case analysis implies γ′åσ = γåσ.2

We conclude that defect(γ′) = defect(γ′åσ)+defect(γ′äσ) = defect(γåσ)+defect(γäσ) = defect(γ). �3

4.3 Navigating Between Planar Embeddings4

A classical result of Adkisson [1] and Whitney [36] is that every 3-connected planar graph has an5

essentially unique planar embedding. Mac Lane [26] described how to count the planar embeddings of6

any biconnected planar graph, by decomposing it into its triconnected components. Stallmann [29,30]7

and Cai [6] extended Mac Lane’s algorithm to arbitrary planar graphs, by decomposing them into8

biconnected components. Mac Lane’s decomposition is also the basis of the SPQR-tree data structure of9

Di Battista and Tamassia [13,14], which encodes all planar embeddings of an arbitrary planar graph.10

Mac Lane’s structural results imply that any planar embedding of a 2-connected planar graph G can11

be transformed into any other embedding by a finite sequence of split reflections, defined as follows.12

A split curve is a simple closed curve σ whose intersection with the embedding of G consists of two13

vertices x and y; without loss of generality, σ is a circle with x and y at opposite points. A split reflection14

modifies the embedding of G by reflecting the subgraph inside σ across the line through x and y .15

Lemma 4.3. Let G be an arbitrary 2-connected planar graph. Any planar embedding of G can be16

transformed into any other planar embedding of G by a finite sequence of split reflections.17

To navigate among the planar embeddings of arbitrary connected planar graphs, we need two18

additional operations. First, we allow split curves that intersect G at only a single cut vertex; a cut19

reflection modifies the embedding of G by reflects the subgraph inside such a curve. More interestingly,20

we also allow degenerate split curves that pass through a cut vertex x of G twice, but are otherwise21

simple and disjoint from G. The interior of a degenerate split curve σ is an open topological disk. A22

cut eversion is a degenerate split reflection that everts the embedding of the subgraph of G inside such23

a curve, intuitively by mapping the interior of σ to an open circular disk (with two copies of x on its24

boundary), reflecting the interior subgraph, and then mapping the resulting embedding back to the25

interior of σ. Structural results of Stallman [29,30] and Di Battista and Tamassia [14, Section 7] imply26

the following.27

Figure 4.3. Top row: A regular split reflection and a cut reflection. Bottom row: a cut eversion.

Lemma 4.4. Let G be an arbitrary connected planar graph. Any planar embedding of G can be28

transformed into any other planar embedding of G by a finite sequence of split reflections, cut reflections,29

and cut eversions.30

Now consider the effect of these operations on the medial graph G×. For simplicity, assume G× is a31

single closed curve. Let σ be any (possibly degenerate) split curve for G. Embed G× so that every medial32
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vertex lies on the corresponding edge in G, and every medial edge intersects σ at most once. Then σ1

intersects at most four edges of G×, so the tangle of G× inside σ has at most two strands. Moreover,2

reflecting (or everting) the subgraph of G inside σ induces a flip of this tangle of G×.3

Lemmas 4.1, 4.2, and 4.4 now immediately imply the following result.4

Theorem 4.5. Let G and H be planar embeddings of the same abstract planar graph. If G is unicursal,5

then H is unicursal and defect(G×) = defect(H×).6

4.4 Back to Planar Electrical Moves7

Each planar electrical transformation in a planar graph G induces the same change in the medial8

graph G× as a finite sequence of 1- and 2-strand tangle flips (hereafter simply called “tangle flips”)9

followed by a single medial electrical move. For an arbitrary connected multicurve γ on the sphere, let10

X̄(γ) denote the minimum number of medial electrical moves in a mixed sequence of medial electrical11

moves and tangle flips that simplifies γ. Similarly, let H̄(γ) denote the minimum number of homotopy12

moves in a mixed sequence of homotopy moves and tangle flips that simplifies γ. We emphasize that13

tangle flips are “free” and do not contribute to either X̄ (γ) or H̄(γ).14

Our lower bound on planar electrical moves follows our earlier lower bound proof for facial electrical15

moves [8] almost verbatim; the only subtlety is that the embedding of the graph can effectively change16

at every step of the reduction. We repeat the arguments here to keep the paper self-contained.17

Lemma 4.6. X̄ (γ)< X̄ (γ) for every connected proper smoothing γ of every connected multicurve γ on18

the sphere.19

Proof: Let γ be a connected multicurve, and let γ be a connected proper smoothing of γ. The proof20

proceeds by induction on X̄ (γ). If X̄ (γ) = 0, then γ is already simple, so the lemma is vacuously true.21

First, suppose γ is obtained from γ by smoothing a single vertex x . Let Σ be an optimal mixed22

sequence of tangle flips and medial electrical moves that simplifies γ. This sequence starts with zero23

or more tangle flips, followed by a medial electrical move. Let γ′ be the multicurve that results from24

the initial sequence of tangle flips; by definition, we have X̄ (γ) = X̄ (γ′). Moreover, applying the same25

sequence of tangle flips to γ yields a connected multicurve γ′ such that X̄ (γ) = X̄ (γ′). Thus, we can26

assume without loss of generality that the first operation in Σ is a medial electrical move.27

Now let γ′ be the result of this move; by definition, we have X̄ (γ) = X̄ (γ′) + 1. As in the proof of28

Lemma 3.9, there are several subcases to consider, depending on whether the move from γ to γ′ involves29

the smoothed vertex x , and if so, the specific type of move; see Figure 3.3. In every subcase, we can30

apply at most one medial electrical move to γ to obtain a (possibly trivial) smoothing γ′ of γ′, and then31

apply the inductive hypothesis on γ′ and γ′ to prove the statement. We omit the straightforward details.32

Finally, if γ is obtained from γ by smoothing more than one vertex, the lemma follows immediately33

by induction from the previous analysis. �34

Lemma 4.7. For every connected multicurve γ, there is an intermixed sequence of medial electrical35

moves and tangle flips that reduces γ to a simple closed curve, contains exactly X̄ (γ) medial electrical36

moves, and does not contain 0�1 or 1�2 moves.37

Proof: Consider an optimal sequence of medial electrical moves and tangle flips that reduces γ, and let γi38

denote the result of the first i moves in this sequence. If any γi has more vertices than its predecessor39

γi−1, then γi−1 is a connected proper smoothing of γi , and Lemma 4.6 implies a contradiction. �40

Lemma 4.8. X̄ (γ)≥ H̄(γ) for every closed curve γ on the sphere.41
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Proof: Let γ be a planar closed curve. The proof proceeds by induction on X̄ (γ). If X̄ (γ) = 0, then γ is1

simple and thus H̄(γ) = 0, so assume otherwise.2

Let Σ be an optimal sequence of medial electrical moves and tangle flips that reduces γ, and let γi3

be the curve obtained by applying a prefix of Σ up to and including the first medial electrical move. The4

minimality of Σ implies that X̄ (γ) = X̄ (γ′) + 1. By Lemma 4.7, we can assume without loss of generality5

that the first medial electrical move in Σ is neither 0�1 nor 1�2, and if this first medial electrical move6

is 1�0 or 3�3, the theorem immediately follows by induction.7

The only remaining move to consider is 2�1. Let γ denote the result of applying the same sequence8

of tangle flips to γ, but replacing the final 2�1 move with a 2�0 move, or equivalently, smoothing the9

vertex of γ′ left by the final 2�1 move. We immediately have H̄(γ)≤ H̄(γ)+1. Because γ is a connected10

proper smoothing of γ′, Lemma 4.6 implies X̄ (γ)< X̄ (γ′) = X̄ (γ)− 1. Finally, the inductive hypothesis11

implies that X̄ (γ)≥ H̄(γ), which completes the proof. �12

Lemma 4.9. H̄(γ)≥ |defect(γ)|/2 for every closed curve γ on the sphere.13

Proof: Each homotopy move decreases |defect(γ)| by at most 2, and Lemmas 4.1 and 4.2 imply that14

tangle flips do not change |defect(γ)| at all. Every simple curve has defect 0. �15

Theorem 4.10. Let G be an arbitrary planar graph, and let γ be any unicursal smoothing of G× (defined16

with respect to any planar embedding of G). Reducing G to a single vertex requires at least |defect(γ)|/217

planar electrical transformations.18

Proof: The minimum number of planar electrical transformations required to reduce G is at least X̄ (G×).19

Because γ is a single curve, it must be connected, so Lemma 4.6 implies that X̄ (G×)≥ X̄ (γ). The theorem20

now follows immediately from Lemmas 4.8 and 4.9. �21

Finally, Hayashi et al. [23] and Even-Zohar et al. [16] describe infinite families of planar closed22

curves with defect Ω(n3/2); see also [8, Section 2.2]. The following corollary is now immediate.23

Corollary 4.11. Reducing any n-vertex planar graph to a single vertex requires Ω(n3/2) planar electrical24

transformations in the worst case.25

5 Open Problems26

Our results suggest several open problems. Perhaps the most compelling, and the primary motivation27

for our work, is to find either a subquadratic upper bound or a quadratic lower bound on the number28

of (unrestricted) electrical transformations required to reduce any planar graph without terminals to29

a single vertex. Like Gitler [19], Feo and Provan [18], and Archdeacon et al. [3], we conjecture that30

O(n3/2) facial electrical transformations suffice. More ambitiously, we conjecture that any 2-terminal31

plane graph can be reduced to a single edge using O(n3/2) facial electrical transformations and terminal-32

leaf contractions, as mentioned in Section 3.3. However, proving these conjectures appears to be33

challenging.34

Finally, none of our lower bound techniques imply anything about non-planar electrical transforma-35

tions or about electrical reduction of non-planar graphs. Indeed, the only lower bound known in the36

most general setting, for any family of electrically reducible graphs, is the trivial Ω(n). It seems unlikely37

that planar graphs can be reduced more quickly by using non-planar electrical transformations, but we38

can’t prove anything. Any non-trivial lower bound for this problem would be interesting.39
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