
Dynamic geometric set cover and hitting set

Pankaj K. Agarwal ∗

pankaj@cs.duke.edu

Hsien-Chih Chang ∗

hsienchih.chang@duke.edu

Subhash Suri †

suri@cs.ucsb.edu

Allen Xiao ∗

axiao@cs.duke.edu

Jie Xue †

jiexue@ucsb.edu

Abstract

We investigate dynamic versions of geometric set cover and hitting set where points and ranges
may be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution
for the current problem instance. While their static versions have been extensively studied in the past,
surprisingly little is known about dynamic geometric set cover and hitting set. For instance, even for
the most basic case of one-dimensional interval set cover and hitting set, no nontrivial results were
known. The main contribution of our paper are two frameworks that lead to efficient data structures for
dynamically maintaining set covers and hitting sets in R1 and R2. The first framework uses bootstrapping
and gives a (1 + ε)-approximate data structure for dynamic interval set cover in R1 with O(nα/ε)
amortized update time for any constant α > 0; in R2, this method gives O(1)-approximate data structures
for unit-square (and quadrant) set cover and hitting set with O(n1/2+α) amortized update time. The
second framework uses local modification, and leads to a (1 + ε)-approximate data structure for dynamic

interval hitting set in R1 with Õ(1/ε) amortized update time; in R2, it gives O(1)-approximate data
structures for unit-square (and quadrant) set cover and hitting set in the partially dynamic settings with

Õ(1) amortized update time.

1 Introduction

Given a pair (S,R) where S is a set of points and R is a collection of geometric ranges in a Euclidean space,
the geometric set cover (resp., hitting set) problem is to find the smallest number of ranges in R (resp.,
points in S) that cover all points in S (resp., hit all ranges in R). Geometric set cover and hitting set are
classical geometric optimization problems, with numerous applications in databases, sensor networks, VLSI
design, etc.

In many applications, the problem instance can change over time and re-computing a new solution after
each change is too costly. In these situations, a dynamic algorithm that can update the solution after a
change more efficiently than constructing the entire new solution from scratch is highly desirable. This
motivates the main problem studied in our paper: dynamically maintaining geometric set covers and hitting
sets under insertion and deletion of points and ranges.

Although (static) geometric set cover and hitting set have been extensively studied over the years, their
dynamic variants are surprisingly open. For example, even for the most fundamental case, dynamic interval
set cover and hitting set in one dimension, no nontrivial results were previously known. In this paper, we
propose two algorithmic frameworks for the problems, which lead to efficient data structures for dynamic
set cover and hitting set for intervals in R1 and unit squares and quadrants in R2. We believe that our
approaches can be extended to solve dynamic set cover and hitting set in other geometric settings, or more
generally, other dynamic problems in computational geometry.

∗Department of Computer Science, Duke University, USA
†Department of Computer Science, University of California at Santa Barbara, USA

1

1.1 Related work

The set cover and hitting set problems in general setting are well-known to be NP-complete [18]. A sim-
ple greedy algorithm achieves an O(log n)-approximation [11, 19, 21], which is tight under appropriate
complexity-theoretic assumptions [13, 20]. In many geometric settings, the problems remain NP-hard or
even hard to approximate [5, 22, 23]. However, by exploiting the geometric nature of the problems, efficient
algorithms with better approximation factors can be obtained. For example, Mustafa and Ray [25] showed
the existence of polynomial-time approximation schemes (PTAS) for halfspace hitting set in R3 and disk
hitting set. There is also a PTAS for unit-square set cover given by Erlebach and van Leeuwen [14]. Agarwal
and Pan [2] proposed approximation algorithms with near-linear running time for the set cover and hitting
set problems for halfspaces in R3, disks in R2, and orthogonal rectangles.

Dynamic problems have received a considerable attention in recent years [3, 6, 7, 9, 10, 17, 26, 27]. In
particular, dynamic set cover in general setting has been studied in [1, 8, 16]. All the results were achieved in
the partially dynamic setting where ranges are fixed and only points are dynamic. Gupta et al. [16] showed
that an O(log n)-approximation can be maintained using O(f log n) amortized update time and an O(f3)-
approximation can be maintained using O(f2) amortized update time, where f is the maximum number
of ranges that a point belongs to. Bhattacharya et al. [8] gave an O(f2)-approximation data structure for
dynamic set cover with O(f log n) amortized update time. Abboud et al. [1] proved that one can maintain
a (1 + ε)f -approximation using O(f2 log n/ε5) amortized update time.

In geometric settings, only the dynamic hitting set problem has been considered [15]. Ganjugunte [15]
studied two different dynamic settings: (i) only the range set R is dynamic and (ii) R is dynamic and
S is semi-dynamic (i.e., insertion-only). Ganjugunte [15] showed that, for pseudo-disks in R2, dynamic
hitting set in setting (i) can be solved using O(γ(n) log4 n) amortized update time with approximation
factor O(log2 n), and that in setting (ii) can be solved using O(γ(n)

√
n log4 n) amortized update time with

approximation factor O(log6 n/ log logn), where γ(n) is the time for finding a point in X contained in a
query pseudo-trapezoid (see [15] for details). Dynamic geometric hitting set in the fully dynamic setting
(where both points and ranges can be inserted or deleted) as well as dynamic geometric set cover has not
yet been studied before, to the best of our knowledge.

1.2 Our results

Let (S,R) be a dynamic geometric set cover (resp., hitting set) instance. We are interested in proposing
efficient data structures to maintain an (approximately) optimal solution for (S,R). This may have various
definitions, resulting in different variants of the problem. A natural variant is to maintain the number opt,
which is the size of an optimal set cover (resp., hitting set) for (S,R), or an approximation of opt. However,
in many applications, only maintaining the optimum is not satisfactory and one may hope to maintain a
“real” set cover (resp., hitting set) for the dynamic instance. Therefore, in this paper, we formulate the
problem as follows. We require the data structure to, after each update, store (implicitly) a solution for
the current problem instance satisfying some quality requirement such that certain information about the
solution can be queried efficiently. For example, one can ask how large the solution is, whether a specific
element in R (resp., S) is used in the solution, what the entire solution is, etc. We will make this more
precise shortly.

In dynamic settings, it is usually more natural and convenient to consider a multiset solution for the set
cover (resp., hitting set) instance. That is, we allow the solution to be a multiset of elements in R (resp.,
S) that cover all points in S (resp., hit all ranges in R), and the quality of the solution is also evaluated in
terms of the multiset cardinality. In the static problems, one can always efficiently remove the duplicates
in a multiset solution to obtain a (ordinary) set cover or hitting set with even better quality (i.e., smaller
cardinality), hence computing a multiset solution is essentially equivalent to computing an ordinary solution.
However, in dynamic settings, the update time has to be sublinear, and in general this is not sufficient for
detecting and removing duplicates. Therefore, in this paper, we mainly focus on multiset solutions (though
some of our data structures can maintain an ordinary set cover or hitting set). Unless explicitly mentioned
otherwise, solutions for set cover and hitting set always refer to multiset solutions hereafter.

2

Precisely, we require a dynamic set cover (resp., hitting set) data structure to store implicitly, after each
update, a set cover R′ (resp., a hitting set S′) for the current instance (S,R) such that the following queries
are supported.

• Size query: reporting the (multiset) size of R′ (resp., S′).

• Membership query: reporting, for a given range R ∈ R (resp., a given point a ∈ S), the number of
copies of R (resp., a) contained in R′ (resp., S′).

• Reporting query: reporting all the elements in R′ (resp., S′).

We require the size query to be answered in O(1) time, a membership query to be answered in O(log |R′|)
time (resp., O(log |S′|) time), and the reporting query to be answered in O(|R′|) time (resp., O(|S′|) time);
this is the best one can expect in the pointer machine model.

We say that a set cover (resp., hitting set) instance is fully dynamic if insertions and deletions on both
points and ranges are allowed, and partially dynamic if only the points (resp., ranges) can be inserted and
deleted. This paper mainly focuses on the fully dynamic setting, while some results are achieved in the
partially dynamic setting. Thus, unless explicitly mentioned otherwise, problems are always considered in
the fully dynamic setting.

The main contribution of this paper are two frameworks for designing dynamic geometric set cover and
hitting set data structures, leading to efficient data structures in R1 and R2 (see Table 1). The first framework
is based on bootstrapping, which results in efficient (approximate) dynamic data structures for interval set
cover, quadrant/unit-square set cover and hitting set (see the first three rows of Table 1 for detailed bounds).
The second framework is based on local modification, which results in efficient (approximate) dynamic data
structures for interval hitting set, quadrant/unit-square set cover and hitting set in the partially dynamic
setting (see the last three rows of Table 1 for detailed bounds).

Framework Problem Range Approx. factor Update time Setting

Bootstrapping

SC Interval 1 + ε Õ(nα/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(n1/2+α) Fully dynamic

SC & HS Unit square O(1) Õ(n1/2+α) Fully dynamic

Local modification

HS Interval 1 + ε Õ(1/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(1) Part. dynamic

SC & HS Unit square O(1) Õ(1) Part. dynamic

Table 1: Summary of our results for dynamic geometric set cover and hitting set (SC = set cover and HS

= hitting set). All update times are amortized. The notation Õ(·) hides logarithmic factors, n is the size of

the current instance, and α > 0 is any small constant. All data structures can be constructed in Õ(n0) time
where n0 is the size of the initial instance.

Organization. The rest of the paper is organized as follows. Section 2 gives the preliminaries required
for the paper and Section 3 gives an overview of our two frameworks. Our first framework (bootstrapping)
and second framework (local modification) for designing efficient dynamic geometric set cover and hitting
set data structures are presented in Section 4 and Section 5, respectively. To make the paper more readable,
the proofs of the technical lemmas and some details are deferred to the appendix.

2 Preliminaries

In this section, we introduce the basic notions used throughout the paper.

3

Multi-sets and disjoint union. A multi-set is a set in which elements can have multiple copies. The
multiplicity of an element a in a multi-set A is the number of the copies of a in A. For two multi-sets A and
B, we use A t B to denote the disjoint union of A and B, in which the multiplicity of an element a is the
sum of the multiplicities of a in A and B.

Basic data structures. A data structure built on a dataset (e.g., point set, range set, set cover or hitting

set instances) of size n is basic if it can be constructed in Õ(n) time and can be dynamized with Õ(1)
update time (with a bit abuse of terminology, sometimes we also use “basic data structures” to denote the
dynamized version of such data structures).

Output-sensitive algorithms. In some set cover and hitting set problems, if the problem instance is
properly stored in some data structure, it is possible to compute an (approximate) optimal solution in sub-
linear time. An output-sensitive algorithm for a set cover or hitting set problem refers to an algorithm that
can compute an (approximate) optimal solution in Õ(out) time (where out is the size of the output solution),
by using some basic data structure built on the problem instance.

3 An overview of our two frameworks

The basic idea of our first framework is bootstrapping. Namely, we begin from a simple inefficient dynamic
set cover or hitting set data structure (e.g., a data structure that re-computes a solution after each update),
and repeatedly use the current data structure to obtain an improved one. The main challenge here is to
design the bootstrapping procedure: how to use a given data structure to construct a new data structure
with improved update time. We achieve this by using output-sensitive algorithms and carefully partitioning
the problem instances to sub-instances.

Our second framework is much simpler, which is based on local modification. Namely, we construct a new
solution by slightly modifying the previous one after each update, and re-compute a new solution periodically
using an output-sensitive algorithm. This framework applies to the problems which are stable, in the sense
that the optimum of a dynamic instance does not change significantly.

4 First framework: Bootstrapping

In this section, we present our first frame work for dynamic geometric set cover and hitting set, which is
based on bootstrapping and results in sub-linear data structures for dynamic interval set cover and dynamic
quadrant and unit-square set cover (resp., hitting set).

4.1 Warm-up: 1D set cover for intervals

As a warm up, we first study the 1D problem: dynamic interval set cover. First, we observe that interval set
cover admits a simple exact output-sensitive algorithm. Indeed, interval set cover can be solved using the
greedy algorithm that repeatedly picks the leftmost uncovered point and covers it using the interval with
the rightmost right endpoint, and the algorithm can be easily made output-sensitive if we store the points
and intervals in binary search trees.

Lemma 1. Interval set cover admits an exact output-sensitive algorithm.

This algorithm will serve an important role in the design of our data structure.

4.1.1 Bootstrapping

As mentioned before, our data structure is designed using bootstrapping. Specifically, we prove the following
bootstrapping theorem, which is the technical heart of our result. The theorem roughly states that given a

4

dynamic interval set cover data structure, one can obtain another dynamic interval set cover data structure
with improved update time.

Theorem 2. Let α ∈ [0, 1] be a number. If there exists a (1 + ε)-approximate dynamic interval set cover

data structure Dold with Õ(nα/ε1−α) amortized update time and Õ(n0) construction time for any ε > 0,

then there exists a (1 + ε)-approximate dynamic interval set cover data structure Dnew with Õ(nα
′
/ε1−α

′
)

amortized update time and Õ(n0) construction time for any ε > 0, where α′ = α/(1 +α). Here n (resp., n0)
denotes the size of the current (resp., initial) problem instance.

Assuming the existence of Dold as in the theorem, we are going to design the improved data structure
Dnew. Let (S, I) be a dynamic interval set cover instance, and ε > 0 be the approximation factor. We denote
by n (resp., n0) the size of the current (resp., initial) (S, I).

The construction of Dnew. Initially, |S|+ |I| = n0. Essentially, our data structure Dnew consists of two
parts1. The first part is the basic data structure A required for the output-sensitive algorithm of Lemma 1.
The second part is a family of Dold data structures defined as follows. Let f be a function to be determined
shortly. We partition the real line R into r = dn0/f(n0, ε)e connected portions (i.e., intervals) J1, . . . , Jr such
that each portion Ji contains O(f(n0, ε)) points in S and O(f(n0, ε)) endpoints of the intervals in I. Define
Si = S ∩ Ji and define Ii ⊆ I as the sub-collections consisting of the intervals that “partially intersect” Ji,
i.e., Ii = {I ∈ I : Ji ∩ I 6= ∅ and Ji * I}. When the instance (S, I) is updated, the partition J1, . . . , Jr will
remain unchanged, but the Si’s and Ii’s will change along with S and I. We view each (Si, Ii) as a dynamic

interval set cover instance, and let D(i)
old be the data structure Dold built on (Si, Ii) for the approximation

parameter ε̃ = ε/2. Thus, D(i)
old maintains a (1 + ε̃)-approximate optimal set cover for (Si, Ii). The second

part of Dnew consists of the data structures D(1)
old, . . . ,D

(r)
old.

Update and reconstruction. After an operation on (S, I), we update the basic data structure A. Also,

we update the data structure D(i)
old if the instance (Si, Ii) changes due to the operation. Note that an

operation on S changes exactly one Si and an operation on I changes at most two Ii’s (because an interval

can belong to at most two Ii’s). Thus, we in fact only need to update at most two D(i)
old’s. Besides the

update, we also reconstruct the entire data structure Dnew periodically (as is the case for many dynamic
data structures). Specifically, the first reconstruction of Dnew happens after processing f(n0, ε) operations.
The reconstruction is the same as the initial construction of Dnew, except that n0 is replaced with n1, the
size of (S, I) at the time of reconstruction. Then the second reconstruction happens after processing f(n1, ε)
operations since the first reconstruction, and so forth.

Maintaining a solution. We now discuss how to maintain a (1 + ε)-approximate optimal set cover Iappx
for (S, I). Let opt denote the optimum (i.e., the size of an optimal set cover) of the current (S, I). Set
δ = min{(6 + 2ε) · r/ε, n}. If opt ≤ δ, then the output-sensitive algorithm can compute an optimal set cover

for (S, I) in Õ(δ) time. Thus, we simulate the output-sensitive algorithm within that amount of time. If
the algorithm successfully computes a solution, we use it as our Iappx. Otherwise, we construct Iappx as
follows. For i ∈ {1, . . . , r}, we say Ji is coverable if there exists I ∈ I such that Ji ⊆ I and uncoverable
otherwise. Let P = {i : Ji is coverable} and P ′ = {i : Ji is uncoverable}. We try to use the intervals in I to
“cover” all coverable portions. That is, for each i ∈ P , we find an interval in I that contains Ji, and denote
by I∗ the collection of these intervals. Then we consider the uncoverable portions. If for some i ∈ P ′, the

data structure D(i)
old tells us that the current (Si, Ii) does not have a set cover, then we immediately make a

no-solution decision, i.e., decide that the current (S, I) has no feasible set cover, and continue to the next

operation. Otherwise, for every i ∈ P ′, the data structure D(i)
old maintains a (1 + ε̃)-approximate optimal set

cover I∗i for (Si, Ii). We then define Iappx = I∗ t
(⊔

Ji∈P′ I
∗
i

)
.

1In implementation level, we may need some additional support data structures (which are very simple). For simplicity of
exposition, we shall mention them when discussing the implementation details.

5

Later we will prove that Iappx is always a (1 + ε)-approximate optimal set cover for (S, I). Before this,
let us consider how to store Iappx properly to support the size, membership, and reporting queries in the
required query times. If Iappx is computed by the output-sensitive algorithm, then the size of Iappx is at
most δ, and we have all the elements of Iappx in hand. In this case, it is not difficult to build a data structure
on Iappx to support the desired queries. On the other hand, if Iappx is defined as the disjoint union of I∗
and I∗i ’s, the size of Iappx might be very large and thus we are not able to explicitly extract all elements

of Iappx. Fortunately, in this case, each I∗i is already maintained in the data structure D(i)
old. Therefore, we

actually only need to compute P , P ′, and I∗; with these in hand, one can already build a data structure to
support the desired queries for Iappx. We defer the detailed discussion to Appendix B.

Correctness. We now prove the correctness of our data structure Dnew. We first show the correctness of
the no-solution decision.

Lemma 3. Dnew makes a no-solution decision iff the current (S, I) has no set cover.

Next, we show that the solution Iappx maintained by Dnew is truly a (1 + ε)-approximate optimal set
cover for (S, I). If Iappx is computed by the output-sensitive algorithm, then it is an optimal set cover for
(S, I). Otherwise, opt > δ = min{(6+2ε) ·r/ε, n}, i.e., either opt > (6+2ε) ·r/ε or opt > n. If opt > n, then
the current (S, I) has no set cover (i.e., opt =∞) and thus Dnew makes a no-solution decision by Lemma 3.
So assume opt > (6+2ε) ·r/ε. In this case, Iappx = I∗t(

⊔
i∈P ′ I∗i). For each i ∈ P ′, let opti be the optimum

of the instance (Si, Ii). Then we have |I∗i | ≤ (1 + ε̃) · opti for all i ∈ P ′ where ε̃ = ε/2. Since |I∗| ≤ r, we
have

|Iappx| = |I∗|+
∑
i∈P ′
|I∗i | ≤ r +

(
1 +

ε

2

)∑
i∈P ′

opti. (1)

Let Iopt be an optimal set cover for (S, I). We observe that for i ∈ P ′, Iopt ∩ Ii is a set cover for (Si, Ii),
because Ji is uncoverable (so the points in Si cannot be covered by any interval in I\Ii). It immediately
follows that opti ≤ |Iopt ∩ Ii| for all i ∈ P ′. Therefore, we have∑

i∈P ′
opti ≤

∑
i∈P ′
|Iopt ∩ Ii|. (2)

The right-hand side of the above inequality can be larger than |Iopt| as some intervals in Iopt can belong to
two Ii’s. The following lemma bounds the number of such intervals.

Lemma 4. There are at most 2r intervals in Iopt that belong to exactly two Ii’s.

The above lemma immediately implies∑
i∈P ′
|Iopt ∩ Ii| ≤ |Iopt|+ 2r = opt + 2r. (3)

Combining Inequalities 1, 2, and 3, we deduce that

|Iappx| ≤ r +
(

1 +
ε

2

)∑
i∈P ′

opti

≤ r +
(

1 +
ε

2

)∑
i∈P ′
|Iopt ∩ Ii|

≤ r +
(

1 +
ε

2

)
· (opt + 2r) = (3 + ε) · r +

(
1 +

ε

2

)
· opt

<
ε

2
· opt +

(
1 +

ε

2

)
· opt = (1 + ε) · opt,

where the last inequality follows from the assumption opt > (6 + 2ε) · r/ε.

6

Time analysis. We briefly discuss the update and construction time of Dnew; a detailed analysis can be
found in Appendix B. Since Dnew is reconstructed periodically, it suffices to consider the first period (i.e.,

the period before the first reconstruction). The construction of Dnew can be easily done in Õ(n0) time.

The update time of Dnew consists of the time for updating the data structures A and D(1)
old, . . . ,D

(r)
old, the

time for maintaining the solution, and the time for reconstruction. Since the period consists of f(n0, ε)
operations, the size of each (Si, Ii) is always bounded by O(f(n0, ε)) during the period. As argued before,

we only need to update at most two D(i)
old’s after each operation. Thus, updating the Dold data structures

takes Õ(f(n0, ε)
α/ε1−α) amortized time. Maintaining the solution can be done in Õ(δ + r) time, with a

careful implementation. The time for reconstruction is bounded by Õ(n0 + f(n0, ε)); we amortize it over

the f(n0, ε) operations in the period and the amortized time cost is then Õ(n0/f(n0, ε)), i.e., Õ(r). In

total, the amortized update time of Dnew (during the first period) is Õ(f(n0, ε)
α/ε1−α + δ + r). If we set

f(n, ε) = min{n1−α′/εα′ , n/2} where α′ is as defined in Theorem 2, a careful calculation (see Appendix B)

shows that the amortized update time becomes Õ(nα
′
/ε1−α

′
).

4.1.2 Putting everything together

With the bootstrapping theorem in hand, we are now able to design our dynamic interval set cover data
structure. The starting point is a “trivial” data structure, which simply uses the output-sensitive algorithm
of Lemma 1 to re-compute an optimal interval set cover after each update. Clearly, the update time of this
data structure is Õ(n) and the construction time is Õ(n0). Thus, there exists a (1+ε)-approximate dynamic

interval set cover data structure with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and Õ(n0) construction
time. Define αi = αi−1/(1 +αi−1) for i ≥ 1. By applying Theorem 2 i times for a constant i ≥ 1, we see the

existence of a (1 + ε)-approximate dynamic interval set cover data structure with Õ(nαi/ε1−αi) amortized

update time and Õ(n0) construction time. One can easily verify that αi = 1/(i+ 1) for all i ≥ 0. Therefore,

for any constant α > 0, we have an index i ≥ 0 satisfying αi < α and hence Õ(nαi/ε1−αi) = O(nα/ε). We
finally conclude the following.

Theorem 5. For a given approximation factor ε > 0 and any constant α > 0, there exists a (1 + ε)-

approximate dynamic interval set cover data structure D with O(nα/ε) amortized update time and Õ(n0)
construction time.

4.2 2D set cover and hitting set for quadrants and unit squares

In this section, we present our bootstrapping framework for 2D dynamic set cover and hitting set. Our
framework works for quadrants and unit squares.

We first show that dynamic unit-square set cover, dynamic unit-square hitting set, and dynamic quadrant
hitting set can all be reduced to dynamic quadrant set cover.

Lemma 6. Suppose there exists a c-approximate dynamic quadrant set cover data structure with f(n) amor-

tized update time and Õ(n0) construction time, where f is an increasing function. Then there exist O(c)-
approximate dynamic unit-square set cover, dynamic unit-square hitting set, and dynamic quadrant hitting
set data structures with Õ(f(n)) amortized update time and Õ(n0) construction time.

Now it suffices to consider dynamic quadrant set cover. In order to do bootstrapping, we need an output-
sensitive algorithm for quadrant set cover, analog to the one in Lemma 1 for intervals. To design such an
algorithm is considerably more difficult compared to the 1D case, and we defer it to Section 4.2.2. Before this,
let us first discuss the bootstrapping procedure, assuming the existence of a µ-approximate output-sensitive
algorithm for quadrant set cover.

4.2.1 Bootstrapping

We prove the following bootstrapping theorem, which is the technical heart of our result.

7

Theorem 7. Assume quadrant set cover admits a µ-approximate output-sensitive algorithm for some con-
stant µ ≥ 1. Then we have the following result.
(*) Let α ∈ [0, 1] be a number. If there exists a (µ+ ε)-approximate dynamic quadrant set cover data struc-

ture Dold with Õ(nα/ε1−α) amortized update time and Õ(n0) construction time for any ε > 0, then there

exists a (µ + ε)-approximate dynamic quadrant set cover data structure Dnew with Õ(nα
′
/ε1−α

′
) amortized

update time and Õ(n0) construction time for any ε > 0, where α′ = 2α/(1 + 2α). Here n (resp., n0) denotes
the size of the current (resp., initial) problem instance.

Assuming the existence of Dold as in the theorem, we are going to design the improved data structure
Dnew. Let (S,Q) be a dynamic quadrant set cover instance. As before, we denote by n (resp., n0) the size
of the current (resp., initial) (S,Q).

r rows

r columns

A cell

Figure 1: The r × r grid. Note that the cells may have different sizes.

�i,j

Q

Figure 2: A quadrant Q that left intersects �i,j .

The construction of Dnew. Initially, |S| + |Q| = n0. Essentially, our data structure Dnew consists of
two parts. The first part is the data structure A required for the µ-approximate output-sensitive algorithm.
The second part is a family of Dold data structures defined as follows. Let f be a function to be determined
shortly. We use an orthogonal grid to partition the plane R2 into r × r cells for r = dn0/f(n0, ε)e such
that each row (resp., column) of the grid contains O(f(n0, ε)) points in S and O(f(n0, ε)) vertices of the
quadrants in Q (see Figure 1 for an illustration). Denote by �i,j the cell in the i-th row and j-th column.
Define Si,j = S ∩ �i,j . Also, we need to define a sub-collection Qi,j ⊆ Q. Recall that in the 1D case, we
define Ii as the sub-collection of intervals in I that partially intersect the portion Ji. However, for technical
reasons, here we cannot simply define Qi,j as the sub-collection of quadrants in Q that partially intersects

8

�i,j . Instead, we define Qi,j as follows. We include in Qi,j all the quadrants in Q whose vertices lie in
�i,j . Besides, we also include in Qi,j the following (at most) four special quadrants. We say a quadrant
Q left intersects �i,j if Q partially intersects �i,j and contains the left edge of �i,j (see Figure 2 for an
illustration); similarly, we define “right intersects”, “top intersects”, and “bottom intersects”. Among a
collection of quadrants, the leftmost/rightmost/topmost/bottommost quadrant refers to the quadrant whose
vertex is the leftmost/rightmost/topmost/bottommost. We include in Qi,j the rightmost quadrant in Q that
left intersects �i,j , the leftmost quadrant in Q that right intersects �i,j , the bottommost quadrant in Q that
top intersects �i,j , and the topmost quadrant in Q that bottom intersects �i,j (if these quadrants exist).
When the instance (S,Q) is updated, the grid keeps unchanged, but the Si,j ’s and Qi,j ’s change along with

S and Q. We view each (Si,j ,Qi,j) as a dynamic quadrant set cover instance, and let D(i,j)
old be the data

structure Dold built on (Si,j ,Qi,j) for the approximation factor ε̃ = ε/2. The second part of Dnew consists

of the data structures D(i,j)
old for i, j ∈ {1, . . . , r}.

Update and reconstruction. After each operation on (S,Q), we update the data structure A. Also, if

some (Si,j ,Qi,j) changes, we update the data structure D(i,j)
old . Note that an operation on S changes exactly

one Si,j , and an operation on Q may only change the Qi,j ’s in one row and one column (specifically, if
the vertex of the inserted/deleted quadrant lies in �i,j , then only Qi,1, . . . ,Qi,r,Q1,j , . . . ,Qr,j may change).

Thus, we in fact only need to update the D(i,j)
old ’s in one row and one column. Besides the update, we

also reconstruct the entire data structure Dnew periodically, where the (first) reconstruction happens after
processing f(n0, ε) operations. This part is totally the same as in our 1D data structure.

Maintaining a solution. We now discuss how to maintain a (µ+ε)-approximate optimal set cover Qappx

for (S,Q). Let opt denote the optimum of the current (S,Q). Set δ = min{(8µ + 4ε + 2) · r2/ε, n}. If
opt ≤ δ, then the output-sensitive algorithm can compute a µ-approximate optimal set cover for (S,Q) in

Õ(µδ) time. Thus, we simulate the output-sensitive algorithm within that amount of time. If the algorithm
successfully computes a solution, we use it as our Qappx. Otherwise, we construct Qappx as follows. We
say the cell �i,j is coverable if there exists Q ∈ Q that contains �i,j and uncoverable otherwise. Let
P = {(i, j) : �i,j is coverable} and P ′ = {(i, j) : �i,j is uncoverable}. We try to use the quadrants in I
to “cover” all coverable cells. That is, for each (i, j) ∈ P , we find a quadrant in Q that contains �i,j , and
denote by Q∗ the set of all these quadrants. Then we consider the uncoverable cells. If for some (i, j) ∈ P ′,
the data structure D(i,j)

old tells us that the instance (Si,j ,Qi,j) has no set cover, then we immediately make a
no-solution decision, i.e., decide that the current (S,Q) has no feasible set cover, and continue to the next

operation. Otherwise, for each (i, j) ∈ P ′, the data structure D(i,j)
old maintains a (µ+ ε̃)-approximate optimal

set cover Q∗i,j for (Si,j ,Qi,j). We then define Qappx = Q∗ t
(⊔

(i,j)∈P ′ Q∗i,j
)

.

We will see later that Qappx is always a (µ+ ε)-approximate optimal set cover for (S,Q). Before this, let
us briefly discuss how to store Qappx to support the desired queries. If Qappx is computed by the output-
sensitive algorithm, then we have all the elements of Qappx in hand and can easily store them in a data
structure to support the queries. Otherwise, Qappx is defined as the disjoint union of Q∗ and Q∗i,j ’s. In
this case, the size and reporting queries can be handled in the same way as that in the 1D problem, by

taking advantage of the fact that Q∗i,j is maintained in D(i,j)
old . However, the situation for the membership

query is more complicated, because now a quadrant in Q may belong to many Q∗i,j ’s. This issue can be
handled by collecting all special quadrants in Qappx and building on them a data structure that supports
the membership query. We defer the detailed discussion to Appendix C.

Correctness. We now prove the correctness of our data structure Dnew. First, we show that the no-solution
decision made by our data structure is correct.

Lemma 8. Dnew makes a no-solution decision iff the current (S,Q) has no set cover.

Next, we show that the solution Qappx maintained by Dnew is truly a (µ+ ε)-approximate optimal set cover
for (S,Q). If Qappx is computed by the output-sensitive algorithm, then it is a µ-approximate optimal set

9

cover for (S,Q). Otherwise, opt > δ = min{(8µ + 4ε + 2) · r2/ε, n}, i.e., either opt > (8µ + 4ε + 2) · r2/ε
or opt > n. If opt > n, then (S,Q) has no set cover (i.e., opt = ∞) and Dnew makes a no-solution decision
by Lemma 8. So assume opt > (8µ + 4ε + 2)r2/ε. In this case, Qappx = Q∗ t (

⊔
(i,j)∈P ′ Q∗i,j). For each

(i, j) ∈ P ′, let opti,j be the optimum of (Si,j ,Qi,j). Then we have |Q∗i,j | ≤ (µ + ε̃) · opti,j for all (i, j) ∈ P ′
where ε̃ = ε/2. Since |Q∗| ≤ r2, we have

Qappx = |Q∗|+
∑

(i,j)∈P ′
|Q∗i,j | ≤ r2 +

(
µ+

ε

2

) ∑
(i,j)∈P ′

opti,j . (4)

Let Q′i,j ⊆ Qi,j consist of the non-special quadrants, i.e., those whose vertices are in �i,j .

Lemma 9. We have |Qopt ∩Q′i,j |+ 4 ≥ opti,j for all (i, j) ∈ P ′, and in particular,

opt + 4r2 = |Qopt|+ 4r2 ≥
∑

(i,j)∈P ′
opti,j . (5)

Using Equations 4 and 5, we deduce that

|Qappx| ≤ r2 +
(
µ+

ε

2

) ∑
(i,j)∈P ′

opti,j

≤ r2 +
(
µ+

ε

2

)
(opt + 4r2)

≤ (4µ+ 2ε+ 1) · r2 +
(
µ+

ε

2

)
· opt

<
ε

2
· opt +

(
µ+

ε

2

)
· opt = (µ+ ε) · opt,

where the last inequality follows from the fact that opt > (8µ+ 4ε+ 2) · r2/ε.

Time analysis. We briefly discuss the update and construction time of Dnew; a detailed analysis can be
found in Appendix C. It suffices to consider the first period (i.e., the period before the first reconstruction).
We first observe the following fact.

Lemma 10. At any time in the first period, we have
∑r
k=1(|Si,k| + |Qi,k|) = O(f(n0, ε) + r) for all i ∈

{1, . . . , r} and
∑r
k=1(|Sk,j |+ |Qk,j |) = O(f(n0, ε) + r) for all j ∈ {1, . . . , r}.

The above lemma implies that the sum of the sizes of all (Si,j ,Qi,j) is O(n0 + r2) at any time in the

first period. Therefore, constructing Dnew can be easily done in Õ(n0 + r2) time. The update time of Dnew

consists of the time for reconstruction, the time for updating A and D(i,j)
old ’s, and the time for maintaining the

solution. Using almost the same analysis as in the 1D problem, we can show that the reconstruction takes
Õ(r+r2/f(n0, ε)) amortized time and maintaining the solution can be done in Õ(δ+r2) time, with a careful
implementation. The time for updating the Dold data structures requires a different analysis. Let mi,j denote
the current size of (Si,j ,Qi,j). As argued before, we in fact only need to update the Dold data structures in
one row and one column (say the i-th row and j-th column). Hence, updating the Dold data structures takes

Õ(
∑r
k=1m

α
i,k/ε

1−α+
∑r
k=1m

α
k,j/ε

1−α) amortized time. Lemma 10 implies that
∑r
k=1mi,k = O(f(n0, ε)+r)

and
∑r
k=1mk,j = O(f(n0, ε) + r). Since α ≤ 1, by Hölder’s inequality and Lemma 10,

r∑
k=1

mα
i,k ≤

(∑r
k=1mi,k

r

)α
· r = O(r1−α · (f(n0, ε) + r)α)

and similarly
∑r
k=1m

α
k,j = O(r1−α · (f(n0, ε) + r)α). It follows that updating the Dold data structures takes

Õ(r1−α · (f(n0, ε) + r)α/ε1−α) amortized time. In total, the amortized update time of Dnew (during the first

period) is Õ(r1−α · (f(n0, ε) + r)α + δ + r2). If we set f(n, ε) = min{n1−α′/2/(
√
ε)α

′
, n/2} where α′ is as

defined in Theorem 7, a careful calculation (see Appendix C) shows that the amortized update time becomes

Õ(nα
′
/ε1−α

′
) .

10

4.2.2 An output-sensitive quadrant set cover algorithm

We propose an O(1)-approximate output-sensitive algorithm for quadrant set cover, which is needed for
applying Theorem 7. Let (S,Q) be a quadrant set cover instance of size n, and opt be its optimum. Our

goal is to compute an O(1)-approximate optimal set cover for (S,Q) in Õ(opt) time, using some basic data
structure built on (S,Q).

For simplicity, let us assume that (S,Q) has a set cover; how to handle the no-solution case is discussed
in Appendix D.1. There are four types of quadrants in Q, southeast, southwest, northeast, northwest; we
denote by QSE,QSW,QNE,QNW ⊆ Q the sub-collections of these types of quadrants, respectively. Let USE

denote the union of the quadrants in QSE, and define USW, UNE, UNW similarly. Since (S,Q) has a set cover,
we have S = (S∩USE)∪(S∩USW)∪(S∩UNE)∪(S∩UNW). Therefore, if we can compute O(1)-approximate
optimal set covers for (S ∩USE,Q), (S ∩USW,Q), (S ∩UNE,Q), and (S ∩UNW,Q), then the union of these
four set covers is an O(1)-approximate optimal set cover for (S,Q).

γ

USW

σ

Figure 3: Illustrating the curve γ and the point σ.

With this observation, it now suffices to show how to compute an O(1)-approximate optimal set cover

for (S ∩ USE,Q) in Õ(optSE) time, where optSE is the optimum of (S ∩ USE,Q). The main challenge is to
guarantee the running time and approximation ratio simultaneously. We begin by introducing some notation.
Let γ denote the boundary of USE, which is an orthogonal staircase curve from bottom-left to top-right. If
γ ∩ USW 6= ∅, then γ ∩ USW is a connected portion of γ that contains the bottom-left end of γ. Define σ as
the “endpoint” of γ ∩USW, i.e., the point on γ ∩USW that is closest the top-right end of γ. See Figure 3 for
an illustration. If γ ∩USW = ∅, we define σ as the bottom-left end of γ (which is a point whose y-coordinate
equals to −∞). For a number ỹ ∈ R, we define φ(ỹ) as the leftmost point in S ∩ USE whose y-coordinate
is greater than ỹ; we say φ(ỹ) does not exist if no point in S ∩ USE has y-coordinate greater than ỹ. For a
point a ∈ R2 and a collection P of quadrants, we define Φ→(a,P) and Φ↑(a,P) as the rightmost and topmost
quadrants in P that contains a, respectively. For a quadrant Q, we denote by x(Q) and y(Q) the x- and
y-coordinates of the vertex of Q, respectively.

To get some intuition, let us consider a very simple case, where Q only consists of southeast quadrants.
In this case, one can compute an optimal set cover for (S ∩ USE,Q) using a greedy algorithm similar to
the 1D interval set cover algorithm: repeatedly pick the leftmost uncovered point in S ∩ USE and cover
it using the topmost (southeast) quadrant in Q. Using the notations defined above, we can describe this
algorithm as follows. Set Qans ← ∅ and ỹ ← −∞ initially, and repeatedly do a ← φ(ỹ), Q ← Φ↑(σ,QSE),
Qans ← Qans ∪ {Q}, ỹ ← y(Q) until φ(ỹ) does not exist. Eventually, Qans is the set cover we want.

Now we try to extend this algorithm to the general case. However, the situation here becomes much more
complicated, since we may have three other types of quadrants in Q, which have to be carefully dealt with
in order to guarantee the correctness. But the intuition remains the same: we still construct the solution in
a greedy manner. The following procedure describes our algorithm.

1. Qans ← ∅. ỹ ← −∞. If φ(ỹ) does not exist, then go to Step 6.

11

2. Qans ← {Φ→(σ,QSW), Φ↑(σ,QSE)}. ỹ ← y(Φ↑(σ,QSE)). If φ(ỹ) exists, then a ← φ(ỹ), else go to
Step 6.

3. If a ∈ UNE, then Qans ← Qans ∪ {Φ↑(a,QNE), Φ↑(a,QSE)} and go to Step 6.

4. If a ∈ UNW, then Qans ← Qans∪{Φ→(a,QNW), Φ↑(a,QSE)} and Q← Φ↑(v,QSE) where v is the vertex
of Φ→(a,QNW), otherwise Q← Φ↑(a,QSE).

5. Qans ← Qans ∪ {Q}. ỹ ← y(Q). If φ(ỹ) exists, then a← φ(ỹ) and go to Step 3.

6. Output Qans.

The following lemma proves the correctness of our algorithm.

Lemma 11. Qans covers all points in S ∩ USE, and |Qans| = O(optSE).

The remaining task is to show how to perform our algorithm in Õ(optSE) time using basic data structures.
It is clear that our algorithm terminates in O(optSE) steps, since we include at least one quadrant to Qans

in each iteration of the loop Step 3–5 and eventually |Qans| = O(optSE) by Lemma 11. Thus, it suffices

to show that each step can be done in Õ(1) time. In every step of our algorithm, all work can be done in
constant time except the tasks of computing the point σ, testing whether a ∈ UNE and a ∈ UNW for a given
point a, computing the quadrants Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), Φ↑(a,QNE) for a given point a, and
computing φ(ỹ) for a given number ỹ. All these tasks except the computation of φ(·) can be easily done in

Õ(1) time by storing the quadrants in binary search trees. To compute φ(·) in Õ(1) time is more difficult,
and we achieve this by properly using range trees built on both S and QSE. The details are presented in
Appendix D.2.

Using the above algorithm, we can compute O(1)-approximate optimal set covers for (S ∩ USE,Q),
(S∩USW,Q), (S∩UNE,Q), and (S∩UNW,Q). As argued before, the union of these four set covers, denoted
by Q∗, is an O(1)-approximate optimal set covers for (S,Q).

Theorem 12. Quadrant set cover admits an O(1)-approximate output-sensitive algorithm.

4.2.3 Putting everything together

With the bootstrapping theorem in hand, we are now able to design our dynamic quadrant set cover data
structure. Again, the starting point is a “trivial” data structure which uses the output-sensitive algorithm
of Theorem 12 to re-compute an optimal quadrant set cover after each update. Clearly, the update time of
this data structure is Õ(n) and the construction time is Õ(n0). Let µ = O(1) be the approximation ratio
of the output-sensitive algorithm. The trivial data structure implies the existence of a (µ+ ε)-approximate

dynamic quadrant set cover data structure with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and

Õ(n0) construction time. Define αi = 2αi−1/(1 + 2αi−1) for i ≥ 1. By applying Theorem 7 i times
for a constant i ≥ 1, we see the existence of a (µ + ε)-approximate dynamic quadrant set cover data

structure with Õ(nαi/ε1−αi) amortized update time and Õ(n0) construction time. One can easily verify
that αi = 2i/(2i+1 − 1) for all i ≥ 0. Therefore, for any constant α > 0, we have an index i ≥ 0 satisfying

αi < 1/2 +α and hence Õ(nαi/ε1−αi) = O(n1/2+α/ε). Setting ε to be any constant, we finally conclude the
following.

Theorem 13. For any constant α > 0, there exists an O(1)-approximate dynamic quadrant set cover data

structure with O(n1/2+α) amortized update time and Õ(n0) construction time.

By the reduction of Lemma 6, we have the following corollary.

Corollary 14. For any constant α > 0, there exist O(1)-approximate dynamic unit-square set cover, dynamic
unit-square hitting set, and dynamic quadrant hitting set data structures with O(n1/2+α) amortized update

time and Õ(n0) construction time.

12

5 Second framework: Local modification

In this section, we give our second framework for dynamic geometric set cover and hitting set, which results
in poly-logarithmic update time data structures for dynamic interval hitting set, as well as dynamic quadrant
and unit-square set cover (resp., hitting set) in the partially dynamic setting. This framework applies to
stable dynamic geometric set cover and hitting set problems, in which each operation cannot change the
optimum of the problem instance significantly. One can easily see that any dynamic set cover (resp., hitting
set) problem in the partially dynamic setting is stable. Interestingly, we will see that the dynamic interval
hitting set problem, even in the fully dynamic setting, is stable.

The basic idea behind this framework is quite simple, and we call it local modification. Namely, at the
beginning, we compute a good solution S∗ for the problem instance using an output-sensitive algorithm, and
after each operation, we slightly modify S∗, by adding/removing a constant number of elements, to guarantee
that S∗ is a feasible solution for the current instance. After processing many operations, we re-compute a
new S∗ and repeat this procedure. The stability of the problem can guarantee that S∗ is always a good
approximation for the optimal solution.

Next, we formally define the notion of stability. The quasi-optimum of a set cover instance (S,R) is
the size of an optimal set cover for (S′,R), where S′ ⊆ S consists of the points that can be covered by R.
The quasi-optimum of a hitting set instance is defined in a similar way. For a dynamic set cover (resp.,
hitting set) instance Π, we use opti(Π) to denote the quasi-optimum of Π at the time i (i.e., after the i-th
operation).

Definition 15. A dynamic set cover (resp., hitting set) instance Π is stable if |opti(Π)− opti+1(Π)| ≤ 1
for all i ≥ 0. A dynamic set cover (resp., hitting set) problem is stable if any instance of the problem is
stable.

Lemma 16. Any dynamic set cover (resp., hitting set) problem in the partially dynamic setting is stable.
The dynamic interval hitting set problem is stable.

5.1 Dynamic interval hitting set

We show how to use the idea of local modification to obtain a (1 + ε)-approximate dynamic interval hitting

set data structure D with Õ(1/ε) amortized update time.
Similarly to interval set cover, the interval hitting set problem can also be solved using a simple greedy

algorithm, which can be performed in Õ(opt) time if we store (properly) the points and intervals in some
basic data structure (e.g., binary search trees). We omit the proof of the following lemma, as it is almost
the same as the proof of Lemma 1.

Lemma 17. The interval hitting set problem yields an exact output-sensitive algorithm.

Let (S, I) be a dynamic interval hitting set instance. We denote by n (resp., n0) the size of the current
(resp., initial) (S, I), and by opt the optimum of the current (S, I).

The data structure. Our data structure D basically consists of three parts. The first part is the basic
data structure A built on (S, I) required for the output-sensitive algorithm. The second part is the following
dynamic data structure B which can tell us whether the current instance has a hitting set.

Lemma 18. There exists a dynamic data structure B built on (S, I) with Õ(1) update time and Õ(n0)
construction time that can indicate whether the current (S, I) has a hitting set or not.

The third part consists of the following two basic data structures C1 and C2.

Lemma 19. One can store S in a basic data structure C1 such that given a point a, the rightmost (resp.,

leftmost) point in S to the left (resp., right) of a can be reported in Õ(1) time (if they exist).

Lemma 20. One can store S in a basic data structure C2 such that given an interval I, a point a ∈ S that
is contained in I can be reported in Õ(1) time (if it exists).

13

Maintaining a solution. Let (S0, I0) be the initial (S, I), and define I ′0 ⊆ I0 as the sub-collection
consisting of all intervals that are hit by S0. In the construction of D, after building the data structures A
and B, we compute an optimal hitting set S∗ for (S0, I ′0). Set cnt = 0 and opt∼ = |S∗| initially. The data
structure D handles the operations as follows. After each operation, D first increment cnt by 1 and query
the data structure B to see whether the current (S, I) has a hitting set. Whenever cnt ≥ ε ·opt∼/(2 + ε) and
the current (S, I) has a hitting set, we re-compute an optimal hitting set S∗ for the current (S, I) using the
output-sensitive algorithm and reset cnt = 0 and opt∼ = |S∗|. Otherwise, we apply local modification on S∗

(i.e., “slightly” modify S∗) as follows.

• If the operation inserts a point a to S, then include a in S∗. If the operation deletes a point a from S,
then remove a from S∗ (if a ∈ S∗) and include in S∗ the rightmost point in S to the left of a and the
leftmost point in S to the right of a (if they exist), which can be found using the data structure C1 of
Lemma 19.

• If the operation inserts an interval I to I, then include in S∗ an arbitrary point in S that hits I (if
it exists), which can be found using the data structure C2 of Lemma 20. If the operation deletes an
interval from I, keep S∗ unchanged.

Note that we do local modification on S∗ no matter whether the current (S, I) has a hitting set or not. After
this, our data structure D uses S∗ as the solution for the current (S, I), if the current (S, I) has a hitting
set. In order to support the desired queries for S∗, we can simply store S∗ in a (dynamic) binary search tree.
When we re-compute S∗, we re-build the binary search tree that stores S∗. For each local modification on
S∗, we do insertion/deletion on the binary search tree according to the change of S∗.

Correctness. To see the correctness of our data structure, we have to show that S∗ is always a (1 + ε)-
approximate optimal hitting set for the current (S, I), whenever (S, I) has a hitting set. To this end, we
observe some simple facts. First, the counter cnt is exactly the number of the operations processed after the
last re-computation of S∗, and the number opt∼ is the optimum at the last re-computation of S∗. Second,
after each local modification, the size of S∗ either increases by 1 or keeps unchanged. Based on these two
facts and the stability of dynamic interval hitting set (Lemma 16), we can easily bound the size of S∗.

Lemma 21. We have |S∗| ≤ (1 + ε) · opt at any time.

With the above lemma in hand, it now suffices to show that S∗ is a feasible hitting set.

Lemma 22. Whenever the current (S, I) has a hitting set, S∗ is a hitting set for (S, I).

Time analysis. The construction time of D is clearly Õ(n0). Specifically, when constructing D, we need

to build the data structures A,B, C1, C2, all of which can be built in Õ(n0) time. Also, we need to compute

an optimal hitting set for (S0, I ′0) using the output-sensitive algorithm, which can also be done in Õ(n0)

time. We show that the amortized update time of D is Õ(1/ε). After each operation, we need to update

the data structures A,B, C1, C2, which takes Õ(1) time. If we do local modification on S∗, then it takes

Õ(1) time. Indeed, in each local modification, there are O(1) elements to be added to or removed from S∗.

These elements can be found in Õ(1) time using the data structures C1 and C2. After these elements are
found, we need to modify the binary search tree that stores S∗ for supporting the desired queries, which
can also be done in Õ(1) time. In the case where we re-compute a new S∗, it takes Õ(opt) time. However,
we can amortize this time over the operations in between the last re-computation of S∗ and the current
one. Let opt∼ be the quasi-optimum of (S, I) at the last re-computation. Suppose there are t operations in
between the two re-computations. Then t ≥ ε · opt∼/(2 + ε). By the stability of dynamic interval hitting set
(Lemma 16), we have opt ≤ opt∼ + t, because opt is also the quasi-optimum of the current (S, I). It follows
that

opt

t
≤ opt∼ + t

t
≤ 2 + ε

ε
+ 1 = O(1/ε).

Thus, the amortized time for the current re-computation is Õ(1/ε). We conclude the following.

14

Theorem 23. For a given approximation factor ε > 0, there is a (1 + ε)-approximate dynamic interval

hitting data structure D with Õ(1/ε) amortized update time and Õ(n0) construction time.

5.2 Dynamic set cover and hitting set in the partially dynamic settings

The idea of local modification can also be applied to dynamic geometric set cover (resp., hitting set) problems
in the partially dynamic setting (which are stable by Lemma 16), as long as we have an output-sensitive
algorithm for the problem and an efficient dynamic data structure that can indicate whether the current
instance has a feasible solution or not.

For an example, let us consider dynamic quadrant set cover in the partially dynamic setting. Let (S,Q)
be a dynamic quadrant set cover instance with only point updates. As before, we denote by n (resp., n0)
the size of the current (resp., initial) (S,Q), and by opt the optimum of the current (S,Q).

The data structure. Our data structure D consists of three parts. The first part is the basic data
structure A required for performing the output-sensitive algorithm of Theorem 12. The second part is the
following dynamic data structure B which can tell us whether the current instance has a hitting set.

Lemma 24. There exists a dynamic data structure B built on (S,Q) with Õ(1) update time and Õ(n0)
construction time that can indicate whether the current (S,Q) has a set cover or not.

The third part is a simple (static) data structure C built on Q that can report in Õ(1) time, for a given
point a ∈ R2, a quadrant in Q that contains a (if it exists); this can be done using a standard orthogonal

range-search data structure, e.g., range tree, whose construction time is Õ(|Q|).

Maintaining a solution. Let S0 be the initial S, and define S′0 ⊆ S0 as the subset consisting of the
points covered by Q. At the beginning, we compute a µ-approximate optimal set cover Q∗ for (S′0,Q),
where µ is the approximation ratio of the output-sensitive algorithm. This can be done as follows. We first
compute S′0 by testing whether each point in S is covered by some range in Q using the data structure C, and
then build on (S′0,Q) the basic data structure required for the output-sensitive algorithm and perform the
output-sensitive algorithm on (S′0,Q). Set cnt = 0 and opt∼ = |Q∗|. After each iteration, D first increments
cnt by 1 and checks whether the current (S,Q) has a set cover or not using the data structure B. Whenever
cnt ≥ (ε/µ) · opt∼/(2 + ε) and the current (S,Q) has a set cover, we re-compute a µ-approximate optimal
set cover Q∗ for the current (S,Q) using the output-sensitive algorithm, and reset cnt = 0 and opt∼ = |Q∗|.
Otherwise, we apply local modification on Q∗ as follows. If the operation inserts a point a to S, then include
in Q∗ an arbitrary range in Q that contains a, which can be found using the data structure C (if it exists).
If the operation deletes a point a from S, then keep Q∗ unchanged. After this, our data structure D uses Q∗
as the solution for the current (S,Q). As in the last section, we can store Q∗ in a (dynamic) binary search
tree to support the desired queries (by fixing some order on the family of quadrants).

Correctness. Using the same argument as in the last section, we can show that |Q∗| ≤ (µ+ ε) · opt at any
time. Furthermore, it is also easy to see that Q∗ is always a feasible set cover.

Lemma 25. Whenever the current (S,Q) has a set cover, Q∗ is a set cover for (S,Q).

Time analysis. Using the same analysis as in the last section, we can show that the construction time of
the data structure D is Õ(n), and the amortized update time is Õ(1/ε). Setting ε to be any constant, we
conclude the following.

Theorem 26. There exists an O(1)-approximate partially dynamic quadrant set cover data structure with

Õ(1) amortized update time and Õ(n0) construction time.

15

Using the reduction of Lemma 6, we also have the following result. Note that although the reduction of
Lemma 6 is described for the fully dynamic setting, it actually applies to reduce dynamic unit-square set
cover (resp., hitting set) in the partially dynamic setting and dynamic quadrant hitting set in the partially
dynamic setting to dynamic quadrant set cover data structure in the partially dynamic setting.

Corollary 27. There exist an O(1)-approximate partially dynamic unit-square set cover, partially dynamic

unit-square hitting set, and partially dynamic quadrant hitting set data structures with Õ(1) amortized update

time and Õ(n0) construction time.

References

[1] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna Saha. Dy-
namic set cover: improved algorithms and lower bounds. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 114–125. ACM, 2019.

[2] Pankaj K Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set covers.
In Proceedings of the thirtieth annual symposium on Computational geometry, page 271. ACM, 2014.

[3] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in o(log n)
update time. SIAM Journal on Computing, 44(1):88–113, 2015.

[4] Jon Louis Bentley. Decomposable searching problems. Technical report, Carnegie-Mellon University,
Department of Computer Science, 1978.

[5] Piotr Berman and Bhaskar DasGupta. Complexities of efficient solutions of rectilinear polygon cover
problems. Algorithmica, 17(4):331–356, 1997.

[6] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation ratios. In
Proceedings of the twenty-seventh annual ACM-SIAM Symposium on Discrete Algorithms, pages 692–
711. Society for Industrial and Applied Mathematics, 2016.

[7] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic
approximate vertex cover and fractional matching in o(1) amortized update time. In International
Conference on Integer Programming and Combinatorial Optimization, pages 86–98. Springer, 2017.

[8] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Design of dynamic algorithms via
primal-dual method. In International Colloquium on Automata, Languages, and Programming, pages
206–218. Springer, 2015.

[9] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully dynamic data
structures for vertex cover and matching. SIAM Journal on Computing, 47(3):859–887, 2018.

[10] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation
algorithms for fully dynamic matching. In Proceedings of the forty-eighth annual ACM Symposium on
Theory of Computing, pages 398–411. ACM, 2016.

[11] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,
4(3):233–235, 1979.

[12] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

[13] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the forty-sixth
annual ACM Symposium on Theory of Computing, pages 624–633. ACM, 2014.

16

[14] Thomas Erlebach and Erik Jan Van Leeuwen. Ptas for weighted set cover on unit squares. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 166–177.
Springer, 2010.

[15] Shashidhara K Ganjugunte. Geometric hitting sets and their variants. PhD thesis, Duke University,
2011.

[16] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online and dy-
namic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 537–550. ACM, 2017.

[17] Manoj Gupta and Richard Peng. Fully dynamic (1+e)-approximate matchings. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 548–557. IEEE, 2013.

[18] Juris Hartmanis. Computers and intractability: a guide to the theory of np-completeness. Siam Review,
24(1):90, 1982.

[19] David S Johnson. Approximation algorithms for combinatorial problems. Journal of computer and
system sciences, 9(3):256–278, 1974.

[20] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε. Journal of
Computer and System Sciences, 74(3):335–349, 2008.

[21] László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics, 13(4):383–
390, 1975.

[22] Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric location
problems. SIAM journal on computing, 13(1):182–196, 1984.

[23] Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane. Operations
research letters, 1(5):194–197, 1982.

[24] Christian Worm Mortensen. Fully dynamic orthogonal range reporting on ram. SIAM Journal on
Computing, 35(6):1494–1525, 2006.

[25] Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set problems. Discrete &
Computational Geometry, 44(4):883–895, 2010.

[26] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal matching.
ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

[27] Shay Solomon. Fully dynamic maximal matching in constant update time. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 325–334. IEEE, 2016.

A Missing proofs

In this section, we give the proofs of the technical lemmas in Section 4.1 and Section 4.2, which are missing
in the main body of the paper.

A.1 Proof of Lemma 1

Consider an interval set cover instance (S, I) of size n.

Lemma 28. One can store S in a basic data structure that can report in Õ(1) time, for a query point q ∈ R,
the leftmost point in S that is to the right of q (if it exists).

17

Proof. We simply store S in a binary search tree. Given a query point q ∈ R, one can find the leftmost point
in S to the right of q by searching in the tree in Õ(1) time. Clearly, the tree can be built in Õ(|S|) time and

dynamized with Õ(1) update time, and hence it is basic.

Lemma 29. One can store I in a basic data structure that can report in Õ(1) time, for a query point q ∈ R,
the interval in I with the rightmost right endpoint that contains q (if it exists).

Proof. We store I in a binary search tree T where the key of each interval is its left endpoint. We augment
each node u ∈ T with an additional field which stores the interval in the subtree rooted at u that has the
rightmost right endpoint. Given a query point q ∈ R, we first look for the interval in T with the rightmost
right endpoint whose key is smaller than or equal to q. With the augmented fields, this interval can be found
in Õ(1) time. If this interval contains q, then we report it; otherwise, no interval in I contains q. Clearly, T
can be built in Õ(|I|) time and dynamized with Õ(1) update time, and hence it is basic.

We store S in the data structure of Lemma 28 and I in the data structure of Lemma 29.
Recall the greedy algorithm for the static interval set cover problem. The algorithm computes an optimal

set cover Iopt for (S, I) by repeatedly picking the leftmost uncovered point and covering it using the right-
rightmost interval. Formally, the procedure is presented below.

1. q ← −∞ and Iopt ← ∅.

2. Find the leftmost point a ∈ S to the right of q.

3. Iopt ← Iopt ∪ {Ia}, where Ia is the right-rightmost interval in I covering a.

4. q ← the right endpoint of Ia, then go to Step 2.

With the data structures of Lemma 28 and Lemma 29 in hand, the greedy algorithm can be performed in
Õ(opt) time, where opt is the optimum of (S, I). Indeed, the data structure of Lemma 28 can be used to

implement Step 2 and the data structure of Lemma 29 can be used to implement Step 3, both in Õ(1) time.

Since the algorithm terminates after O(opt) iterations, the total time cost is Õ(opt).

A.2 Proof of Lemma 3

Our algorithm makes a no-solution decision iff (Si, Ii) has no set cover for some i ∈ P ′. If (Si, Ii) has a set
cover for all i ∈ P ′, then (S, I) clearly has a set cover, because the portions Ji for i ∈ P are coverable. If
(Si, Ii) has no set cover for some i ∈ P ′, then (S, I) has no set cover, because Ji is uncoverable and thus
the points in Si can only be covered by the intervals in Ii. Therefore, the no-solution decision of our data
structure is correct.

A.3 Proof of Lemma 4

Suppose the portions J1, . . . , Jr are sorted from left to right. Let si be the separation point of Ji and Ji+1.
Observe that an interval I ∈ Iopt belongs to exactly two Ii’s only if I contains one of the separation points
s1, . . . , sr−1. We claim that for each si, at most two intervals in Iopt contain si. Assume there are three
intervals I−, I, I+ that contain si. Without loss of generality, assume that I− (resp., I+) has the leftmost left
endpoint (resp., the rightmost right endpoint) among I−, I, I+. Then one can easily see that I ⊆ I− ∪ I+.
Therefore, Iopt\{I} is also a set cover for (S, I), contradicting the optimality of Iopt. Thus, at most two
intervals in Iopt contain si. It follows that there are at most 2(r − 1) intervals in Iopt that contain some
separation point, and only these intervals can belong to exactly two Ii’s, which proves the lemma.

18

A.4 Proof of Lemma 6

We first observe that unit-square set cover and hitting set are equivalent. A unit square Z contains a point
a ∈ R2 iff the unit square centered at a contains the center of Z. Therefore, given a unit-square set cover
instance (S,Z), if we replace each point a ∈ S with a unit square Za centered at a and replace each unit
square Z ∈ Z with the center cZ of Z, then (S,Z) is reduced to an equivalent unit-square hitting set instance
({cZ : Z ∈ Z}, {Za : a ∈ S}). In the same way, one can also reduce a unit-square hitting set instance to an
equivalent unit-square set cover instance. Thus, we only need to consider unit-square set cover.

In order to reduce dynamic unit-square set cover to dynamic quadrant set cover, we apply a grid technique.
To this end, let us first consider a static unit-square set cover instance (S,Z). We build a grid Γ on the
plane consisting of square cells of side-length 1. For each cell � of the grid, we define S� = S ∩ � and
Z� = {Z ∈ Z : Z ∩ � 6= ∅}. We call a cell nonempty if S� 6= ∅ or Z� 6= ∅, and truly nonempty if S� 6= ∅.
Let Ψ be the set of all truly nonempty cells. It is clear that (S,Z) has a set cover iff (S�,Z�) has a set
cover for all � ∈ Ψ , since the points in S� can only be covered using the unit squares in Z�. Let Z∗� ⊆ Z�

be a c-approximate optimal set cover for (S�,Z�). We claim that
⊔

�∈Ψ Z∗� is a 4c-approximate optimal
set cover for (S,Z). Consider an optimal set cover Z∗ for (S,Z). We have |Z∗�| ≤ c · |Z∗ ∩ Z�|, because
Z∗ ∩ Z� is a set cover for (S�,Z�). On the other hand, we have

∑
�∈Ψ |Z∗ ∩ Z�| ≤ 4|Z∗|, since any unit

square can intersect at most four cells of Γ . It follows that∣∣∣∣∣ ⊔
�∈Ψ

Z∗�

∣∣∣∣∣ =
∑
�∈Ψ

|Z∗�| ≤
∑
�∈Ψ

c · |Z∗ ∩ Z�| ≤ 4c · |Z∗|.

In this way, we reduce the instance (S,Z) to the instances (S�,Z�) for � ∈ Ψ . It seems that solving
each (S�,Z�) is still a unit-square set cover problem. However, it is in fact a quadrant set cover problem.
Indeed, a cell � is a square of side-length 1, hence the intersection of any unit square Z and � is equal to
the intersection of a quadrant QZ and �, where QZ is the quadrant obtained by removing the two edges
of Z outside �. Since the points in S� are all contained in �, the quadrant QZ ∈ Z� covers the same set
of points in S� as the unit square Z. Therefore, (S�,Z�) is equivalent to the quadrant set cover instance
(S�, {QZ : Z ∈ Z�}).

The above observation gives us a reduction from dynamic unit-square set cover to dynamic quadrant set
cover. Suppose we have a c-approximate dynamic quadrant set cover data structure D with f(n) amortized

update time and Õ(n0) construction time, where f is an increasing function. We are going to design a
4c-approximate dynamic unit-square set cover data structure D′. Let (S,Z) be a dynamic unit-square set
cover instance. When constructing D′, we build the grid Γ described above and compute (S�,Z�) for all
nonempty cells. The grid Γ is always fixed, while the instances (S�,Z�) change along with the change
of S and Z. As argued before, we can regard each (S�,Z�) as a dynamic quadrant set cover instance.
We then construct a data structure D� for each (S�,Z�), which is the dynamic quadrant set cover data
structure D built on (S�,Z�). If (S�,Z�) has a set cover, then D� maintains a c-approximate optimal set
cover for (S�,Z�), which we denote by Z∗�. Furthermore, we also need two data structures to maintain the
nonempty and truly nonempty cells of Γ , respectively. We store the nonempty cells in a (dynamic) binary
search tree T1 (by fixing some total order of the cells of Γ). Each node u ∈ T1 has a pointer pointing to
the data structure D� where � is the cell corresponding to u. Similarly, we store all the truly nonempty
cells in a (dynamic) binary search tree T2, with a pointer at each node pointing to the data structure D�

for the corresponding cell �. The data structures D� and the binary search trees T1, T2 form our dynamic
unit-square set cover data structure D′. Besides this, D′ also maintains two numbers m and s, where m is
the number of the truly nonempty cells � such that (S�,Z�) has no set cover and s is the sum of |Z∗�| over

all truly nonempty cells � such that (S�,Z�) has a set cover. The construction time of D′ is Õ(n0). Indeed,
finding the nonempty (and truly nonempty) cells and building the binary search trees T1, T2 can be easily

done in Õ(n0) time. Furthermore, the sum of the sizes of all (S�,Z�) is Õ(n0), since each point in S lies in
exactly one cell and each unit-square in Z intersects at most four cells. Therefore, computing the instances
(S�,Z�) can be done in Õ(n0) time. The time for building each data structure D� is near-linear in the size

of (S�,Z�), thus building all D� takes Õ(n0) time.

19

Next, we consider how to handle updates on (S,Z). For an update on (S,Z), there are (at most) four
cells � for which (S�,Z�) changes, and we call them involved cells. For each involved cell �, we do the
following. First, if � is previously empty (resp., not truly nonempty) and becomes nonempty (resp., truly
nonempty) after the update, we insert a new node to the binary search tree T1 (resp., T2) corresponding to
�. Conversely, if � is previously nonempty (resp., truly nonempty) and becomes empty (resp., not truly
nonempty) after the update, we delete the node corresponding to � from T1 (resp., T2). After this, we
need to update the data structure D�. If � is previously empty and becomes nonempty after the update,
we create a new data structure D� for �, otherwise we find the data structure D� (which can be done by
searching the node u corresponding to � in T1 and using the pointer at u) and update it. We observe that

all the above work can be done in Õ(f(n)) amortized time. Indeed, updating the binary search trees T1 and
T2 takes logarithmic time. By assumption, the amortized update time of D� is f(n�), where n� is the size
of the current (S�,Z�), which is smaller than or equal to f(n) as f is an increasing function. Since there

are at most four involved cells, the amortized update time of D′ is Õ(f(n)).
At any point, if m > 0, then D′ directly decides that the current (S,Z) has no set cover. Otherwise,

D′ uses Zappx =
⊔

�∈Ψ Z∗� as the set cover solution for the current (S,Z), where Ψ is the set of the truly
nonempty cells. By our previous observation, Zappx is a 4c-approximate optimal set cover for (S,Z). To
support the desired queries for Zappx is quite easy. First, the size of Zappx is just the number s maintained
by D′, hence the size query for Zappx can be answered in O(1) time. To answer a membership query, let
Z ∈ Z be the query element. We want to know the multiplicity of Z in Zappx. There are at most four cells
of Γ that intersect Z. For each such cell �, we search in the binary search tree T2. If we cannot find a node
of T2 corresponding to �, then � /∈ Ψ . Otherwise, the node u ∈ T2 corresponding to � gives us a pointer
to the data structure D�, which can report the multiplicity of Z in Z∗� in O(log |Z∗�|) time. The sum of all
these multiplicities is just the multiplicity of Z in Zappx. The time cost for answer the membership query is
O(log |Ψ |+ log |Zappx|), since the size of T2 is |Ψ |. Note that |Ψ | ≤ |Zappx|, since Z∗� 6= ∅ for all � ∈ Ψ (for
otherwise Z∗� is not a set cover for S�). Thus, a membership query takes O(log |Zappx|) time. To answer
the reporting query, we do a traversal in T2. For each node u ∈ T2, we use the data structure D� to report
the elements in Z∗� in O(|Z∗�|) time, where � ∈ Ψ is the truly nonempty cell corresponding to u. The time
cost is O(|Ψ |+ |Zappx|). Again, since |Ψ | ≤ |Zappx|, the reporting query can be answered in O(|Zappx|) time.

To summarize, D′ is a 4c-approximate dynamic unit-square set cover data structure with Õ(f(n)) amortized

update time and Õ(n0) construction time.
Finally, we show how to reduce dynamic quadrant hitting set to dynamic quadrant set cover. Let us first

consider a static quadrant hitting set instance (S,Q). There are four types of quadrants in Q, southeast,
southwest, northeast, and northwest; we denote by QSE,QSW,QNE,QNW ⊆ Q the sub-collections consisting
of these types of quadrants, respectively. Let S1, S2, S3, S4 be c-approximate optimal hitting sets for the
instances (S,QSE), (S,QSE), (S,QSE), (S,QSE), respectively. We claim that

⋃4
i=1 Si is a 4c-approximate

hitting set for (S,Q). Indeed, we have |S1| ≤ c · optSE ≤ c · opt, where optSE is the optimum of (S,QSE)
and opt is the optimum of (S,Q). Similarly, we can show that |Si| ≤ c · opt for all i ∈ {1, . . . , 4}. Thus,

|
⋃4
i=1 Si| =

∑4
i=1 |Si| ≤ 4c · opt. Therefore, if we can solve dynamic quadrant hitting set for a single type

of quadrants with an approximation factor c, we are able to solve the general dynamic quadrant hitting set
problem with an approximation factor 4c.

It is easy to see that dynamic quadrant hitting set for a single type of quadrants is equivalent to dynamic
quadrant set cover for a single type of quadrants. To see this, let us consider southeast quadrants. Note that
a point a is contained in a southeast quadrant Q iff the northwest quadrant whose vertex is a (denoted by
Qa) contains the vertex vQ of Q. Therefore, given a quadrant hitting set instance (S,QSE) where QSE only
contains southeast quadrants, if we replace each point a ∈ S with the northwest quadrant Qa and replace
each southeast quadrant Q ∈ QSE with its vertex vQ, then (S,QSE) is reduced to an equivalent quadrant
set cover instance ({vQ : Q ∈ QSE}, {Qa : a ∈ S}). To summarize, if we can solve dynamic quadrant set
cover with an approximation factor c, then we can also solve dynamic quadrant hitting set for a single type
of quadrants with an approximation factor c and in turn solve the general dynamic quadrant hitting set
problem with an approximation factor 4c. This completes the proof.

20

A.5 Proof of Lemma 8

Our algorithm makes a no-solution decision iff (Si,j ,Qi,j) has no set cover for some (i, j) ∈ P ′. If (Si,j ,Qi,j)
has a set cover for all (i, j) ∈ P ′, then (S,Q) clearly has a set cover, because the cells �i,j for (i, j) ∈ P are
coverable. Suppose (Si,j ,Qi,j) has no set cover for some (i, j) ∈ P ′. Then there exists a point a ∈ Si,j that
is not covered by any quadrant in Qi,j . We claim that a is not covered by any quadrant in Q. Consider a
quadrant Q ∈ Q. If Q does not intersect �i,j , then a /∈ Q. Otherwise, Q must partially intersect �i,j , because
�i,j is uncoverable. If the vertex of Q lies in �i,j , then Q ∈ Qi,j and thus a /∈ Q. The remaining case is that
Q partially intersects �i,j and contains one edge of �i,j . Without loss of generality, assume Q left intersects
�i,j . The rightmost quadrant Q′ that left intersects �i,j is contained in Qi,j . Since Q∩�i,j ⊆ Q′ ∩�i,j and
a /∈ Q′, we have a /∈ Q. It follows that a is not covered by Q and hence (S,Q) has no set cover. Therefore,
the no-solution decision of our data structure is correct.

A.6 Proof of Lemma 9

Fix (i, j) ∈ P ′. Let Q∼ ⊆ Qopt consist of all quadrants in Qopt that intersect �i,j . Then Q∼ covers all
points in Si,j , because the points in Si,j can only be covered by quadrants that intersect �i,j . Since �i,j
is uncoverable by Q, all quadrants in Q∼ must partially intersect �i,j . It follows that a quadrant in Q∼
either has its vertex in �i,j or contains one edge of �i,j . We claim that if a point a ∈ �i,j is covered by
Q∼, then a is covered by either Q∼ ∩ Q′i,j or a special quadrant in Qi,j . Let Q ∈ Q∼ be a quadrant such
that a ∈ Q. If Q ∈ Q′i,j , we are done. Otherwise, Q must contain one edge of �i,j , say the left edge. In this
case, Qi,j should contain a special quadrant Q0, which is the rightmost quadrant that left intersects �i,j . It
is clear that Q ∩ �i,j ⊆ Q0 ∩ �i,j , which implies that a ∈ Q0. From this claim, it directly follows that all
points in Si,j are covered by (Q∼ ∩ Q′i,j) ∪ Q′′i,j , where Q′′i,j ⊆ Qi,j consists of the special quadrants. Since
(Q∼ ∩Q′i,j)∪Q′′i,j ⊆ Qi,j and (Q∼ ∩Q′i,j)∪Q′′i,j covers Si,j , we have |(Q∼ ∩Q′i,j)∪Q′′i,j | ≤ opti,j . Note that
Q∼ ∩Q′i,j = Qopt ∩Q′i,j and |Q′′i,j | ≤ 4. So we have

|Qopt ∩Q′i,j |+ 4 = |Q∼ ∩Q′i,j |+ 4 ≥ |(Q∼ ∩Q′i,j) ∪Q′′i,j | ≥ opti,j .

Equation 5 then follows from the equation

opt = |Qopt| =
r∑
i=1

r∑
j=1

|Qopt ∩Q′i,j | ≥
∑

(i,j)∈P ′
|Qopt ∩Q′i,j |.

A.7 Proof of Lemma 10

It suffices to show
∑r
k=1(|Si,k|+ |Qi,k|) = O(f(n0, ε)+r) for all i ∈ {1, . . . , r} at any time in the first period.

Fix i ∈ {1, . . . , r}. Initially, the i-th row of the grid contains O(f(n0, ε)) points in S and O(f(n0, ε)) vertices
of the quadrants in Q. Since the period only consists of f(n0, ε) operations, the i-th row always contains
O(f(n0, ε)) points in S and O(f(n0, ε)) vertices of the quadrants in Q during the entire period. Thus, at
any time in the period,

∑r
k=1 |Si,k| = O(f(n0, ε)) and the total number of the non-special quadrants in

Qi,1, . . . ,Qi,r is bounded by O(f(n0, ε)). The number of the special quadrants in Qi,1, . . . ,Qi,r is clearly
O(r), since each Qi,k contains at most four special quadrants. Thus, the equation

∑r
k=1(|Si,k| + |Qi,k|) =

O(f(n0, ε) + r) holds at any time in the period.

A.8 Proof of Lemma 11

We first prove an invariant of our algorithm: whenever a is updated in the algorithm, the following two
properties hold.

1. a is set to be the leftmost point in S ∩ USE that is not covered by Qans.

2. Any point in S ∩ USE above a is not covered by Qans.

21

The first update of a happens in Step 2. At this time, Qans = {Φ→(σ,QSW), Φ↑(σ,QSE)}, ỹ = y(Φ↑(σ,QSE)),
and a is set to be φ(ỹ), i.e., the leftmost point in S ∩ USE whose y-coordinate is larger than ỹ. In order to
prove the invariant, we only need to show that (1) any point in S ∩ USE strictly to the left of a is covered
by Qans and (2) any point in S ∩ USE above a (including a itself) is not covered by Qans. Let b ∈ S ∩ USE

be a point strictly to the left of a. First, the y-coordinate of b is at most ỹ, since a is the leftmost point
in S ∩ USE whose y-coordinate is larger than ỹ. Therefore, if b is to the right of σ, then b ∈ Φ↑(σ,QSE).
Now assume b is strictly to the left of σ. Because σ is on the boundary γ of USE, b must be below σ. Thus,
b ∈ Φ→(σ,QSW). We see that Qans covers b. Let a′ ∈ S ∩ USE be a point above a. Then the y-coordinate
of a′ is greater than ỹ, which implies a′ /∈ Φ↑(σ,QSE). Furthermore, a′ must be strictly to the right of σ.
Indeed, if a′ is to the left of σ, then a′ is below σ (as argued above) and hence the y-coordinate of a′ is at
most ỹ, resulting in a contradiction. Now we see a′ is strictly above σ and strictly to the right of σ. Note
that σ is on the boundary of USW, which implies a′ /∈ USW and in particular a′ /∈ Φ→(σ,QSW). So a′ is not
covered by Qans. The invariant holds when we update a in Step 2.

In the rest of the procedure, a is only updated in Step 5. Note that Step 3–5 form a loop in which we
include a constant number of quadrants to cover a, see Figure 4. It suffices to show that if the two properties
hold at the beginning of an iteration of the loop (before Step 3), then they also hold after we update a in
Step 5 of that iteration. Suppose we are at the beginning of an iteration, and the two properties hold. If
a ∈ UNE, then we go directly from Step 3 to Step 6 and the algorithm terminates. Otherwise, we go to
Step 4. Here we need to distinguish two cases: a ∈ UNW and a /∈ UNW.

[Case 1] We first consider the case a /∈ UNW. In this case, we only include in Qans a new quadrant
Q = Φ↑(a,QSE). Note that after including Q, Qans covers all the points in S ∩ USE whose y-coordinates
are at most y(Q). To see this, consider a point b ∈ S ∩ USE whose y-coordinate is at most y(Q). If b is
strictly to the left of a, then b is covered by Qans even before we include Q, since a is the leftmost point in
S ∩ USE that is not covered by Qans at the beginning of this iteration (by our assumption). Otherwise, b is
to the right of a and is hence covered by Q. On the other hand, we also notice that after including Q, Qans

does not cover any the points in S ∩ USE whose y-coordinates are greater than y(Q). To see this, consider
a point b ∈ S ∩ USE whose y-coordinate is greater than y(Q). Then b /∈ Q and b is strictly above a (since
a ∈ Q). By our assumption, at the beginning of this iteration (when Q is not included in Qans), Qans does
not cover any point above a, and in particular does not cover b. Since b /∈ Q, we see that, after we include
Q in Qans, the new Qans still does not cover b. To summarize, the new Qans contains all points in S ∩ USE

whose y-coordinates are at most y(Q) and no points in S ∩USE whose y-coordinates are greater than y(Q).
Therefore, when we set a to be φ(y(Q)) in Step 5, a is the leftmost point in S ∩ USE that is not covered by
Qans and any point in S ∩ USE above a is not covered by Qans.

[Case 2] Next, we consider the case a ∈ UNW. In this case, we include in Qans three new quadrants:
Φ→(a,QNW), Φ↑(a,QSE), and Q = Φ↑(v,QSE) where v is the vertex of Φ→(a,QNW). We first show that
after including these three new quadrants, Qans covers all the points in S ∩ USE whose y-coordinates are at
most y(Q). Consider a point b ∈ S ∩ USE whose y-coordinate is at most y(Q). If the x-coordinate of b is at
least x(Q), then b ∈ Q. Otherwise, b is strictly to the left of v (because v ∈ Q). Thus, if b is above v, then
b ∈ Φ→(a,QNW). It now suffices to consider the case when b is strictly below v. In this case, b is strictly
below a, since v is the vertex of Φ→(a,QNW). If b is to the right of a, then b ∈ Φ↑(a,QSE). If b is strictly to
the left of a, then b is covered by Qans even before we include the three new quadrants, since a is the leftmost
point in S ∩ USE that is not covered by Qans at the beginning of this iteration (by our assumption). In any
case, b is covered by Qans. On the other hand, we notice that after including these three new quadrants,
Qans does not cover any points in S ∩USE whose y-coordinates are greater than y(Q). To see this, consider
a point b ∈ S ∩ USE whose y-coordinate is greater than y(Q). We first establish some obvious facts. Since
the NW quadrant Φ→(a,QNW) and the SE quadrant Φ↑(a,QSE) both contain a, we have v ∈ Φ↑(a,QSE).
It follows that y(Φ↑(a,QSE)) ≤ y(Q), by the definition of Q. Therefore, b is strictly above a, since the
y-coordinate of a is at most y(Φ↑(a,QSE)). By our assumption, at the beginning of this iteration (when the
three new quadrants are not included in Qans), Qans does not cover any point above a, and in particular
does not cover b. Also, the fact y(Φ↑(a,QSE)) ≤ y(Q) implies b /∈ Φ↑(a,QSE). To see b /∈ Φ→(a,QNW),
let Q′ ∈ QSE be a quadrant contains b (such a quadrant exists as b ∈ USE). Then y(Q′) > y(Q). By the

22

NENW

SW SE

a

ỹ

USE

NENW

SW SE

a

ỹ

UNE

USE

NENW

SW SE

a

ỹ

USE

UNW NENW

SW SE

a

ỹ
v

USE

UNW

Figure 4: Different options for covering a, depending on what other quadrant types cover a. The shaded
region contains all remaining uncovered points (top-left figure). If a ∈ UNE, then the entire shaded region
can be covered by two quadrants (top-right figure). Otherwise (bottom figures), some progress can be made
using up to three quadrants from QSE and QNW. After choosing these quadrants, the remaining uncovered
points of S ∩ USE are not covered by any quadrant of QSE, QNE, and QNW that also covers a. Note that
a 6∈ USW.

23

definition of Q, we have v /∈ Q′ and thus Q′ ∩ Φ→(a,QNW) = ∅, which implies b /∈ Φ→(a,QNW). Finally, it
is clear that b /∈ Q. So after we include the three new quadrants in Qans, the new Qans still does not cover
b. To summarize, the new Qans contains all points in S ∩USE whose y-coordinates are at most y(Q) and no
points in S ∩ USE whose y-coordinates are greater than y(Q). Therefore, when we set a to be φ(y(Q)) in
Step 5, a is the leftmost point in S ∩ USE that is not covered by Qans and any point in S ∩ USE above a is
not covered by Qans.

Combining the discussions for the two cases, the invariant is proved. With the invariant in hand, we
now prove the lemma. For convenience, we denote by ai the point a in the i-th iteration (before the update
of Step 5) of the loop Step 3–5. The invariant of our algorithm guarantees that ai is the leftmost point in
S∩USE that is not covered by Qans at the beginning of the i-th iteration. Furthermore, in the i-th iteration,
we always add the quadrant Φ↑(ai,QSE) to Qans, hence ai is covered by Qans at the end of the i-th iteration.
This implies that our algorithm always terminates, because Qans covers at least one more point in S ∩ USE

in each iteration.
We first show (the eventual) Qans covers all points in S ∩ USE. If we go to Step 6 from Step 1, then

S∩USE = ∅ and nothing needs to be proved. If we go to Step 6 from Step 2, we know that the y-coordinates
of all points in S ∩ USE are at most y(Φ↑(σ,QSE)). Consider a point a ∈ S ∩ USE. If a is to the right of
σ, then a ∈ Φ↑(σ,QSE), as the y-coordinate of a is at most y(Φ↑(σ,QSE)). If a is to the left of σ, then
a ∈ Φ→(σ,QSW), because any point in USE to the left of σ is covered by Φ→(σ,QSW). Thus, a is covered
by Qans, implying that all points in S ∩USE are covered by Qans. The last case is that we go to Step 6 from
Step 3. By the invariant, we know that a is the leftmost point in S ∩ USE that is not covered by Qans just
before Step 3. When we include the two quadrants Φ↑(a,QNE) and Φ↑(a,QSE) in Qans, any point to the
right of a is covered by Qans. Thus, all points in S ∩ USE are covered by Qans when we go from Step 3 to
Step 6. The remaining case is that we go to Step 6 from Step 5. This case happens only when φ(ỹ) does not
exist, or equivalently, the y-coordinate of every point in S ∩USE is at most y(Q). Recall that when proving
the invariant, we showed that after we include Q in Qans in Step 5, Qans covers all the points in S ∩ USE

whose y-coordinates are at most y(Q). Hence, all points in S ∩ USE are covered by Qans when we go from
Step 5 to Step 6.

We then show that |Qans| = O(optSE). To this end, we notice that in each iteration of the loop Step 3–5,
we include in Qans a constant number of quadrants. Suppose we do k iterations in total during the algorithm.
It suffices to show that k = O(optSE). We claim that any quadrant Q ∈ Q contains at most one of a1, . . . , ak.
First, we observe that any quadrant in QNE may only contain ak. Indeed, if ai ∈ USE for some i < k, then
in the i-th iteration, the algorithm goes from Step 3 to Step 6 and terminates. Next, we show that any
quadrant in QSW does not contain ai (or equivalently, ai /∈ USW) for all i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}.
By the invariant we proved before, ai is the leftmost point in S ∩ USE that is not covered by Qans at the
beginning of the i-th iteration. Since we include Φ→(σ,QSW) and Φ↑(σ,QSE) in Qans Step 2, we know that
ai /∈ Φ→(σ,QSW) and ai /∈ Φ↑(σ,QSE). Thus, ai must be strictly above σ, since any point below σ is covered
by either Φ→(σ,QSW) or Φ↑(σ,QSE). It follows that ai is to the right of σ, because ai ∈ USE and σ is on
the boundary γ of USE. In fact, ai is strictly to the right of σ, since any point in S ∩USE that has the same
x-coordinate as σ is covered by Φ↑(σ,QSE). Because σ is also on the boundary of USW, given the fact that
ai is strictly above σ and strictly to the right of σ, we see that ai /∈ USW.

Now it suffices to verify that any quadrant in QSE or QNW contains at most one of a1, . . . , ak. Let
i, j ∈ {1, . . . , k} such that i < j. We want to show that no quadrant in QSE or QNW contains both ai and
aj . Since aj is not covered by Qans at the beginning of the j-th iteration, it is also not covered by Qans

at any point before the j-th iteration and in particular, at the beginning of the i-th iteration. This implies
that aj is to the right of ai. In the i-th iteration, we always add the quadrant Φ↑(ai,QSE) to Qans. We have
aj /∈ Φ↑(ai,QSE), since aj is not covered by Qans at the end of the i-th iteration. Thus, aj is strictly above
ai. Now let Q ∈ QSE be a quadrant that contains ai. Note that a point to the right of ai is contained in
Q only if it is contained in Φ↑(ai,QSE), simply by the definition of Φ↑. Because aj /∈ Φ↑(ai,QSE), we have
aj /∈ Q. Consequently, no quadrant in QSE contains both ai and aj . Next, we show that no quadrant in
QNW contains both ai and aj . If ai /∈ UNW, we are done. So assume ai ∈ UNW. In this case, we add the
quadrant Φ→(ai,QNW) to Qans in Step 4 of the i-th iteration. Again, we have aj /∈ Φ→(ai,QNW) for aj is

24

not covered by Qans at the end of the i-th iteration. Let Q ∈ QNW be a quadrant that contains ai. Note
that a point above ai is contained in Q only if it is contained in Φ→(ai,QNW), simply by the definition of
Φ→. Because aj /∈ Φ→(ai,QNW), we have aj /∈ Q. Consequently, no quadrant in QNW contains both ai and
aj .

To summarize, we showed that any quadrant Q ∈ Q contains at most one of a1, . . . , ak. Therefore,
covering all of a1, . . . , ak requires at least k quadrants in Q. This implies k ≤ optSE, because a1, . . . , ak ∈
S ∩ USE. As a result, |Qans| = O(k) = O(optSE).

A.9 Proof of Lemma 16

Let Π = (S,R) be a dynamic set cover instance with only point updates, and i ≥ 0 be a number. We claim
that |opti(Π)− opti+1(Π)| ≤ 1. Denote by Si and Si+1 be the point set S at the time i and i+ 1. Also, let
S′i ⊆ Si and S′i+1 ⊆ Si+1 consist of the points that are covered by R. Suppose the (i+1)-th operation inserts
a point a to S, so Si+1 = Si ∪ {a}. If a is not covered by R, then S′i+1 = S′i and opti+1(Π) = opti(Π). If a
is covered by R, then S′i+1 = S′i ∪{a}. Let R ∈ R be a range that covers a. An optimal set cover for (S′i,R)
together with R is a set cover for (S′i+1,R). It follows that opti(Π) ≤ opti+1(Π) ≤ opti+1(Π) + 1. The case
where the (i+1)-th operation deletes a point from S is symmetric. This shows that dynamic set cover in the
partially dynamic setting is stable. The same argument can also be applied to show that dynamic hitting
set in the partially dynamic setting is stable.

Next, we consider the dynamic interval hitting set problem (in the fully dynamic setting). Let Π = (S, I)
be a dynamic interval hitting set instance, and i ≥ 0 be a number. Denote by Si and Ii as the point set S
and interval collection I at the time i. Let I ′i ⊆ Ii consist of the intervals that are hit by Si. We want to
show that |opti(Π)− opti+1(Π)| ≤ 1. We distinguish two cases.

[Case 1] The (i+ 1)-th operation happens on I. Suppose the (i+ 1)-th operation is an insertion on I, and
let I be the interval inserted. If I is not hit by Si, then (Si+1, I ′i+1) = (Si, I ′i) and opti+1(Π) = opti(Π). If
I is hit by Si, then (Si+1, I ′i+1) = (Si, I ′i ∪ {I}). In this case, we have opti(Π)′ ≤ opti+1(Π) ≤ opti(Π) + 1,
since an optimal hitting set for (Si, I ′i) together with a point hitting I is a hitting set for (Si+1, I ′i+1). Thus,
|opti(Π)− opti+1(Π)| ≤ 1. The case where the (i+ 1)-th operation is a deletion on I is symmetric.

[Case 2] The (i + 1)-th operation happens on S. Suppose the (i + 1)-th operation is an insertion on S,
and let a be the point inserted. Then (Si+1, I ′i+1) = (Si ∪ {a}, I ′i ∪ J) where J = {I ∈ I : a ∈ I}. It
is clear that opti+1(Π) ≤ opti(Π) + 1, because an optimal hitting set for (Si, I ′i) together with the point
a is a hitting set for (Si+1, I ′i+1). It suffices to show that opti(Π) ≤ opti+1(Π) + 1. Let S∗ ⊆ Si+1 be an
optimal hitting set for (Si+1, I ′i+1). If a /∈ S∗, then S∗ is also an optimal hitting set for (Si, I ′i). Otherwise,
let a− ∈ Si (resp., a+ ∈ Si) be the rightmost (resp., leftmost) point to the left (resp., right) of a; in the
case where a is the leftmost (resp, rightmost) point in Si, then let a− (resp., a+) be an arbitrary point in
Si. We claim that (S∗\{a}) ∪ {a−, a+} is a hitting set for (Si, I ′i). Consider an interval I ∈ I ′i. If I /∈ J ,
then I is hit by some point in S∗\{a}. Otherwise, I ∈ J , and thus I is hit by a. Since I ∈ I ′i, I is also
hit by some point in Si, say b. If b is to the left of a, then I must be hit by a−. On the other hand, if b is
to the right of a, I must be hit by a+. Thus, in any case, I is hit by (S∗\{a}) ∪ {a−, a+}. It follows that
|(S∗\{a}) ∪ {a−, a+}| = opti+1(Π) + 1 ≥ opti(Π). The case where the (i+ 1)-th operation is a deletion on
S is symmetric.

A.10 Proof of Lemma 18

For convenience, we include in S two dummy points x− = −∞ and x+ = +∞. We assume these two dummy
points are always in S. Since x− and x+ do not hit any interval, including them in S is safe.

First, we store I in a binary search tree T1 where the key of an interval is its left endpoint. We augment
each node u ∈ T1 with an additional field which stores the interval in the subtree rooted at u with the leftmost
right endpoint. We notice that using T1, we can decide in Õ(1) time, for two given numbers a, a+ ∈ R, whether
there is an interval in I whose both endpoints are in the open interval (a−, a+). Specifically, we first look
for the interval in T1 with the leftmost right endpoint whose key is greater than a. With the augmented

25

fields, this interval can be found in O(log n) time. If the two endpoints of this interval are contained (a, a+),
then we return “yes”; otherwise, no interval in I has two endpoints in (a, a+) and we return “no”. Clearly,

T1 can be constructed in Õ(I) time and dynamized with Õ(1) update time, and hence it is basic.
We then store S in a standard range tree T2. The points in S are stored at the leaves of T2. Each node

u ∈ T2 corresponds to a canonical subset S(u) of S consisting of the points stored in the subtree rooted at
u. At each internal node u ∈ T2, we store the leftmost and rightmost points in S(u) as well as a separation
point su ∈ R such that all points in the left (resp., right) subtree of u are to the left (resp., right) of su. At
each leaf u of T that does not correspond to the point x+, we maintain an additional field σ(u) indicating
whether there exists an interval in I whose both endpoints are in the open interval (au, a

+
u) where au ∈ S is

the point corresponding to u and a+u ∈ S is the leftmost point that is to the right of au; we set σ(u) = 1 if
such an interval exists and set σ(u) = 0 otherwise. Note that using the binary search tree T1, σ(u) can be

computed in Õ(1) time for each leaf u of T2. Indeed, we only need to find a+u , which can be done in Õ(1)
time by a walk in T2, and query T1 to see whether there is an interval in I whose both endpoints are in the
open interval (au, a

+
u). Besides, we also maintain a counter σ∗ that is the total number of the leaves whose

σ-values are equal to 1. It is easy to see that (S, I) has a hitting set iff σ∗ = 0.

It is clear that T2 can be constructed in Õ(|S|) time. We show that when (S, I) changes, we can maintain

T2 with the σ-fields in Õ(1) time, by using T1. Suppose a point a ∈ R is inserted to S. We need to first
compute the σ-value of the leaf corresponding to a using T1. Let b ∈ S be the rightmost point to the left
of a. Due to the insertion of a, the σ-value of the leaf u of T2 corresponding to b may also change. So we
need to find u, which can be done in Õ(1) time by a walk in T2, and update σ(u) using T1. The σ-values of
all the other leaves remain unchanged. A deletion of a point from S is handled similarly. Now suppose an
interval I is inserted to or deleted from I. We find in Õ(1) the leaf u of T2 corresponding to the rightmost
point in S that is to the left of the left endpoint of I. Note that the insertion/deletion of I does not change
the σ-values of the leaves other than u. So it suffices to re-compute σ(u) using T1. The time cost for all the

cases above is Õ(1). The rotations of T2 (for self-balancing) do not change the σ-fields. It follows that the

counter σ∗ can also be maintained in Õ(1) time.
The dynamic data structure B in the lemma just consists of (the dynamic versions of) the binary search

tree T1 and the range tree T2. The update time of B is Õ(1) time and the construction time is Õ(n0). To
indicate whether the current (S, I) has a hitting set or not, we simply check whether σ∗ = 0 or not.

A.11 Proof of Lemma 19

We can simply store S in a binary search tree. Then the rightmost (resp., leftmost) point in S to the left

(resp., right) of a given point a can be reported in Õ(1) time by searching in the tree. Clearly, the binary

search tree can be constructed in Õ(|S|) time and dynamized with Õ(1) update time, and thus it is basic.

A.12 Proof of Lemma 20

We can simply store S in a binary search tree. Then a point a ∈ S contained in a given interval I can be
reported in Õ(1) time by searching in the tree. Clearly, the binary search tree can be constructed in Õ(|S|)
time and dynamized with Õ(1) update time, and thus it is basic.

A.13 Proof of Lemma 21

We use opt′ to denote the quasi-optimum of the current (S, I). It suffices to show |S∗| ≤ (1 + ε) · opt′ at any
time, since we always have opt′ ≤ opt.

Initially, S∗ is an optimal hitting set for (S0, I ′0), so we have |S∗| = opt′ at that time. If the current
S∗ is obtained by re-computing using the output-sensitive algorithm, then |S∗| = opt′ = opt, as we only
do re-computation when the current (S, I) has a hitting set. Suppose S∗ is obtained by local modification.
Consider the last re-computation of S∗, and we use S∗1 to denote the S∗ at that point and use opt′1 to denote
the quasi-optimum of (S, I) at that point. Then we have |S∗1 | = opt′1. As argued before, cnt is the number

26

of the operations processed after the last re-computation of S∗. By the stability of dynamic interval hitting
set (Lemma 16), we have |opt′ − opt′1| ≤ cnt, implying opt′1 ≤ opt′ + cnt. Furthermore, by the fact that the
size of S∗ either increases by 1 or keeps unchanged after each local modification, we have |S∗| − |S∗1 | ≤ cnt.
It follows that

|S∗| ≤ |S∗1 |+ cnt = opt′1 + cnt ≤ opt′ + 2 · cnt.

Note that cnt ≤ ε · opt′1/(2 + ε), for otherwise we should re-compute S∗. This implies cnt ≤ (ε/2) · opt′ and
hence |S∗| ≤ (1 + ε) · opt′.

A.14 Proof of Lemma 22

Let (Si, Ii) denote the instance (S, I) at the time i, and S∗i be the point set S∗ at the time i. Define I ′i ⊆ Ii
as the sub-collection consisting of the intervals that are hit by Si. Then (Si, I ′i) always has a hitting set.
Furthermore, if (Si, Ii) has a hitting set, then (Si, I ′i) = (Si, Ii). So it suffices to show that S∗i is always a
hitting set for (Si, I ′i). We prove this by induction. It is clear that S∗0 is a hitting set for (S0, I ′0). Assume
S∗i−1 is a hitting set for (Si−1, I ′i−1) and we show that S∗i is a hitting set for (Si, I ′i). If S∗i is obtained by
re-computing, then (Si, I ′i) = (Si, Ii), since we only re-compute S∗ when the current (S, I) has a hitting
set. In this case, S∗i is clearly a hitting set for both (Si, I ′i) and (Si, Ii). So suppose S∗i is obtained by local
modification.

We consider different cases separately according to the i-th operation. If the i-th operation inserts a
point a to S, then Si = Si−1 ∪ {a} and Ii = Ii−1. In this case, S∗i = S∗i−1 ∪ {a} and I ′i = I ′i−1 ∪ J , where
J = {I ∈ Ii : a ∈ I}. The intervals in I ′i−1 are hit by S∗i−1 and the intervals in J are hit by the point a.
Hence, S∗i is a hitting set for (Si, I ′i). If the i-th operation deletes a point a from S, then Si = Si−1\{a} and
Ii−1 = Ii. In this case, S∗i is obtained from S∗i−1\{a} by adding the rightmost point a− in Si to the left of
a and the leftmost point a+ in Si to the right of a (if they exist). Consider an interval I ∈ I ′i. We want to
show that I is hit by S∗i . Note that I ′i ⊆ I ′i−1. Thus, I ∈ I ′i−1 and I is hit by S∗i−1. If a /∈ I, then I is hit
by S∗i−1\{a} and hence hit by S∗i . Otherwise, a ∈ I. Since I ∈ I ′i and a /∈ Si, I must be hit by some point
b ∈ Si different from a. If b is to the left of a, then I must be hit by a− (as a− is in between b and a). On
the other hand, if b is to the right of a, I must be hit by a+ (as a+ is in between a and b). Therefore, I is
hit by S∗i . If the i-th operation inserts an interval I to I, then Si = Si−1 and Ii = Ii−1 ∪ {I}. In this case,
S∗i is obtained from S∗i−1 by adding an arbitrary point a ∈ Si that hits I (if I is hit by Si). If I is not hit
by Si, then (Si, I ′i) = (Si−1, I ′i−1) and S∗i = S∗i−1, thus S∗i is a hitting set for (Si, I ′i). If I is hit by Si, then
I ′i = I ′i−1 ∪ {I} and S∗i = S∗i−1 ∪ {a}. The intervals in I ′i−1 are hit by S∗i−1 by our induction hypothesis and
I is hit by the point a. Hence, S∗i is a hitting set for (Si, I ′i). If the i-th operation deletes an interval I from
I, then Si = Si−1 and Ii = Ii−1\{I}. In this case, S∗i = S∗i−1. Note that I ′i ⊆ I ′i−1, which implies that S∗i
is a hitting set for (Si, I ′i).

A.15 Proof of Lemma 24

Note that Q is static. We simply store Q in a static data structure B0 that can decide in Õ(1) time,
for a given point a ∈ R2, whether there exists a quadrant in Q that covers a; this can be done using a
standard orthogonal stabbing data structure with Õ(|Q|) construction time. Then our data structure B
simply maintains the number ñ of the points in S that are not covered by Q. Initially, ñ can be computed
in Õ(n0) time by considering every point in S and use B0 to check if it is covered by Q in Õ(1) time. After

an operation on S, we can update ñ in Õ(1) time by checking whether the inserted/deleted point is covered
by Q using B0.

A.16 Proof of Lemma 25

Let Si denote the set S at the time i and Q∗i be the Q∗ at the time i. Define S′i ⊆ Si as the sub-collection
consisting of the points that are covered by Q. Then (S′i,Q) always has a hitting set. Furthermore, if (Si,Q)
has a set cover, then (S′i,Q) = (Si,Q). So it suffices to show that Q∗i is always a set cover for (S′i,Q). We

27

prove this by induction. It is clear that Q∗0 is a set cover for (S′0,Q). Assume Q∗i−1 is a set cover for (S′i−1,Q)
and we show that Q∗i is a set cover for (S′i,Q). If Q∗i is obtained by re-computing, then (S′i,Q) = (Si,Q),
since we only re-compute Q∗ when the current (S,Q) has a set cover. In this case, Q∗i is clearly a set cover
for both (S′i,Q) and (Si,Q). So suppose Q∗i is obtained by local modification. If the i-th iteration inserts a
point a to S, then Si = Si−1 ∪ {a}. In this case, Q∗i is obtained by including in Q∗i−1 an arbitrary quadrant
Q ∈ Q that contains a (if such a quadrant exists). If a is not covered by R, then S′i = S′i−1 and Q∗i = Q∗i−1,
thus Q∗i is a set cover for (S′i,Q). If a is covered by R, then S′i = S′i−1 ∪ {a} and Q∗i = Q∗i−1 ∪ {Q}. The
points in S′i−1 are covered by Q∗i−1 by our induction hypothesis and the point a is covered by Q. Hence, Q∗i
is a set cover for (S′i,Q). If the i-th iteration delete a point a from S, then Si = Si−1\{a}. In this case,
Q∗i = Q∗i−1. Note that S′i ⊆ S′i−1, which implies that Q∗i is a set cover for (S′i,Q).

B Implementation details and detailed time analysis for the dy-
namic interval set cover data structure

We present the implementation details of our dynamic interval set cover data structure Dnew in Section 4.1 as
well as a detailed time analysis. Assume the function f we choose satisfies two properties: (1) f(m, ε) ≤ m/2
for any m, and (2) f(Θ(m), ε) = Θ(f(m, ε)).

First, we discuss how to construct Dnew. Constructing the data structure A takes Õ(n0) time, as it is

basic. The portions J1, . . . , Jr can be computed in Õ(n0) time by sorting the points in S and the endpoints
of the intervals in I. Once J1, . . . , Jr are computed, we build a (static) point location data structure B1
which can report in O(log r) time, for a given point a ∈ R, the portion Ji that contains a. Clearly, B1
can be constructed in Õ(r) time. With B1 in hand, we can determine in Õ(1) time, for each point a ∈ S
(resp., each interval I ∈ I), the portion Ji that contains a (resp., the two Ji’s that contain the endpoints of

I). By doing this for all points in S and all intervals in I, we obtain all Si and all Ii in Õ(n0 + r) time.

After this, we can build the data structures D(i)
old’s. Constructing each D(i)

old takes Õ(f(n0, ε)) time since

|Si|+ |Ii| = O(f(n0, ε)). Hence, the time for constructing all D(1)
old, . . . ,D

(r)
old is Õ(n0).

The support data structure B1 will be used later in the implementation of the update procedure of Dnew

(we do not need to update B1 since it is static). Besides, we need another support data structure B2 defined
as follows.

Lemma 30. One can store I in a basic data structure B2 such that given an interval J , an interval in I
that contains J can be reported in Õ(1) time (if it exists).

Proof. We store I in a binary search tree T where the key of each interval is its left endpoint. We augment
each node u ∈ T with an additional field which stores the interval in the subtree rooted at u that has the
rightmost right endpoint. Given a query interval J , we first look for the interval in T with the rightmost
right endpoint whose key is smaller than or equal to the left endpoint of J . With the augmented fields, this
interval can be found in Õ(1) time. If this interval contains J , then we report it; otherwise, no interval in

I contains J . Clearly, T can be built in Õ(n0) time and dynamized with Õ(1) update time, and thus T is
basic.

Since B2 is basic, it can be constructed in Õ(n0) time and updated in Õ(1) time. We conclude that the

construction time of Dnew is Õ(n0).
Next, we consider how to implement the update procedure of Dnew. After each operation, we need to

update the data structure A and the support data structure B2, which can be done in Õ(1) time since they

are basic. Also, if some (Si, Ii) changes, we need to update the data structure D(i)
old. An operation on S

changes exactly one Si and an operation on I changes at most two Ii’s. Thus, we only need to update at

most two D(i)
old’s, and by using B1 we can find these D(i)

old’s in Õ(1) time. Note that the size of each (Si, Ii) is
bounded by O(f(n0, ε)) during the first period (i.e., before the first reconstruction), because the period only
consists of f(n0, ε) operations. Thus, updating the Dold data structures takes O(fα(n0, ε)/ε

1−α) amortized
time.

28

Then we discuss the maintenance of the solution. The time for simulating the output-sensitive algorithm
is Õ(δ), i.e., Õ(min{r/ε, n}). If the algorithm gives the solution Iappx, we compute |Iappx| and store Iappx in a
binary search tree; by doing this, we can answer the size, membership, and reporting queries for Qappx in the

required query times. This step takes Õ(δ) time, i.e., Õ(min{r/ε, n}) time, since |Iappx| ≤ δ in this case. If the

output-sensitive algorithm fails, we compute the sets P and P ′. This can be done in Õ(r) time by using the

support data structure B2. After this, we compute I∗, which again takes Õ(r) time by using B2; specifically,
we consider each i ∈ P and use B2 to find an interval in I that contains Ji. We have Iappx = I∗t(

⊔
i∈P ′ I∗i).

To support the size query for Iappx in O(1) time, we need to compute |Iappx| = |I∗| +
∑
i∈P ′ |I∗i |. This

can be done in O(r) time, because we can query D(i)
old to obtain |I∗i | in O(1) time. In order to support

the membership and reporting queries, we store I∗ in a binary search trees T . Also, we store the set P ′,

and for each i ∈ P ′ we store a pointer pointing to the data structure D(i)
old. Consider a membership query

I ∈ I. Using the binary search tree T , we can obtain the multiplicity of I in I∗ in O(log |I∗|) time. Then
we use B1 to find in O(log r) time the (at most) two Ii’s that contain I (say I ∈ Ii and I ∈ Ij). By

querying D(i)
old and D(j)

old, we know the multiplicities of I in I∗i and I∗j , which takes O(log |I∗i | + log |I∗j |).
The sum of these multiplicities is just the multiplicity of I in Iappx. The time for answering the query is
O(log |I∗|+ log |I∗i |+ log |I∗j |+ log r). Note that log |I∗|+ log |I∗i |+ log |I∗j | = O(log |Iappx|). Furthermore,
because |Iappx| > δ (as the output-sensitive algorithm fails), we have |Iappx| = Ω(r). Thus, the time cost for
a membership query is O(log |Iappx|). Finally, consider the reporting query. We first use the binary search
tree T to report the elements in I∗, using O(|I∗|) time. Then for each i ∈ P ′, we query the data structure

D(i)
old to report the elements in I∗i . The total time cost is O(|I∗| +

∑
i∈P ′ |I∗i | + |P ′|). Since |P ′| ≤ r and

|Iappx| = Ω(r) as argued before, the time for answering the reporting query is O(|Iappx|). The above work for

storing Iappx takes Õ(r) time, since |I∗| = O(r) and |P ′| = O(r). To summarize, maintaining the solution

takes Õ(min{r/ε, n}+ r) time.
After processing f(n0, ε) operations, we need to reconstruct the entire data structure Dnew. The recon-

struction is the same as the initial construction, except that n0 is replaced with n1, the size of (S, I) at

the time of reconstruction. Thus, the reconstruction takes Õ(n1) time. We amortize the time cost over all
the f(n0, ε) operations in the period. Since n1 ≤ n0 + f(n0, ε), the amortized time for reconstruction is

Õ(n0/f(n0, ε)), i.e., Õ(r).
Combining the time for updating the Dold data structures, the time for maintaining the solution, and the

time for reconstruction, we see that the amortized update time of Dnew is Õ(fα(n0, ε)/ε
1−α+min{r/ε, n}+r)

during the first period (since Dnew is reconstructed periodically, it suffices to analyze the update time in the
first period). By property (1) of f , we have n = Θ(n0) at any time in the period, i.e., the size of (S, I) is
Θ(n0) at any time in the period. By property (2) of f , we further have f(n, ε) = Θ(f(n0, ε)) at any time in

the period. It follows that the amortized update time of Dnew is Õ(fα(n, ε)/ε1−α + min{n/(f(n, ε) · ε), n}+
n/f(n, ε)) during the period. To minimize the time complexity while guaranteeing the two conditions of f ,
we set f(n, ε) = min{n1−α′/εα′ , n/2} where α′ is as defined in Theorem 2, i.e., α′ = α/(1+α). The following

lemma shows that our choice of f makes the time bound Õ(nα
′
/ε1−α

′
).

Lemma 31. When f(n, ε) = min{n1−α′/εα′ , n/2}, we have

fα(n, ε)

ε1−α
+ min

{
n

f(n, ε) · ε
, n

}
+

n

f(n, ε)
= O

(
nα
′

ε1−α′

)
.

Proof. If f(n, ε) = n1−α
′
/εα

′
, then one can easily verify the equation in the lemma via a direct computation

(by bounding each of the three terms on the left-hand side). It suffices to verify the equation for the
case f(n, ε) = n/2. In this case, we have n1−α

′
/εα

′ ≥ n/2, implying that n = O(1/ε). It follows that
nα/ε1−α = O(nα

′
/ε1−α

′
). So the first term in the left-hand side is bounded by O(nα

′
/ε1−α

′
). The second

term is O(min{1/ε, n}), which is bounded by O(nα
′
/ε1−α

′
). The third term is clearly O(1). This proves the

equation in the lemma.

29

C Implementation details and detailed time analysis for the dy-
namic quadrant set cover data structure

We present the implementation details of our dynamic quadrant set cover data structure Dnew in Section 4.2
as well as a detailed time analysis. Since we are interested in the asymptotic bounds, we may assume that
the approximation factor ε is sufficiently small, say ε < 1. Assume the function f we choose satisfies two
properties: (1)

√
m/2 ≤ f(m, ε) ≤ m/2 for any m, and (2) f(Θ(m), ε) = Θ(f(m, ε)). Note that property

(1) implies that r = dn0/f(n0, ε)e = O(f(n0, ε)) and r2 = O(n0).

First, we discuss how to construct Dnew. Constructing the data structure A takes Õ(n0) time, as it is

basic. The grid can be built in Õ(n0) time by sorting the points in S and the vertices of the quadrants in Q.
Once the grid is computed, we build a (static) point location data structure B1 which can report in O(log r)
time, for a given point a ∈ R2, the grid cell that contains a. Since the grid has r2 cells, B1 can be built in
Õ(r2) time. With B1 in hand, we can determine in Õ(1) time, for each point a ∈ S (resp., each quadrant
Q ∈ Q), the cell contains a (resp., the vertex of Q). By doing this for all points in S and all quadrants in

Q, we obtain all Si,j and the non-special quadrants in all Qi,j in Õ(n0 + r2) time, i.e., Õ(n0) time. In order
to compute the special quadrants, we need the following support data structure B2.

Lemma 32. One can store Q in a basic data structure B2 such that given an orthogonal rectangle �,
the leftmost (resp., rightmost) quadrant in Q that right (resp., left) intersects � and the topmost (resp.,

bottommost) quadrant in Q that bottom (resp., top) intersects � can be reported in Õ(1) time (if they exist).

Proof. It suffices to show how to compute the leftmost quadrant in Q that right intersects a given orthogonal
rectangle �. Note that only southeast and northeast quadrants can left intersects a rectangle, and without
loss of generality, it suffices to see how to find the leftmost southeast quadrant in Q that right intersects
�. Let QSE ⊆ Q consist of the southeast quadrants. We store the vertices of the quadrants in QSE in a
basic 3-sided range-minimum data structure (Lemma 36) with Õ(1) query time, by setting the weight of
each vertex to be its x-coordinate. Let � = [x1, x2]× [y1, y2] be a given orthogonal rectangle. Observe that
a quadrant in QSE right intersects � iff its vertex lies in the 3-sided rectangle (x1, x2]× [y2,∞). Thus, the
leftmost quadrant in QSE that right intersects � corresponds to the lightest vertex (i.e., the vertex with the
smallest weight) in (x1, x2] × [y2,∞), which can be reported by the 3-sided range-minimum data structure

in Õ(1) time.

Using the support data structure B2, we can find the special quadrants in all Qi,j in Õ(r2) time. After

this, we can build the data structures D(i,j)
old ’s. Constructing each D(i,j)

old takes Õ(|Si,j | + |Qi,j |) time. By

Lemma 10, the time for constructing all D(i,j)
old ’s is Õ(n0 + r2). Therefore, the entire construction time of

Dnew is Õ(n0 + r2), i.e., Õ(n0).
The support data structures B1 and B2 will be used later in the implementation of the update procedure

of Dnew. Thus, B2 will be updated after each operation (while B1 is static). Besides B1 and B2, we need
another support data structure B3 defined as follows.

Lemma 33. One can store Q in a basic data structure B3 such that given an orthogonal rectangle �, a
quadrant Q ∈ Q that contains � can be reported in Õ(1) time (if it exists).

Proof. It suffices to consider the southeast quadrants. Let QSE ⊆ Q consist of the southeast quadrants.
We store QSE in a binary search tree T where the key of a quadrant is the x-coordinate of its vertex. We
augment each node u ∈ T with an additional field which stores the topmost quadrant in the subtree rooted
at u. Given an orthogonal rectangle � = [x1, x2]× [y1, y2], we first look for the topmost quadrant Q whose

key is smaller than or equal to x1. With the augmented fields, Q can be found in Õ(1) time using T . If
Q contains �, then we report Q, otherwise no quadrant in QSE contains � (because a southeast quadrant
contains � iff the x-coordinate of its vertex is smaller than or equal to x1 and the y-coordinate of its vertex
is greater than or equal to y2). Clearly, T can be built in Õ(n0) time and dynamized with Õ(1) update time,
and thus T is basic.

30

Next, we consider how to implement the update procedure of Dnew. We first discuss the update of the
Dold data structures. If the operation is an insertion or deletion on S, then we use B1 to find the cell �i,j that

contains the inserted/deleted point and update the data structure D(i,j)
old . The situation is more complicated

when the operation happens on Q. Suppose the operation inserts a quadrant Q to Q. Without loss of
generality, assume Q is a southeast quadrant. Using B1, we can find the cell �i,j that contains the vertex

of Q. We then update the data structure D(i,j)
old by inserting Q to Qi,j . Besides, the insertion of Q may also

changeQi,k for k ∈ {j+1, . . . , r} andQk,j for k ∈ {i+1, . . . , r}. Fix an index k ∈ {j+1, . . . , r}. The quadrant
Q bottom intersects �i,k. We use the support data structure B2 to find the topmost quadrant Q′ in Q (before
the insertion of Q) that bottom intersects �i,k. Then Q′ is a special quadrant in Qi,k. If the y-coordinate of
the vertex of Q is greater than the y-coordinate of the vertex of Q′, then we delete Q′ from Qi,k and insert

Q to Qi,k, and we update D(i,k)
old twice for these two operations. The data structures D(k,j)

old ’s can be updated

similarly. Updating each D(i,k)
old takes Õ(mα

i,k/ε
1−α) amortized time, where mi,k is the size of the current

(Si,k,Qi,k), and updating each D(k,j)
old takes Õ(mα

k,j/ε
1−α) amortized time. Therefore, the total amortized

time cost for updating these Dold data structures is bounded by Õ(
∑r
k=1m

α
i,k/ε

1−α+
∑r
k=1m

α
k,j/ε

1−α). By

Lemma 10 and the fact r = O(f(n0, ε)), we have
∑r
k=1mi,k = O(f(n0, ε)) and

∑r
k=1mk,j = O(f(n0, ε)) at

any time of the first period. Since α ≤ 1, by Hölder’s inequality and Lemma 10,

r∑
k=1

mα
i,k ≤

(∑r
k=1mi,k

r

)α
· r = O(r1−α · fα(n0, ε))

and similarly
∑r
k=1m

α
k,j = O(r1−α · fα(n0, ε)). It follows that updating the Dold data structures takes

Õ(r1−α · fα(n0, ε)/ε
1−α) amortized time. Updating the data structure A and the support data structures

B2 and B3 can be done in Õ(1) time since they are basic.
Then we discuss the maintenance of the solution. The time for simulating the output-sensitive algorithm

is Õ(µ · δ), i.e., Õ(min{r2/ε, n}). If the algorithm gives the solution Qappx, we compute |Qappx| and store
Qappx in a binary search tree; by doing this, we can answer the size, membership, and reporting queries

for Qappx in the required query times. This step takes Õ(µ · δ) time, i.e., Õ(min{r2/ε, n}) time, since
|Qappx| ≤ µ · δ in this case. If the output-sensitive algorithm fails, we compute the sets P and P ′. This

can be done in Õ(r2) time by using the support data structure B3. After this, we compute Q∗, which again

takes Õ(r2) time by using B3; specifically, we consider each (i, j) ∈ P and use B3 to find a quadrant in Q
that contains �i,j . We have Qappx = Q∗ t (

⊔
(i,j)∈P ′ Q∗i,j). To support the size query for Qappx in O(1)

time, we need to compute |Qappx| = |Q∗|+
∑

(i,j)∈P ′ |Q∗i,j |. This can be done in O(r2) time, because we can

query D(i,j)
old to obtain |Q∗i,j | in O(1) time. To support the reporting query in O(|Qappx|) time, we only need

to store Q∗ and P ′, and store at each (i, j) ∈ P ′ a pointer pointing to the data structure D(i,j)
old . In this way,

we can report the quadrants in Q∗ and for each (i, j) ∈ P ′, report the quadrants in Q∗i,j in O(|Q∗i,j |) time by

querying D(i,j)
old . Supporting the membership query in O(log |Qappx|) time is more difficult, since a quadrant

may belong to many Q∗i,j ’s. To handle this issue, the idea is to collect all the special quadrants in the Q∗i,j ’s.
Specifically, let P∗i,j ⊆ Q∗i,j consist of the (at most) four special quadrants. We can compute P∗i,j for each

(i, j) ∈ P ′ in Õ(1) time by first finding the (at most) four special quadrants in Qi,j using B2 and computing

the multiplicity of each special quadrant in Q∗i,j by querying D(i,j)
old . We then store Q∗ t (

⊔
(i,j)∈P ′ P∗i,j) in a

binary search tree T . Given a query quadrant Q ∈ Q, we first use T to compute the multiplicity p1 of Q in
Q∗t(

⊔
(i,j)∈P ′ P∗i,j) in O(log |Qappx|) time. Then we use B1 to find the cell �i,j that contains the vertex of Q

in O(log r) time and query D(i,j)
old to find the multiplicity p2 of Q in Q∗i,j in O(log |Q∗i,j |) time. One can easily

verify that p1 + p2 is the multiplicity of Q in Qappx. The query takes O(log |Qappx|+ log r+ log |Q∗i,j |) time.
Note that |Q∗i,j | ≤ |Qappx| and |Qappx| = Ω(r), where the latter follow from the fact that |Qappx| > δ (as the
output-sensitive algorithm fails). Therefore, we can support the membership query in O(log |Qappx|) time.

The above work for storing Qappx takes Õ(r2) time, since |Q∗| = O(r2) and |P ′| = O(r2). To summarize,

maintaining the solution takes Õ(min{r2/ε, n}+ r2) time.

31

After processing f(n0, ε) operations, we need to reconstruct the entire data structure Dnew. The recon-
struction is the same as the initial construction, except that n0 is replaced with n1, the size of (S,Q) at

the time of reconstruction. Thus, the reconstruction takes Õ(n1) time. We amortize the time cost over all
the f(n0, ε) operations in the period. Since n1 ≤ n0 + f(n0, ε), the amortized time for reconstruction is

Õ(n0/f(n0, ε)), i.e., Õ(r).
Combining the time for updating the Dold data structures, the time for maintaining the solution, and

the time for reconstruction, we see that the amortized update time of Dnew is Õ(r1−α · fα(n0, ε)/ε
1−α +

min{r2/ε, n}+ r2) during the first period (since Dnew is reconstructed periodically, it suffices to analyze the
update time in the first period). By property (1) of f , we have n = Θ(n0) at any time in the period, i.e., the
size of (S,Q) is Θ(n0) at any time in the period. By property (2) of f , we further have f(n, ε) = Θ(f(n0, ε))

at any time in the period. It follows that the amortized update time of Dnew is Õ(n1−α/(f1−2α(n, ε) ·
ε1−α) + min{n2/(f2(n, ε) · ε), n} + n2/f2(n, ε)). To minimize the time complexity while guaranteeing the
two conditions of f , we set f(n, ε) = min{n1−α′/2/(

√
ε)α

′
, n/2} where α′ is as defined in Theorem 7, i.e.,

α′ = 2α/(1 + 2α). Note that by doing this we have f(n, ε) ≥
√
n because of our assumption ε < 1. The

following lemma shows that our choice of f makes the time bound Õ(nα
′
/ε1−α

′
).

Lemma 34. When f(n, ε) = min{n1−α′/2/(
√
ε)α

′
, n/2}, we have

n1−α

f1−2α(n, ε) · ε1−α
+ min

{
n2

f2(n, ε) · ε
, n

}
+

n2

f2(n, ε)
= O

(
nα
′

ε1−α′

)
.

Proof. If f(n, ε) = n1−α
′/2/(

√
ε)α

′
, then one can easily verify the equation in the lemma via a direct compu-

tation (by bounding each of the three terms on the left-hand side). It suffices to verify the equation for the
case f(n, ε) = n/2. In this case, we have n1−α

′/2/(
√
ε)α

′ ≥ n/2, implying that n = O(1/ε). It follows that
nα/ε1−α = O(nα

′
/ε1−α

′
). So the first term in the left-hand side is bounded by O(nα

′
/ε1−α

′
). The second

term is O(min{1/ε, n}), which is bounded by O(nα
′
/ε1−α

′
). The third term is clearly O(1). This proves the

equation in the lemma.

D Missing details in the output-sensitive quadrant set cover algo-
rithm

D.1 Handling the no-solution case

Let U =
⋃
Q∈QQ. Observe that no matter whether (S,Q) has no set cover or not, the algorithm in

Section 4.2.2 gives an O(1)-approximate optimal set cover Q∗ for (S ∩ U,Q). Thus, in order to handle the
no-solution case, we only need to check whether Q∗ covers all points in S, after Q∗ is computed. Define
U∗ =

⋃
Q∈Q∗ Q. Note that Q∗ is a set cover for S iff R2\U∗ does not contain any point in S. The area

R2\U∗ is a rectilinear domain (not necessarily connected). Since U∗ is the union of O(|Q∗|) quadrants, the
complexity of U∗ is O(|Q∗|), so is the complexity of R2\U∗. Furthermore, it is easy to compute R2\U∗
and decompose it into O(|Q∗|) rectangles in Õ(|Q∗|) time, given Q∗ in hand. We then only need to test
for each such rectangle R whether R contains any point in S or not, which can be done via an orthogonal
range-emptiness query on S; there are existing basic data structures that support orthogonal range-emptiness
queries in Õ(1) time [24].

D.2 Implementing the algorithm using basic data structures

In this section, we show that the output-sensitive quadrant set cover algorithm can be performed in Õ(opt)
time by storing the instance (S,Q) in some basic data structure. As argued in Section 4.2.2, it suffices to

show how to implement the following operations in Õ(1) time using basic data structures (please refer to
Section 4.2.2 for the notations).

32

• Computing the point σ.

• Given a point a ∈ R2, testing whether a ∈ UNE and a ∈ UNW.

• Given a point a ∈ R2, computing the quadrants Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), and Φ↑(a,QNE).

• Given a number ỹ, computing the point φ(ỹ).

Computing σ. Recall that γ is the boundary of USE, which is a staircase curve from bottom-left to top-
right. The area USW contains the bottom-left end of γ (if γ ∩ USW 6= ∅). The point σ is the “endpoint” of
γ ∩USW, i.e., the point on γ closest to the top-right end of γ that is contained in USW. We define the height
of USW at x ∈ R, denoted by htx(USW), as the largest number y ∈ R such that the point with coordinates
(x, y) is contained in USW; similarly, we can define the height of USE at x ∈ R, denoted by htx(USE). We
say USW is higher than USE at x ∈ R if htx(USW) ≥ htx(USE); otherwise, we say USW is lower than USE at
x. It is easy to see the following three facts about the point σ.

1. The x-coordinate of σ, denoted by xσ, is equal to x(Q) for some Q ∈ QSE ∪ QSW; recall that x(Q) is
the x-coordinate of the vertex of Q.

2. USW is higher than USE at all x < xσ and USW is lower than USE at all x > xσ.

3. The coordinates of σ is (xσ,min{htxσ (USW), htxσ (USE)}).

Based on these facts, we compute σ as follows. First, we need a basic data structure built on QSW (resp.,

QSE) that can compute the height function in Õ(1) time.

Lemma 35. One can store QSW (resp., QSE) in a basic data structure which can report htx(USW) (resp.,

htx(USE)) for a given number x ∈ R in Õ(1) time.

Proof. It suffices to consider QSW. We store QSW in a standard binary search tree T , by using x(Q) as the
key of each quadrant Q ∈ QSW. At each node u ∈ T , we store a field Y (u) which is the maximum of y(Q)

for all quadrants Q in the subtree rooted at u. Clearly, T can be constructed in Õ(n) time where n = |QSW|
and can be dynamized with Õ(1) update time to support insertions and deletions on QSW, hence it is a basic
data structure. Next, we consider how to compute htx(USW) for a given x ∈ R using T . One can easily
see that htx(USW) = max{y(Q) : Q ∈ QSW with x(Q) ≥ x}. In other words, htx(USW) is the maximum of
y(Q) for all Q ∈ QSW corresponding to the nodes in T whose keys are at least x. Therefore, using the field
Y (u), htx(USW) can be computed in O(log n) time simply via a top-down walk in T . The walk begins at
the root of T , and we set ht = −∞ initially. If the key of the current node is smaller than x, then we just
go to its right child. Otherwise, we update ht as ht← max{ht, y(Q), Y (r)} where Q ∈ QSW is the quadrant
corresponding to the current node and r is the right child of the current node (if the current node has no
right child, we update ht as ht ← max{ht, y(Q)}), and go to the left child of the current node. When the
walk ends at a leaf node, the number ht is just equal to htx(USW). The walk takes O(log n) time, hence

htx(USW) can be computed in Õ(1) time using T . This completes the proof of the lemma.

With the above lemma in hand, we may now assume that the height functions htx(USW) and htx(USE)

can be computed in Õ(1) time for any x ∈ R. In particular, we can test in Õ(1) time whether USW is higher
or lower than USE at any x ∈ R. We then build a binary search tree T on QSW ∪QSE, by using x(Q) as the

key of each quadrant Q ∈ QSW ∪QSE. Clearly, T can be constructed in Õ(n) time where n = |QSW ∪QSE|
and can be dynamized with Õ(1) update time, hence it is a basic data structure. We observe that, using

T , we can determine in Õ(1) time for any given number p ∈ R which one of the following three is true:
(1) p < xσ, (2) p = xσ, (3) p > xσ. To see this, consider a given number p ∈ R. We first search in T
to see whether p = x(Q) for some Q ∈ QSW ∪ QSE. If not, we know p 6= xσ, because xσ = x(Q) for some
Q ∈ QSW ∪ QSE (as we observed before). In this case, we can decide whether p < xσ or p > xσ by simply
testing whether USW is higher or lower than USE at p. Specifically, if USW is higher than USE at p, then

33

p < xσ, otherwise p > xσ, because USW is higher (resp., lower) than USE at all x < xσ (resp., x > xσ) as
we observed before. The remaining case is that p = x(Q) for some Q ∈ QSW ∪ QSE. In this case, we also
test whether USW is higher or lower than USE at p; by doing this, we can decide whether p ≤ xσ or p ≥ xσ.
Suppose p ≤ xσ. To see whether p < xσ or p = xσ, we search in T to find the smallest key p′ that is larger
than p. Let p̃ ∈ R be any number such that p < p̃ < p′. If USW is higher than USE at p̃, then we have
p < p̃ ≤ xσ. If USW is lower than USE at p̃, then we know p ≤ xσ ≤ p̃. Note that any number in (p, p̃] is
not equal to x(Q) for any Q ∈ QSW ∪QSE, due to the choice of p′ and the inequality p < p̃ < p′. Therefore,

xσ /∈ (p, p̃], which implies p = xσ. To summarize, we can determine in Õ(1) time for any p ∈ R which one of
the following three is true: (1) p < xσ, (2) p = xσ, (3) p > xσ.

This allows us to compute xσ using a binary search manner. Specifically, we do a top-down walk from
the root of T . If the key of the current node is equal to xσ, we are done. Otherwise, if the key of the
current node is smaller (resp., larger) than xσ, we go to its right (resp., left) child, because the keys of
the nodes in the left (resp., right) subtree are all smaller (resp., larger) than xσ. During the walk, we can
definitely find a node whose key is xσ, since xσ = x(Q) for some Q ∈ QSW ∪QSE, i.e., xσ is the key of some

node in T . In this way, we can compute xσ in Õ(1) time. As we observed before, the coordinates of σ is
(xσ,min{htxσ (USW), htxσ (USE)}). Thus, once we know xσ, it suffices to compute htxσ (USW) and htxσ (USE),

which takes Õ(1) time by Lemma 35. We conclude that computing σ can be done in Õ(1) time (by properly
store QSW and QSE in basic data structures).

Testing whether a ∈ UNE and a ∈ UNW. It suffices to consider how to test whether a ∈ UNE. We
store QNE in a binary search tree T , by using y(Q) as the key of each quadrant Q ∈ QSW. We augment
each node u ∈ T with a field which stores the leftmost quadrant in the subtree rooted at u. Clearly, T can
be constructed in Õ(n) time where n = |QNE| and can be dynamized with Õ(1) update time, hence it is
basic. Given a point a ∈ R2, we first look for the leftmost quadrant Q in T whose key is smaller than or
equal to the y-coordinate of a. With the augmented fields, Q can be found in Õ(1) time. If a ∈ Q, then we
know a ∈ UNE. Otherwise, we claim that a /∈ UNE. Indeed, a quadrant in T contains a only if its key is
smaller than or equal to the y-coordinate of a. Since Q is the leftmost one among such quadrants and a /∈ Q,
we know that a is not contained in any quadrant in T , i.e., a /∈ UNE. We conclude that testing whether
a ∈ UNE and a ∈ UNW for a given point a ∈ R2 can be done in Õ(1) time (by properly store QNE and QNW

in basic data structures).

Computing Φ. Recall that for a point a ∈ R2 and a collection P of quadrants, Φ→(a,P) and Φ↑(a,P)
denote the rightmost and topmost quadrants in P that contain a, respectively. We want to compute
Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), and Φ↑(a,QNE) in Õ(1) time for a given point a ∈ R2, using basic
data structures. Here we only consider how to compute Φ→(a,QSW), the other three can be computed in
the same way. We store QSW in a binary search tree T , by using y(Q) as the key of each quadrant Q ∈ QSW.
At each node u ∈ T , we store a field that is the rightmost quadrant in the subtree rooted at u. Clearly, T
can be constructed in Õ(n) time where n = |QSW| and can be dynamized with Õ(1) update time, hence it is
a basic data structure. Given a point a ∈ R2, we first look for the rightmost quadrant Q in T whose key is
greater than or equal to the y-coordinate ya of a. With the augmented fields, Q can be found in Õ(1) time.
If Q contains a, then Q is the rightmost quadrant in T (i.e., in QSW) that contains a, because any quadrant
Q′ that contains a must satisfy y(Q′) ≥ ya. Otherwise, no quadrant in QSW contains a. We conclude that
computing Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), and Φ↑(a,QNE) for a given point a ∈ R2 can be done in

Õ(1) time (by properly store QSW, QNW, QSE, QNE in basic data structures).

Computing φ(ỹ). Recall that for a number ỹ ∈ R, φ(ỹ) is the leftmost point in S∩USE whose y-coordinate
is greater than ỹ. We want to store S and QSE in some basic data structure such that φ(ỹ) can be computed

in Õ(1) time for any given ỹ ∈ R. For simplicity of exposition, let us make a general-position assumption:
the points in S and the vertices of the quadrants in QSE have distinct y-coordinates. The first thing we need
is a data structure that supports the so-called 3-sided range-minimum query. A 3-sided range-minimum

34

query on a set of weighted points in R2 ask for the lightest point (i.e., the point with the smallest weight)
contained in a given 3-sided query rectangle R = [x0,∞)× [y1, y2].

Lemma 36. There exists a basic data structure that supports 3-sided range-minimum queries in Õ(1) time.

Proof. The standard range trees can answer static 3-sided range-minimum queries in Õ(1) time, and can be

constructed in Õ(n) time, where n is the size of the dataset. Since range-minimum queries are decomposable,

the approach of [4] can be applied to dynamize the static data structure with Õ(1) update time, by paying
an extra logarithmic factor in the query time. This gives us the basic data structure that supports 3-sided
range-minimum queries in Õ(1) time.

We store S in the basic 3-sided range-minimum data structure A of the above lemma, by setting the
weight of each point in S to be its x-coordinate. Besides A, we need a (1D) range tree T built on S∪V (QSE)
for y-coordinates, where V (QSE) is the set of the vertices of the quadrants in QSE. By the definition of a
range tree, the points in S ∪ V (QSE) are one-to-one corresponding to the leaves of T , where the left-right
order of the leaves corresponds to the small-large order of the y-coordinates of the points. The canonical
subset of each node u ∈ T refers to the subset of S ∪ V (QSE) consisting of the points stored in the subtree
rooted at u. For a node u ∈ T , we denote by S(u) the set of the points in S that are contained in the
canonical subset of u, and denote by Q(u) the collection of the quadrants in QSE whose vertices are contained
in the canonical subset of u. Also, we write U(u) =

⋃
Q∈Q(u)Q At each node u ∈ T , we store the following

three fields.

• y−(u): the y-coordinate of the bottommost point in the canonical subset of u.

• y+(u): the y-coordinate of the topmost point in the canonical subset of u.

• L(u): the leftmost quadrant in Q(u).

• a(u): the leftmost point in S(u) that is contained in U(u).

Let u ∈ T be a node and l, r be its left and right children, respectively. It is clear that y−(u), y+(u),
L(u) can be computed in O(1) time knowing the y−(·), y+(·), and L(·) fields of l and r. We claim that

a(u) can be computed in Õ(1) time based on the information stored at u, l, r, and the 3-sided range-
minimum data structure A. By definition, a(u) is the leftmost point in S(u) that is contained in U(u).
Since S(u) = S(l)∪S(r), it suffices to compute the leftmost point in S(l) contained in U(u) and the leftmost
point in S(r) contained in U(u). Note that any point in S(r) is not contained in U(l), since any quadrant in
Q(l) is “below” any point in S(r). It follows that the leftmost point in S(r) that is contained in U(u) is just
a(r). To compute the leftmost point in S(l) that is contained in U(u), we only need to compute the leftmost
point in S(l) contained in U(l) and the leftmost point in S(l) contained in U(r), because U(u) = U(l)∪U(r).
The leftmost point in S(l) contained in U(l) is just a(l). In order to compute the leftmost point in S(l)
contained in U(r), we observe that a point in S(l) is contained in U(r) iff it is contained in the quadrant
L(r). Thus, the leftmost point in S(l) contained in U(r) is just the leftmost point in S(l) contained in
L(r). Note that S(l) is exactly the set of the points in S that lie in the strip P = R × [y−(l), y+(l)], i.e.,
S(l) = S ∩ P . Hence, we can query the data structure A with the 3-sided rectangle P ∩ L(r) to obtain the

leftmost point in S(l) contained in L(r), i.e., the leftmost point in S(l) contained in U(r), which takes Õ(1)
time. We conclude that, by using the 3-sided range-minimum data structure A, all the fields of a node u
can be computed in Õ(1) time based on the information stored at u and their children. Therefore, the range

tree T with the augmented fields can be dynamized with Õ(1) update time using the standard technique for

dynamizing augmented trees [12]. The construction time of T is clearly Õ(n) where n = |S|+ |QSE|, thus T
is a basic data structure.

Next, we consider how to use T to compute φ(ỹ) in Õ(1) time for a given ỹ ∈ R. We first find the
t = O(log n) canonical nodes u1, . . . ,ut ∈ T corresponding to the range [ỹ,∞). Suppose u1, . . . ,ut are
sorted from left to right in T . By the property of canonical nodes, the canonical subsets of u1, . . . ,ut are
disjoint and their union is the subset of S ∪ V (QSE) consisting of the points whose y-coordinates are in the

35

range [ỹ,∞). The point φ(ỹ) we are looking for is just the leftmost point in
⋃t
i=1 S(ui) that is contained in

USE. Note that φ(ỹ) is not contained in any southeast quadrant Q with y(Q) < ỹ. Thus, φ(ỹ) is the leftmost
point in

⋃t
i=1 S(ui) that is contained in

⋃t
i=1 U(ui). To compute φ(ỹ), it suffices to know the leftmost point

in S(ui) that is contained in U(uj) for all i, j ∈ {1, . . . , t}. If i > j, then any point in S(ui) is not contained
in U(uj). If i = j, then the leftmost point in S(ui) contained in U(uj) is just a(ui) = a(uj). If i < j, then a
point in S(ui) is contained in U(uj) iff it is contained in the quadrant L(uj). Note that the points in S(ui)
are exactly the set of the points in S that lie in the strip Pi = R × [y−(ui), y

+(ui)], i.e., S(ui) = S ∩ Pi.
Therefore, the leftmost point in S(ui) that is contained in L(uj) can be computed in Õ(1) time by querying
the data structure A with the 3-sided rectangle Pi ∩ L(uj). To summarize, the leftmost point in S(ui) that

is contained in U(uj) can be computed in Õ(1) time for any i, j ∈ {1, . . . , t}. Since t = O(log n), computing

the leftmost point in S(ui) that is contained in U(uj) for all i, j ∈ {1, . . . , t} takes Õ(1) time. Once we

have these points, the leftmost one among them is just the leftmost point in
⋃t
i=1 S(ui) that is contained in⋃t

i=1 U(ui), i.e., the point φ(ỹ). We conclude that computing φ(ỹ) can be done in Õ(1) time (by properly
storing S and QSE in some basic data structure).

36

