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Abstract4

We prove the first nontrivial worst-case lower bounds for two closely related problems.5

First, Ω(n3/2) degree-1 reductions, series-parallel reductions, and ∆Y transformations are6

required in the worst case to reduce an n-vertex plane graph to a single vertex or edge.7

The lower bound is achieved by any planar graph with treewidth Θ(
p

n). Second, Ω(n3/2)8

homotopy moves are required in the worst case to reduce a closed curve in the plane with n9

self-intersection points to a simple closed curve. For both problems, the best upper bound10

known is O(n2), and the only lower bound previously known was the trivial Ω(n).11

The first lower bound follows from the second using medial graph techniques ultimately12

due to Steinitz, together with more recent arguments of Noble and Welsh [J. Graph Theory13

2000]. The lower bound on homotopy moves follows from an observation by Haiyashi et al.14

[J. Knot Theory Ramif. 2012] that the standard projections of certain torus knots have large15

defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold.16

Finally, we prove that every closed curve in the plane with n crossings has defect O(n3/2),17

which implies that better lower bounds for our algorithmic problems will require different18

techniques.19

∗Work on this paper was partially supported by NSF grant CCF-1408763. See http://jeffe.cs.illinois.edu/pubs/defect.html
for the most recent version of this paper.
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1 Introduction1

1.1 Electrical Transformations2

Consider the following set of local operations on plane graphs:3

• leaf reduction: contract the edge incident to a vertex of degree 14

• loop reduction: delete the edge incident to a face of degree 15

• series reduction: contract either edge incident to a vertex of degree 26

• parallel reduction: delete either edge incident to a face of degree 27

• Y�∆ transformation: delete a vertex of degree 3 and connect its neighbors with three new edges8

• ∆�Y transformation: delete the edges bounding a face of degree 3 and join the vertices of that9

face to a new vertex10

These six operations consist of three dual pairs, as shown in Figure 1.1; for example, any series reduction11

in a plane graph G is equivalent to a parallel reduction in the dual graph G∗. We refer to leaf reductions12

and loop reductions as degree-1 reductions, series reductions and parallel reductions as series-parallel13

reductions, and Y�∆ and ∆�Y transformations as ∆Y transformations. Following Colin de Verdière14

et al. [20], we collectively refer to these operations and their inverses as electrical transformations.15

Figure 1.1. Electrical transformations in a plane graph G and its dual graph G∗.

Electrical transformations have been used since the end of the 19th century [51,69] to analyze resistor16

networks and other electrical circuits. Akers [4] used the same transformations to compute shortest17

paths and maximum flows (but see also Hobbs [44]); Lehman [55] used them to estimate network18

reliability. Akers and Lehman both conjectured that any planar graph, two of whose vertices are marked19

as terminals, can be reduced to a single edge between the terminals using a finite number of electrical20

transformations. This conjecture was first proved by Epifanov [26] using a nonconstructive argument;21

simpler constructive proofs were later given by Feo [29], Truemper [81,83], Feo and Provan [28], and22

Nakahara and Takahashi [60].23

For the simpler problem of reducing a planar graph without terminals to a single vertex, a constructive24

proof is already implicit in Steinitz’s 1916 proof that every 3-connected planar graph is the 1-skeleton25

of a 3-dimensional convex polytope [75,76]. Grünbaum [37] describes Steinitz’s proof in more detail;26

indeed, Steinitz’s proof is often incorrectly attributed to Grünbaum.27

These results were later extended to planar graphs with more than two terminals. Gitler [34] and28

Gitler and Sagols [35] proved that any three-terminal planar graph can be reduced to a graph with three29

vertices. Archdeacon et al. [8] and Demasi and Mohar [25] characterized the four-terminal planar graphs30

that can be reduced to just four vertices. Gitler [20,34] proved that for any integer k, any planar graph31

with k terminals on a common face can be reduced to a planar graph with O(k2) vertices. Gitler’s results32

were significantly extended by Colin de Verdière et al. [18–20] and Curtis et al. [22–24] to the theory of33

circular planar networks; see also Kenyon [52]. Similar results have also been proved for several classes34

of non-planar graphs [34,88–90] and matroids [82,88].35
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Algorithms for reducing planar graphs using electrical transformations have been applied to several1

combinatorial problems, including estimating network reliability [14,38,72,80,84]; multicommodity2

flows [29]; flow estimation from noisy measurements [91]; counting spanning trees, perfect matchings,3

and cuts [13,17]; evaluation of spin models in statistical mechanics [17,47]; kinematic analysis of robot4

manipulators [74]; and solving generalized Laplacian linear systems [36,60].5

In light of these numerous applications, it is natural to ask how many electrical transformations are6

required in the worst case to reduce an arbitrary planar graph to a single vertex or edge. Steinitz’s7

proof [37, 75, 76] implies an upper bound of O(n2), which is the best bound known solely in terms8

of n. Feo [29] and Feo and Provan [28] describe reduction algorithms for two-terminal planar graphs9

that use O(n2) moves. In fact, Feo and Provan’s algorithm requires at most O(nD) moves, where D10

is the diameter of the vertex-face incidence graph (otherwise known as the radial graph) of the input11

graph; D = Ω(n) in the worst case. Feo and Provan [28] suggested that “there are compelling reasons12

to think that O(|V |3/2) is the smallest possible order”, possibly referring to earlier empirical results of13

Feo [29, Chapter 6]. Gitler [34] conjectured that a simple modification of Feo and Provan’s algorithm14

requires only O(n3/2) time. Finally, Song [73] observed that a naïve implementation of Feo and Provan’s15

algorithm can actually require Ω(n2) time, even for graphs that can be reduced using only O(n) steps.16

Even the special case of regular grids is open and interesting. Truemper [81,83] describes a method17

to reduce the p× p grid, or any minor thereof, in O(p3) steps. Nakahara and Takahashi [60] prove an18

upper bound of O(min{pq2, p2q}) for any minor of the p×q cylindrical grid. Since every n-vertex planar19

graph is a minor of an O(n)×O(n) grid [77,85], both of these results imply an O(n3)-time algorithm for20

arbitrary planar graphs; Feo and Provan [28] claim without proof that Truemper’s algorithm actually21

performs only O(n2) electrical transformations. On the other hand, the smallest (cylindrical) grid22

containing every n-vertex planar graph as a minor has size Ω(n)×Ω(n) [85]. Archdeacon et al. [8] asked23

whether the upper bound for square grids can be improved:24

It is possible that a careful implementation and analysis of the grid-embedding schemes can lead to25

an O(n
p

n)-time algorithm for the general planar case. It would be interesting to obtain a near-linear26

algorithm for the grid. . . . However, it may well be that reducing planar grids is Ω(n
p

n).27

1.2 Homotopy Moves28

Now consider instead the following set of local operations on closed curves in the plane:29

• 1�0: Remove an empty loop30

• 2�0: Separate two subpaths that bound an empty bigon31

• 3�3: Flip an empty triangle by moving one subpath over the opposite intersection point32

Our notation is nonstandard but mnemonic; the numbers before and after each arrow indicate the33

number of local vertices before and after the move. See Figure 1.2. Each of these operations can be34

performed by continuously deforming the curve within a small neighborhood of one face; consequently,35

we call these transformations and their inverses homotopy moves. Homotopy moves are “shadows” of36

the classical Reidemeister moves used to manipulate knot and link diagrams [6, 67]. A compactness37

argument, first explicitly given by Titus [79] and Francis [31,32] but implicit in earlier work of Alexander38

and Briggs [6] and Reidemeister [67], implies that any continuous deformation between two generic39

closed curves in the plane—or on any other surface—is equivalent to a finite sequence of homotopy40

moves.41

It is natural to ask how many homotopy moves are required to transform a given closed curve42

in the plane into a simple closed curve. An O(n2) upper bound follows by suitable modifications of43

the Steinitz-Grünbaum and Feo-Provan algorithms for electrical reduction, where n is the number of44
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Figure 1.2. Homotopy moves 1�0, 2�0, and 3�3.

self-intersection points of the given curve. (See Lemma 5.3.) The same O(n2) bound also follows from1

algorithms for regular homotopy, which allows only 2��0 and 3�3 homotopy moves, by Francis [30],2

Vegter [86] (for polygonal curves), and Nowik [62].3

Tight bounds are known for two restrictions of this question, where some types of homotopy moves4

are forbidden. First, Nowik [62] proved that Ω(n2) moves are necessary in the worst case to connect5

two regularly homotopic curves with n vertices. Second, Khovanov [53] defines two curves to be doodle6

equivalent if one can be transformed into the other using 1��0 and 2��0 homotopy moves. Khovanov [53]7

and Ito and Takimura [45] independently proved that each doodle-equivalence class contains a unique8

representative with the smallest number of vertices, and that any curve can be transformed into the9

simplest doodle equivalent curve using only 1�0 and 2�0 moves. It follows that two doodle equivalent10

curves are connected by a sequence of only O(n) homotopy moves.111

Looser bounds are also known for the minimum number of Reidemeister moves needed to reduce a12

diagram of the unknot [40,54], to separate the components of a split link [42], or to move between two13

equivalent knot diagrams [21,41].14

1.3 Our Results15

In this paper, we prove the first non-trivial lower bounds for both of these problems. Specifically:16

• Ω(n3/2) electrical transformations are required in the worst case to reduce a plane graph with n17

vertices, with or without terminals, to a single vertex (or any constant number of vertices).18

• Ω(n3/2) homotopy moves are required in the worst case to reduce a generic closed curve in the19

plane with n self-intersection points to a simple closed curve.20

Like many other authors, starting with Steinitz [75, 76] and Grünbaum [37], we study electrical21

transformations indirectly, through the lens of medial graphs. By refining arguments of Noble and22

Welsh [61] and others, we prove in Section 3 that the minimum number of electrical transformations23

needed to completely reduce a plane graph G to a single vertex is no smaller than the minimum number24

of homotopy moves required to transform its medial graph into a collection of disjoint circles. Thus, our25

first lower bound follows immediately from the second.26

Our lower bound for homotopy moves relies on a topological invariant called defect, which was27

introduced by Arnold [9, 10] and Aicardi [3]. Every simple closed curve has defect zero, and any28

homotopy move changes the defect of a curve by −2, 0, or 2; the various cases are illustrated in29

Figure 4.1. In Section 4, we compute the defect of the standard planar projection of any p × q torus30

knot where either p mod q = 1 or q mod p = 1, generalizing earlier results of Hayashi et al. [41,43] and31

Even-Zohar et al. [27]. In particular, we show that the standard projection of the p× (p+ 1) torus knot,32

which has p2 − 1 vertices, has defect 2
�p+1

3

�

.33

Putting all the pieces together, we conclude that for any integer k, reducing the k × (2k + 1)34

cylindrical grid requires at least
�2k+1

3

�

≥ (
p

2/3)n3/2 −O(n) electrical transformations. An argument35

of Truemper [81, Lemma 4] implies that if H is any minor of a planar graph G, then H requires no36

1It is not known which sets of curves are equivalent under 1��0 and 3�3 moves; indeed, Hagge and Yazinski only recently
proved that this equivalence is nontrivial [39]; see also related results of Ito et al. [45,46].
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more electrical transformations to reduce than G; see Lemma 3.1. It follows that our lower bound1

applies to any planar graph with treewidth Ω(
p

n) [68]; in particular, Truemper’s O(p3) bound for the2

p× p grid [81,83] is tight. Our analysis also implies that for any integers p and q, electrically reducing3

the p× q cylindrical grid requires Ω(min{p2q, pq2}) moves, matching Nakahara and Takahashi’s upper4

bound [60].5

Finally, in Section 5, we prove that the defect of any generic closed curve γ with n vertices has6

absolute value at most O(n3/2). Unlike most O(n3/2) upper bounds involving planar graphs, our proof7

does not use the planar separator theorem [57]. Feo and Provan’s electrical reduction algorithm [28]8

and our electrical-to-homotopy reduction (Section 3) imply an upper bound of O(nD), where D is the9

diameter of the dual graph of γ; we give a simpler self-contained proof of this upper bound in Section 5.1.10

Thus, if D = O(
p

n), we are done. Otherwise, we prove that there is a simple closed curve σ with at11

least s2 vertices of γ on either side, where s is the number of times σ crosses γ. In Section 5.2 we establish12

an inclusion-exclusion relationship between the defects of the given curve γ, the curves obtained by13

simplifying γ either inside or outside σ, and the curve obtained by simplifying γ on both sides of σ. This14

relationship implies an unbalanced “divide-and-conquer” recurrence whose solution is O(n3/2).15

Our upper bound on defect implies that better worst-case lower bounds on the number of electrical16

transformations or homotopy moves would require new techniques. Like Gitler [34], Feo and Provan [28],17

and Archdeacon et al. [8], we conjecture that the correct worst-case bound for both problems is Θ(n3/2).18

1.4 Saving Face19

Electrical transformations are usually defined more generally, without references to a planar embedding20

of the underlying graph. In this more general setting, a loop reduction deletes any loop (even if it does21

not bound a face), a parallel reduction deletes any edge parallel to another edge (even if those two22

edges do not bound a face), and a ∆�Y transformation removes the edges of any 3-cycle (even if it does23

not bound a face) and connects its vertices to a new vertex. Our lower bound technique requires our24

more restrictive definitions; on the other hand, all published algorithms for reducing planar graphs also25

require only electrical transformations meeting our definition.26

Our argument can be extended to allow non-facial loop reductions (or, by duality, contraction of any27

bridge) and non-facial parallel reductions (or, by duality, contraction of either edge in an edge cut of28

size 2). However, non-facial ∆�Y transformations are more problematic, because they can destroy the29

planarity of the graph. For example, a single ∆�Y transformation transforms the planar graph obtained30

from K5 by deleting one edge into the non-planar graph K3,3. It is an interesting open problem whether31

our Ω(n3/2) lower bound holds even when non-planar ∆�Y transformations are permitted.32

2 Definitions33

2.1 Closed Curves34

A (generic) closed curve is a continuous map γ: S1→ R2 that is injective except at a finite number of35

self-intersections, each of which is a transverse double point. More concisely, we consider only generic36

immersions of the circle into the plane. A closed curve is simple if it is injective.37

The image of any non-simple closed curve has a natural structure as a 4-regular plane graph. Thus,38

we refer to the self-intersection points of a curve as its vertices, the maximal subpaths between vertices39

as edges, and the components of the complement of the curve as its faces. In particular, to avoid trivial40

boundary cases, we consider a simple closed curve to be a single edge with no vertices. Conversely, every41

4-regular planar graph is the image of a generic immersion of one or more disjoint circles. We call a42

4-regular plane graph unicursal if it is the image of a generic closed curve.43
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Intuitively, the winding number of a closed curve γ around a point x , which we denote wind(γ, x ),1

is the number of times γ travels counterclockwise around x . Winding numbers are characterized by the2

following combinatorial rule, first proposed by Möbius [59] but widely known as Alexander numbering [5]:3

The winding numbers of γ around any two points in the same face of γ are equal; the winding number4

around any point in the outer face is zero; and winding numbers around points in adjacent faces differ5

by 1, with the larger winding number appearing on the left side of the curve. See Figure 2.1 for an6

example. By convention, the winding number around any point x in the image of γ is the average of7

the winding numbers around all faces incident to x . The winding number around any vertex is still an8

integer; the winding number around any regular point of γ is a half-integer.9

0
1

1

1
1

–1
0

1
2

2
3

2

1

Figure 2.1. Alexander numbering and vertex signing for a curve. The white triangle on the left is the basepoint.

We adopt a standard sign convention for vertices originally proposed by Gauss [33].2 A vertex10

is positive if the first traversal through the vertex crosses the second traversal from right to left, and11

negative otherwise. Equivalently, a vertex x is positive if the winding number of a point moving along12

the curve increases the first time it reaches x after leaving the basepoint. We define sgn(x) = +1 for13

every positive vertex x and sgn(x) = −1 for every negative vertex x . Again, see Figure 2.1.14

2.2 Medial Graphs15

The medial graph of a plane graph G, which we denote G×, is another plane graph whose vertices16

correspond to the edges of G and whose edges correspond to incidences between vertices of G and17

faces of G. Two vertices of G× are connected by an edge if and only if the corresponding edges in G are18

consecutive in cyclic order around some vertex, or equivalently, around some face in G. The medial19

graph G× may contain loops and parallel edges even if the original graph G is simple. The medial graphs20

of any plane graph G and its dual G∗ are identical. Every vertex in every medial graph has degree 4, and21

every 4-regular plane graph is a medial graph. To avoid trivial boundary cases, we define the medial22

graph of an isolated vertex to be a circle, which we regard as an edge with no vertices.23

Figure 2.2. Medial electrical moves 1�0, 2�1, and 3�3.

Electrical transformations in any planar graph G correspond to local transformations in the medial24

graph G×, which are almost identical to homotopy moves. Each leaf or loop reduction in G corresponds25

2Some authors use the opposite sign convention, both for vertices and for winding number.
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to to a 1�0 homotopy move in G×, and each ∆�Y or Y�∆ transformation in G corresponds to a 3�31

homotopy move in G×. A series-parallel reduction in G contracts an empty bigon in G× to a single vertex.2

Extending our earlier notation, we call this transformation a 2�1 move. We collectively refer to these3

transformations and their inverses as medial electrical moves.4

3 Electrical Reduction is No Shorter than Homotopy Reduction5

We say that a sequence of elementary moves (of either type) reduces a 4-regular plane graph γ if it6

transforms γ into a collection of disjoint simple closed curves. We define two functions describing the7

minimum number of moves required to reduce γ:8

• X(γ) is the minimum number of medial electrical moves required to reduce γ.9

• H(γ) is the minimum number of homotopy moves required to reduce γ.10

The main result of this section is that the first function is always an upper bound on the second when γ11

is a generic closed curve. This result is already implicit in the work of Noble and Welsh [61], and most12

of our proofs closely follow theirs. We include the proofs here to make the inequalities explicit and to13

keep the paper self-contained.14

Smoothing a 4-regular plane graph γ at a vertex x means replacing the intersection of γ with a15

small neighborhood of x with two disjoint simple paths, so that the result is another 4-regular plane16

graph. (There are two possible smoothings at each vertex; see Figure 3.1. A smoothing of γ is any graph17

obtained by smoothing zero or more vertices of γ, and a proper smoothing of γ is any smoothing other18

than γ itself. For any plane graph G, the (proper) smoothings of the medial graph G× are precisely the19

medial graphs of (proper) minors of G.20

Figure 3.1. Smoothing a vertex.

The next lemma follows from close reading of proofs by Truemper [81, Lemma 4] and several21

others [8, 34, 60, 61] that every minor of a ∆Y-reducible graph is also ∆Y-reducible. Our proof most22

closely resembles an argument of Gitler [34, Lemma 2.3.3], but restated in terms of medial electrical23

moves.24

Lemma 3.1. X (γ)< X (γ) for every connected proper smoothing γ of every connected 4-regular plane25

graph γ.26

Proof: Let γ be a connected 4-regular plane graph, and let γ be a connected proper smoothing of γ. If γ27

is already simple, the lemma is vacuously true. Otherwise, the proof proceeds by induction on X (γ).28

We first consider the special case where γ is obtained from γ by smoothing a single vertex x . Let γ′29

be the result of the first medial electrical move in the minimum-length sequence that reduces γ. We30

immediately have X (γ) = X(γ′) + 1. There are two nontrivial cases to consider.31

First, suppose the move from γ to γ′ does not involve the smoothed vertex x . Then we can apply the32

same move to γ to obtain a new graph γ′; the same graph can also be obtained from γ′ by smoothing x .33

We immediately have X (γ)≤ X (γ′) + 1, and the inductive hypothesis implies X (γ′)< X (γ′).34

Now suppose the first move in Σ does involve x . In this case, we can apply at most one medial35

electrical move to γ to obtain a (possibly trivial) smoothing γ′ of γ′. There are eight subcases to consider,36
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shown in Figure 3.2. One subcase for the 0�1 move is impossible, because γ is connected. In the1

remaining 0�1 subcase and one 2�1 subcase, the curves γ, γ′ and γ′ are all isomorphic, which implies2

X (γ) = X (γ′) = X (γ′) = X (γ)− 1. In all remaining subcases, γ′ is a connected proper smoothing of γ′,3

so the inductive hypothesis implies X (γ)≤ X (γ′) + 1< X (γ′) + 1= X (γ).4

1→0

2→1 = 1→0

3→3 2→1 =

=

1→2 = =

Figure 3.2. Cases for the proof of the Lemma 3.1; the circled vertex is x .

Finally, we consider the more general case where γ is obtained from γ by smoothing more than one5

vertex. Let eγ be any intermediate curve, obtained from γ by smoothing just one of the vertices that were6

smoothed to obtain γ. Our earlier argument implies that X (eγ)< X (γ). Thus, the inductive hypothesis7

implies X (γ)< X (eγ), which completes the proof. �8

Lemma 3.2. For every connected 4-regular plane graph γ, there is a minimum-length sequence of medial9

electrical moves that reduces γ and that does not contain 0�1 or 1�2 moves.10

Proof: Our proof follows an argument of Noble and Welsh [61, Lemma 3.2].11

Consider a minimum-length sequence of medial electrical moves that reduces an arbitrary connected12

4-regular planar graph γ. For any integer i ≥ 0, let γi denote the result of the first i moves in this13

sequence; in particular, γ0 = γ and γX (γ) is a set of disjoint circles. Minimality of the reduction sequence14

implies that X (γi) = X (γ)− i for all i. Now let i be an arbitrary index such that γi has one more vertex15

than γi−1. Then γi−1 is a connected proper smoothing of γi , so Lemma 3.1 implies that X (γi−1)< X (γi),16

giving us a contradiction. �17

Theorem 3.3. X (γ)≥ H(γ) for every closed curve γ.18

Proof: The proof proceeds by induction on X (γ), following an argument of Noble and Welsh [61,19

Proposition 3.3]20

Let γ be a closed curve. If X (γ) = 0, then γ is already simple, so H(γ) = 0. Otherwise, let Σ be a21

minimum-length sequence of medial electrical moves that reduces γ to a circle. Lemma 3.2 implies that22

we can assume that the first move in Σ is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the23

theorem immediately follows by induction.24

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ be the25

result of the corresponding 2�0 homotopy move. The minimality of Σ implies that X (γ) = X (γ′) + 1,26
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and we trivially have H(γ) ≤ H(γ) + 1. The curve γ is a connected proper smoothing of γ′, so the1

Lemma 3.1 implies X (γ) < X (γ′) < X (γ). Finally, the inductive hypothesis implies that X (γ) ≥ H(γ),2

which completes the proof. �3

Finally, Theorem 3.3 and Lemma 3.1 immediately imply the following useful corollary.4

Corollary 3.4. X (γ)≥ H(γ) for every connected 4-regular plane graph γ and every unicursal smoothing γ5

of γ.6

4 Lower Bounds7

4.1 Defect8

To complete our lower bound proof, we consider an invariant of closed curves in the plane introduced by9

Arnold [9,10] and Aicardi [3] called defect. (Some readers may be more comfortable thinking of defect as10

a potential function for 4-regular plane graphs.) There are several equivalent definitions and closed-form11

formulas for defect and other closely related curve invariants [7,9,10,15,56,58,63,64,70,87]; the most12

useful formula for our purposes is due to Polyak [63].13

Two vertices x 6= y of a closed curve γ are interleaved if they alternate in cyclic order along γ, either14

as x , y, x , y or as y, x , y, x; we write x Ç y to denote that vertices x and y are interleaved. Polyak’s15

formula for defect is16

δ(γ) := −2
∑

xÇy

sgn(x) · sgn(y),17

where the sum is taken over all interleaved pairs of vertices. The factor of −2 is a historical artifact, which18

we retain only to be consistent with Arnold’s original definitions [9,10]. See Figure 4.1 for an example.19

Even though the signs of individual vertices depend on the basepoint and orientation of the curve, the20

defect of a curve is independent of those choices. Moreover, the defect of any curve is preserved by any21

homeomorphism from the plane to itself, or even from the sphere to itself, including reflection.22

a
b

c

d
e

fg

h

i

j
k

a
+ b

c
− + d
− − + + e
+ + − − f
+ − g
− + − h
+ − + − i
− + − + − j
+ − + − + − k

Figure 4.1. The curve in Figure 2.1 has defect −2(15− 16) = 2. In the table on the right, each + indicates an interleaved
pair with the same sign, each − indicates an interleaved pair with opposite signs, and blanks indicate non-interleaved pairs.

Trivially, every simple closed curve has defect zero. Straightforward case analysis [63] implies that23

any single homotopy move changes the defect of a curve by at most 2:24

• A 1�0 move leaves the defect unchanged.25

• A 2�0 move decreases the defect by 2 if the two disappearing vertices are interleaved, and leaves26

the defect unchanged otherwise.27

• A 3�3 move increases the defect by 2 if the three vertices before the move contain an even number28

of interleaved pairs, and decreases the defect by 2 otherwise.29
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Move 1�0 2�0 3�3

γ

⇐
=

γ′

0 1 0

3 1

2

δ(γ′)−δ(γ) 0 0 −2 +2 +2

Figure 4.2. Changes to the defect incurred by homotopy moves. Numbers indicate how many pairs of vertices in the figure
are interleaved; dashed lines indicate the order in which the arcs are traversed.

The various cases are illustrated in Figure 4.2. Theorem 3.3 now has the following immediate corollary:1

Corollary 4.1. X (γ)≥ H(γ)≥ |δ(γ)|/2 for every closed curve γ.2

Arnold [9, 10] originally defined two related curve invariants St (“strangeness”) and J+ by their3

changes under 2�0 and 3�3 homotopy moves, without giving explicit formulas. Specifically, 3�34

moves change strangeness by ±1 as shown in Figure 4.2 but do not affect J+; 2�0 moves change J+5

by either 0 or 2 as shown in Figure 4.1 but do not affect strangeness. Aicardi [3] later proved that the6

linear combination 2St+ J+ is unchanged under 1�0 moves; Arnold dubbed this linear combination7

“defect”. Shumakovich [70,71] proved that the strangeness of an n-vertex planar curve lies between8

−bn(n− 1)/6c and n(n+ 1)/2, and that these bounds are exact. (Nowik’s Ω(n2) lower bound for regular9

homotopy moves [62] follows immediately from Shumakovich’s construction.) However, the curves with10

extremal strangeness actually have defect zero.11

4.2 Flat Torus Knots12

Following Hayashi et al. [41,43] and Even-Zohar et al. [27], we now describe an infinite family of curves13

with absolute defect Ω(n3/2). For any relatively prime positive integers p and q, let T(p,q) denote the14

curve with the following parametrization, where θ runs from 0 to 2π:15

T (p, q)(θ ) =
�

(cos(qθ ) + 2) cos(pθ ), (cos(qθ ) + 2) sin(pθ )
�

.16

The curve T (p, q) winds around the origin p times, oscillating q times between two concentric circles and17

crossing itself exactly (p− 1)q times. We call these curves flat torus knots. The flat torus knot T (p, q) is18

also the medial graph of the bp/2c × q cylindrical grid, with an additional central vertex if p is odd. For19

any p ≤ bq/2c, the flat torus knot T (p, q) is isomorphic to the regular star polygon with Schläfli symbol20

{q/p}.21

Hayashi et al. [43, Proposition 3.1] proved that for any integer q, the flat torus knot T (q+ 1, q) has22

defect −2
�q

3

�

. Even-Zohar et al. [27] used a star-polygon representation of the curve T(p, 2p + 1) as23

the basis for a universal model of random knots; using our terminology and notation, they proved that24

δ(T(p, 2p+ 1)) = 4
�p+1

3

�

for any integer p. Our results in this section simplify and generalize both of25

these results.26

For purposes of illustration, we cut each torus knot T(p, q) open into a “flat braid” consisting of p27

x-monotone paths, which we call strands, between two fixed diagonal lines. All strands are directed28

from left to right.29
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Figure 4.3. The flat torus knots T (7, 8) and T (8,7).

Lemma 4.2. δ(T (p, ap+ 1)) = 2a
�p+1

3

�

for all positive integers a and p.1

Proof: The curve T(p, 1) can be reduced using only 1�0 moves, so its defect is zero. For any integer2

a ≥ 0, we can reduce T (p, ap− 1) to T (p, (a− 1)p− 1) by straightening the leftmost block of p(p− 1)3

crossings in the flat braid representation, one strand at a time. Within this block, each pair of strands in4

the flat braid intersect twice. Straightening the bottom strand of this block requires the following
�p

2

�

5

moves, as shown in Figure 4.4.6

•
�p−1

2

�

3�3 moves pull the bottom strand downward over one intersection point of every other pair7

of strands. Just before each 3�3 move, every pair of the three relevant vertices is interleaved, so8

each move decreases the defect by 2.9

• (p− 1) 2�0 moves eliminate a pair of intersection points between the bottom strand and every10

other strand. Each of these moves also decreases the defect by 2.11

Altogether, straightening one strand decreases the defect by 2
�p

2

�

. Proceeding similarly with the12

other strands, we conclude that δ(T(p, ap+ 1)) = δ(T(p, (a− 1)p+ 1)) + 2
�p+1

3

�

. The lemma follows13

immediately by induction. �14

Figure 4.4. Straightening one strand in a block of a wide flat torus knot.

Lemma 4.3. δ(T (aq+ 1, q)) = −2a
�q

3

�

for all positive integers a and q.15

Proof: The curve T(1, q) is simple, so its defect is trivially zero. For any positive integer a, we can16

transform T(aq + 1, q) into T((a − 1)q + 1, q) by incrementally removing the innermost q loops. We17

can remove the first loop using
�q

2

�

homotopy moves, as shown in Figure 4.5. (The first transition in18

Figure 4.5 just reconnects the top left and top right endpoints of the flat braid.)19

•
�q−1

2

�

3�3 moves pull the left side of the loop to the right, over the crossings inside the loop. Just20

before each 3�3 move, the three relevant vertices contain two interleaved pairs, so each move21

increases the defect by 2.22
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• q− 1 2�0 moves pull the loop over q− 1 strands. The strands involved in each move are oriented1

in opposite directions, so these moves leave the defect unchanged.2

• Finally, we can remove the loop with a single 1�0 move, which does not change the defect.3

Altogether, removing one loop increases the defect by 2
�q−1

2

�

. Proceeding similarly with the other4

loops, we conclude that δ(T (aq+ 1, q)) = δ(T ((a− 1)q+ 1, q))− 2
�q

3

�

. The lemma follows immediately5

by induction. �6

Figure 4.5. Removing one loop from the innermost block of a deep flat torus knot.

Corollary 4.4. For every positive integer n, there are closed curves with n vertices whose defects are7

n3/2/3−O(n) and −n3/2/3+O(n).8

Proof: The lower bound follows from the previous lemmas by setting a = 1. If n is a prefect square,9

then the flat torus knot T (
p

n+ 1,
p

n) has n vertices and defect −2
�
p

n
3

�

. If n is not a perfect square, we10

can achieve defect −2
�b
p

nc
3

�

by applying 0�1 moves to the curve T (b
p

nc+1, b
p

nc). Similarly, we obtain11

an n-vertex curve with defect 2
�b
p

n+1c+1
3

�

by adding loops to the curve T (b
p

n+ 1c, b
p

n+ 1c+ 1). �12

Corollary 4.1 now immediately implies the following lower bounds:13

Corollary 4.5. For every positive integer n, there is a closed curve with n vertices that requires at least14

n3/2/6−O(n) homotopy moves to reduce to a simple closed curve.15

Corollary 4.6. For every positive integer n, there is a plane graph with n edges that requires at least16

n3/2/6−O(n) electrical transformations to reduce to a single vertex.17

4.3 Tight Bounds for Grids18

Finally, we derive tight lower bounds on the number of electrical transformations required to reduce19

arbitrary rectangular or cylindrical grids. In particular, we show that Truemper’s O(p3) upper bound20

for the p× p square grid [81,83] and Nakahara and Takahashi’s O(min{pq2, p2q}) upper bound for the21

p× q cylindrical grid [60] are both tight up to constant factors.22

Corollary 4.7. For all positive integers p and q, the p × q cylindrical grid requires Ω(min{p2q, pq2})23

electrical transformations to reduce to a single vertex.24
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Proof: Let G denote the p× q cylindrical grid; we need to prove that X (G×) = Ω(min{p2q, pq2}).1

First suppose 2p < q. Let γ denote the flat torus knot T (2p, 2ap+ 1), where a = b(q− 1)/2pc. This2

curve is a connected smoothing of G×, so Lemma 3.1 implies X (G×)≥ X (H×). Lemma 4.2 gives us3

δ(γ) = 2a
�

2p+ 1
3

�

= Ω(ap3) = Ω(p2q).4

The lower bound X (H×) = Ω(p2q) now follows by Corollary 4.1.5

The case q ≤ 2p is similar. Let γ denote the flat torus knot T(2aq + 1, q), where a = bp/qc. This6

curve is a connected smoothing of G×, so Lemma 3.1 implies X (G×)≥ X (H×). Lemma 4.3 gives us7

�

�δ(γ)
�

�= 2a
�

q
3

�

= Ω(aq3) = Ω(pq2).8

The lower bound X (H×) = Ω(pq2) now follows by Corollary 4.1. �9

Corollary 4.8. For all positive integers p and q, the p× q rectangular grid requires Ω(min{p2q, pq2})10

electrical transformations to reduce to a single vertex.11

Proof: The bp/3c × bq/3c cylindrical grid is a minor of the p× q rectangular grid, so this lower bound12

follows from Corollary 4.7 and Lemma 3.1. �13

Corollary 4.9. For every positive integer t, every planar graph with treewidth t requires Ω(t3) electrical14

transformations to reduce to a single vertex.15

Proof: Every planar graph with treewidth t contains an Ω(t)×Ω(t) grid minor [68], so this lower bound16

also follows from Corollary 4.7 and Lemma 3.1. �17

5 Defect Upper Bound18

In this section, we prove a matching O(n3/2) upper bound on the absolute value of the defect, using a19

recursive inclusion-exclusion argument. Throughout this section, let γ be an arbitrary non-simple closed20

curve, and let n be the number of vertices of γ.21

5.1 Winding Numbers and Diameter22

First we derive an upper bound in terms of the diameter of the dual graph γ∗. (If γ is the medial graph23

of a plane graph G, then γ∗ is the vertex-face incidence graph of G, otherwise known as the radial graph24

of G.) The upper bound |δ(γ)| = O(n · diam(γ∗)) follows from Corollary 4.1 and the electrical reduction25

algorithm of Feo and Provan [28]; here we give a simpler direct proof.26

We parametrize γ as a function γ: [0, 1]→ R2, where γ(0) = γ(1) is an arbitrarily chosen basepoint.27

For each vertex x of γ, let γx denote the closed subpath of γ from the first occurrence of x to the second.28

More formally, if x = γ(u) = γ(v) where 0 < u < v < 1, then γx is the closed curve defined by setting29

γx(t) := γ((1− t)u+ t v) for all 0≤ t ≤ 1.30

Lemma 5.1. For every vertex x , we have
∑

yÇx sgn(y) = 2 wind(γx , x)− 2 wind(γx ,γ(0))− sgn(x).31

Proof: Our proof follows an argument of Titus [78, Theorem 1].32

Fix a vertex x = γ(u) = γ(v), where 0 < u < v < 1. Let αx denote the subpath of γ from γ(0) to33

γ(u− ε), and let ωx denote the subpath of γ from γ(v + ε) to γ(1) = γ(0), for some sufficiently small34
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ε > 0. Specifically, we choose ε such that there are no vertices γ(t) where u− ε ≤ t < u or v < t ≤ v + ε.1

(See Figure 5.1.) A vertex y interleaves with x if and only if y is an intersection point of γx with either αx2

or ωx , so3
∑

yÇx

sgn(y) =
∑

y∈αx∩γx

sgn(y) +
∑

y∈γx∩ωx

sgn(y).4

x

�x
↵x

!x

Figure 5.1. Proof of Lemma 5.1: wind(γx , x) = +1− 1+ 1− 1
2 =

1
2

Now suppose we move a point p continuously along the path αx , starting at the basepoint γ(0). The5

winding number wind(γx , p) changes by 1 each time this point γx . Each such crossing happens at a vertex6

of γ that lies on both αx and γx ; if this vertex is positive, wind(γx , p) increases by 1, and if this vertex is7

negative, wind(γx , p) decreases by 1. It follows that8

∑

y∈αx∩γx

sgn(y) = wind(γx ,γ(u− ε))−wind(γx ,γ(0)).9

Symmetrically, if we move a point p backward along ωx from the basepoint, the winding number10

wind(γx , p) increases (resp. decreases) by 1 whenever γ(t) passes through a positive (resp. negative)11

vertex in ωx ∩ γx ; see the red path in Figure 5.1. Thus,12

∑

y∈ωx∩γx

sgn(y) = wind(γx ,γ(v + ε))−wind(γx ,γ(0)).13

Finally, our sign convention for vertices implies14

wind(γx ,γ(u− ε)) = wind(γx ,γ(v + ε)) = wind(γx , x)− sgn(x)/2,15

which completes the proof. �16

Lemma 5.2. For any closed curve γ, we have |δ(γ)| ≤ 2n · diam(γ∗) + n.17

Proof: Polyak’s defect formula can be rewritten as18

δ(γ) = −
∑

x

sgn(x)

 

∑

yÇx

sgn(y)

!

.19

(This sum actually considers every pair of interleaved vertices twice, which is why the factor 2 is20

omitted.) Assume without loss of generality that the basepoint γ(0) lies on the outer face of γ, so that21

wind(γx ,γ(0)) = 0 for every vertex x . Then the previous lemma implies22

δ(γ) =
∑

x

sgn(x)
�

sgn(x)− 2 wind(γx , x)
�

= n− 2
∑

x

sgn(x) ·wind(γx , x),23
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and therefore1

|δ(γ)| ≤ n+ 2
∑

x

|wind(γx , x)| .2

We easily observe that |wind(γx , x)| ≤ diam(γ∗x) ≤ diam(γ∗) for every vertex x; the second inequality3

follows from the fact that no path crosses γx more times than it crosses γ. The lemma now follows4

immediately. �5

5.2 Inclusion-Exclusion6

Let σ be an arbitrary simple closed curve that intersects γ only transversely and away from its vertices.7

Let s be the number of intersection points between γ and σ; the Jordan curve theorem implies that s8

must be even. Let z0, z1, . . . , zs−1 be the points in σ∩ γ in order along γ (not in order along σ). These9

intersection points decompose γ into a sequence of s subpaths γ1,γ2, . . . ,γs; specifically, γi is the subpath10

of γ from zi−1 to zi mod s, for each index i. Without loss of generality, every odd-indexed path γ2i+1 lies11

outside σ, and every even-indexed path γ2i lies inside σ.12

Let γäσ denote a regular curve obtained from γ by continuously deforming all subpaths γi outside σ,13

keeping their endpoints fixed and never moving across σ, to minimize the number of intersections.14

(There may be several curves that satisfy the minimum-intersection condition; choose one arbitrarily.)15

Similarly, let γåσ denote any regular curve obtained by continuously deforming the subpaths γi inside σ16

to minimize intersections. Finally, let γýσ denote the curve obtained by deforming all subpaths γi to17

minimize intersections; in other words, γýσ := (γåσ)äσ = (γäσ)åσ. See Figure 5.2.18

Figure 5.2. Clockwise from left: γ, γäσ, γýσ, and γåσ. The green circle in all four figures is σ.

To simplify notation, we define19

δ(x , y) := [x Ç y] · sgn(x) · sgn(y)20

for any two vertices x and y, where [x Ç y] = 1 if x and y are interleaved and [x Ç y] = 0 otherwise.21

Then we can define the defect of γ as22

δ(γ) = −2
∑

x ,y

δ(x , y).23
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Every vertex of γ lies at the intersection of two (not necessarily distinct) subpaths. For any index i,1

let X (i, i) denote the set of self-intersection points of γi , and for any indices i < j, let X (i, j) be the set of2

points where γi intersects γ j .3

If two vertices x ∈ X (i, k) and y ∈ X ( j, l) are interleaved, then we must have i ≤ j ≤ k ≤ l. Thus,4

we can express the defect of γ in terms of crossings between subpaths γi as follows.5

δ(γ) = −2
∑

i≤ j≤k≤l

∑

x∈X (i,k)

∑

y∈X ( j,l)

δ(x , y)6

On the other hand, if i < j < k < l, then every vertex x ∈ γi ∩ γk is interleaved with every vertex of7

y ∈ γ j ∩ γl . Thus, we can express the contribution to the defect from pairs of vertices on four distinct8

subpaths as follows:9

δ#(γ,σ) := −2
∑

i< j<k<l

∑

x∈X (i,k)

∑

y∈X ( j,l)

sgn(x) · sgn(y)10

We can express this function more succinctly as11

δ#(γ,σ) = −2
∑

i< j<k<l

δ(i, k) ·δ( j, l)12

by defining13

δ(i, j) :=
∑

x∈X (i, j)

sgn(x)14

for all indices i < j.15

The following lemma implies that continuously deforming the subpaths γi without crossing σ leaves16

the value δ#(γ,σ) unchanged, even though such a deformation may change the defect δ(γ).17

Lemma 5.3. The value δ(i, j) depends only on the parity of i + j and the cyclic order of the endpoints18

of γi and γ j around σ.19

Proof: There are only three cases to consider.20

If i + j is odd, then γi and γ j lie on opposite sides of σ and therefore do not intersect, so δ(i, j) = 0.21

For all other cases, i + j is even, which implies without loss of generality that j ≥ i + 2.22

Suppose the endpoints of γi and γ j do not alternate in cyclic order around σ, or equivalently, that23

the corresponding subpaths of γýσ are disjoint. The Jordan curve theorem implies that there must be24

equal numbers of positive and negative intersections between γi and γ j , and therefore δ(i, j) = 0.25

Finally, suppose the endpoints of γi and γ j alternate in cyclic order around σ, or equivalently, that the26

corresponding subpaths of γýσ intersect exactly once. Then δ(i, j) = 1 if the endpoints zi , z j , zi−1, z j−127

appear in clockwise order around σ and δ(i, j) = −1 otherwise. �28

Now consider an interleaved pair of vertices x ∈ X (i, k) and y ∈ X ( j, l) where at least two of the29

indices i, j, k, l are equal. Trivially, i and k have the same parity, and j and l also have the same parity. If30

i = j or i = l or j = k or j = l, then all four indices have the same parity. If i = k, then we must also31

have i = j or i = l (or both), so again, all four indices have the same parity. We conclude that x and y32

are either both inside σ or both outside σ.33

Lemma 5.4. For any regular closed curve γ and any simple closed curve σ that intersects γ only34

transversely and away from its vertices, we have δ(γ) = δ(γåσ) +δ(γäσ)−δ(γýσ).35
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Proof: Let us write δ(γ) = δ#(γ,σ) +δ↑(γ,σ) +δ↓(γ,σ), where1

• δ#(γ,σ) considers pairs of vertices on four different subpaths γi , as above,2

• δ↑(γ,σ) considers pairs of vertices outside σ on at most three different subpaths γi , and3

• δ↓(γ,σ) considers pairs of vertices inside σ on at most three different subpaths γi .4

Lemma 5.3 implies that5

δ#(γ,σ) = δ#(γåσ,σ) = δ#(γäσ,σ) = δ#(γýσ,σ).6

The definitions of γåσ and γäσ immediately imply the following:7

δ↑(γåσ,σ) = δ↑(γýσ,σ) δ↓(γåσ,σ) = δ↓(γ,σ)8

δ↑(γäσ,σ) = δ↑(γ,σ) δ↓(γäσ,σ) = δ↓(γýσ,σ)9
10

The lemma now follows from straightforward substitution. �11

Lemma 5.5. For any closed curve γ and any simple closed curve σ that intersects γ only transversely12

and away from its vertices, we have |δ(γýσ)|= O(|γ∩σ|3).13

Proof: Fix an arbitrary reference point z ∈ σ \ γ. For any point p in the plane, there is a path from p14

to z that crosses γýσ at most O(s) times. Specifically, move from p to the nearest point on γýσ, then15

follow γýσ to σ, and finally follow σ to the reference point z. It follows that diam((γýσ)∗) = O(s).16

The curve γýσ has at most 2
�s/2

2

�

= O(s2) vertices. The bound |δ(γýσ)| = O(s3) now immediately17

follows from Lemma 5.2. �18

5.3 Divide and Conquer19

We call a simple closed curve σ useful for γ if σ intersects γ, but only transversely and away from the20

vertices of γ, and there are at least |γ∩σ|2 vertices of γ on both sides of σ. In particular, a simple closed21

curve that is disjoint from γ is not useful. 3
22

Lemma 5.6. If no simple closed curve is useful for γ, then diam(γ∗) = O(
p

n).23

Proof: To simplify notation, let D = diam(γ∗). Let a and z be any two points in R2 \ γ such that any24

path from a to z crosses γ at least D times. We construct a nested sequence σ1,σ2, · · · ,σD of disjoint25

simple closed curves as follows. For each integer j, let R j denote the set of all points reachable from26

a by a path that crosses γ less than j times, and let R̃ j be an arbitrarily small open neighborhood of27

the closure of R j ∪ R̃ j−1. For all 1 ≤ j ≤ D, the boundary of R̃ j is the disjoint union of simple closed28

curves, each of which intersect γ transversely away from its vertices (or not at all). Let σ j be the unique29

boundary component of R̃ j that separates a and z. See Figure 5.3.30

For each index j, let A j denote the component of R2 \ R̃ j that contains the point z; let n j denote the31

number of vertices of γ that lie in A j; and let s j = |γ∩σ j|. For notational convenience, we define A0 =∅32

and thus n0 = 0. Finally, let L be the largest index such that nL ≤ n/2; without loss of generality, we can33

assume L ≥ D/2. To prove the lemma, it suffices to show that if no curve σ j with j ≤ L is useful, then34

L = O(
p

n).35

3We could define a transverse cycle to be useful if there are at least α · |γ∩σ|2 vertices on both sides, and then optimize α
to minimize the resulting upper bound.
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z

a

Figure 5.3. Nested simple closed curves transverse to γ.

If an edge of γ crosses σ j , then at least one of its endpoints lies in the annulus A j \ A j−1. Moreover,1

if the edge crosses σ j twice, then both endpoints lie in A j \ A j−1. Exhaustive case analysis implies that2

n j ≥ n j−1 + s j/2, and therefore by induction3

n j ≥
1
2

∑

i< j

si ,4

for every index j > 1. Trivially, n1 ≥ 1 unless γ is simple, and s1 ≥ 2 unless D = 1.5

Now suppose no curve σ j with 1≤ j ≤ L is useful. Then we must have s2
j > n j and therefore6

s2
j >

1
2

∑

i< j

si7

for all j. An easy induction argument implies that s j > j/5, and therefore8

n
2
≥ nL >

1
2

∑

i<L

i
5
=

1
10

�

L
2

�

.9

We conclude that L ≤
p

10n. �10

We are now finally ready to prove our main upper bound.11

Theorem 5.7. |δ(γ)|= O(n3/2) for every generic closed curve γ with n vertices.12

Proof: Let ∆(n) denote the maximum absolute defect of any closed curve with n vertices. We prove13

by induction on n that ∆(n)≤ C · n3/2, for some absolute constant C to be determined. (The base case14

∆(1) = 2 implies that C ≥ 2.)15

Let γ be an arbitrary closed curve with n vertices. Let σ be a simple closed curve that is useful for γ.16

(If there are no useful curves, then Lemmas 5.2 and 5.6 imply that |δ(γ)| = O(n3/2).) Let s = |γ∩σ|.17

Lemmas 5.4 and 5.5 imply18

|δ(γ)|= |δ(γåσ)|+ |δ(γäσ)|+O(s3).19

Suppose m vertices of γ lie in the interior of σ; without loss of generality, we can assume m ≤ n/2.20

The curve γäσ has at most m+
�s/2

2

�

< m+ s2/8 vertices; symmetrically, the curve γåσ has at most21

n−m+ s2/8 vertices. It follows that22

|δ(γ)| ≤ ∆(m+ s2/8) +∆(n−m+ s2/8) + c · s3
23

for some constant c.24
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Because σ is useful, we have m≥ s2, so both arguments of ∆ on the right side of this inequality are1

smaller than n. Thus, the inductive hypothesis implies2

|δ(γ)| ≤ C
�

m+ s2/8
�3/2
+ C

�

n−m+ s2/8
�3/2
+ c · s3.3

For any fixed s, the convexity of the function x 7→ x3/2 implies that right side of this inequality is4

maximized when m= s2, so5

|δ(γ)| ≤ C
�

9s2/8
�3/2
+ C

�

n− 7s2/8
�3/2
+ c · s3.6

The inequality (x − y)3/2 ≤ (x − y)x1/2 = x3/2 − y x1/2 now implies7

|δ(γ)| ≤ Cn3/2 + C
�

9s2/8
�3/2 − C

�

7s2/8
�

n1/2 + c · s3.8

Finally, because σ is useful, we must have
p

n≥
p

2 · s, which implies9

|δ(γ)| ≤ Cn3/2 + C
�

(9/8)3/2 − 7
p

2/8
�

s3 + c · s3
10

= Cn3/2 −
�p

2C/32− c
�

s3.11
12

Provided C/c > 16
p

2, then |δ(γ)| ≤ Cn3/2, as required.4 �13

5.4 Implications for Random Knots14

Finally, we describe some interesting implications of our results on the expected behavior of random15

knots, following earlier results of Lin and Wang [56], Polyak [63] and Even-Zohar et al. [27]. We refer16

the reader to Burde and Zieschang [12] or Kauffman [48] for further background on knot theory, and17

to Chmutov et al. [16] for a detailed overview of finite-type knot invariants; we include only a few18

elementary definitions to keep the paper self-contained.19

A knot is (the image of) a continuous injective map from the circle into R3. Two knots are considered20

equivalent (more formally, ambient isotopic) if there is a continuous deformation of R3 that deforms one21

knot into the other. Knots are often represented by knot diagrams, which are 4-regular plane graphs22

defined by a generic projection of the knot onto the plane, with an annotation at each vertex indicating23

which branch of the knot is “over” or “under” the other. Call any crossing x in a knot diagram ascending24

if the first branch through x after the basepoint passes over the second, and descending otherwise.25

The Casson invariant c2 is the simplest finite-type knot invariant; it is also equal to the second coef-26

ficient of the Conway polynomial [11,66]. Polyak and Viro [65,66] derived the following combinatorial27

formula for the Casson invariant of a knot diagram κ:28

c2(κ) = −
∑

descending x

∑

ascending y

[x Ç y] · sgn(x) · sgn(y).29

Like defect, the value of c2(κ) is independent of the choice of basepoint or orientation of the underlying30

curve γ; moreover, if the knots represented by diagrams κ and κ′ are equivalent, then c2(κ) = c2(κ′).31

Polyak [63, Theorem 7] observed that if a knot diagram κ is obtained from an arbitrary closed curve γ32

by independently resolving each crossing as ascending or descending with equal probability, then one33

can relate the expectation of Casson invariant c2(κ) and the defect of γ by34

E[c2(κ)] = δ(γ)/8.35

4A more careful analysis to Lemma 5.5 implies that c < 3/4, and therefore it suffices to set C = 12
p

2. One can further
reduce the constant C by redefining a transverse cycle to be useful if there are at least α · |γ∩σ|2 vertices on both sides, and
then optimize α to obtain a refined bound on C . We get C < 5.6429.
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The same observation is implicit in earlier results of Lin and Wang [56]; and (for specific curves) in the1

later results of Even-Zohar et al. [27].2

Even-Zohar et al. [27] studied the distribution of the Casson invariant for two models of random3

knots, the Petaluma model of Adams et al. [1,2], which uses singular one-vertex diagrams consisting of4

2p+ 1 disjoint non-nested loops for some integer p, and the star model, which uses (a polygonal version5

of) the flat torus knot T (p, 2p+1) for some integer p. Even-Zohar et al. prove that the expected value of6

the Casson invariant is
�p

2

�

/12 in the Petaluma model and
�p+1

3

�

/2≈ 0.03n3/2 in the star model.7

Our defect analysis implies an upper bound on the Casson invariant for knot diagrams generated8

from any family of generic closed curves.9

Corollary 5.8. Let γ be any generic closed curve with n vertices, and let κ be a knot diagram obtained10

by resolving each vertex of γ independently and uniformly at random. Then
�

�E[c2(κ)]
�

�= O(n3/2).11

Our results also imply that the distribution of the Casson invariant depends strongly on the precise12

parameters of the random model; even the sign and growth rate of E[c2] depend on which curves are13

used to generate knot diagrams. For example:14

• For random diagrams over the flat torus knot T (p+ 1, p), we have E[c2(κ)] = −
�p

3

�

/4 = −n3/2/24+15

Θ(n).16

• For random diagrams over the connected sum T(p, p + 1) # T(p + 1, p), we have E[c2(κ)] =17
��p+1

3

�

−
�p

3

��

/4=
�p

2

�

/4= n/16−Θ(
p

n).18

• For random diagrams over the connected sum T (p− 1, p)# T (p+ 1, p), we have E[c2(κ)] = 0.19

We hope to expand on these initial observations in a future paper.20

6 Open Problems21

Like Gitler [34], Feo and Provan [28], and Archdeacon et al. [8], we conjecture that any n-vertex22

planar graph G can be reduced to a single vertex using only O(n3/2) electrical transformations. Our23

divide-and-proof of Theorem 5.7 suggests a natural divide-and-conquer strategy: Find a useful vertex-cut24

(a cycle in the radial graph), reduce the graph on one side of the cut treating the cut vertices as terminals,25

and then recursively reduce the remaining graph. If the reduction on one side of the cut can be carried26

out in O(nD) steps, perhaps using a variant of Feo and Provan’s algorithm [28], then the algorithm27

would reduce G in O(n3/2) time. Unfortunately, the fastest algorithms currently known for reducing28

planar graphs with arbitrarily many terminals on the outer face—otherwise known as circular planar29

graphs [20,22,24,52]—only imply an overall running time of O(n2).30

Because our lower bound applies to any planar graph with treewidth Ω(
p

n), it is natural to conjecture31

that every planar graph with treewidth t can be electrically reduced in at most O(nt) steps. Of course32

such an algorithm would immediately imply an O(n3/2)-time algorithm for arbitrary planar graphs.33

Another interesting open question is whether our Ω(n3/2) lower bound can be extended to electrical34

transformations that ignore the planarity of the graph. Such an extension would imply that reducing35

K5- or K3,3-minor-free graphs would require Ω(n3/2) steps in the worst case. As we mentioned in the36

introduction, our argument can be extended to allow non-facial loop reductions and non-facial parallel37

reductions; the difficulty lies entirely with non-facial ∆�Y transformations.38

There are also several natural open questions involving combinatorial homotopy. For example: How39

many homotopy moves are required in the worst case to transform an arbitrary n-vertex 4-regular plane40

graph into a collection of disjoint simple closed curves? Equivalently, how many moves are required to41
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transform any generic immersion of circles into an embedding? Our Ω(n3/2) lower bound for homotopy1

moves trivially extends to this more general problem; however, an O(n3/2)-step electrical reduction2

algorithm would not immediately imply the corresponding upper bound for homotopy moves of arbitrary3

immersions, because of a subtlety in the definition of a planar embedding of disconnected graphs. In the4

homotopy problem, if the image of an immersion becomes disconnected, we must still keep track of how5

the various components are nested; on the other hand, in the electrical reduction problem, it is most6

natural to embed each component on its own sphere. If we insist on keeping everything embedded on7

the same plane, there are disconnected 4-regular plane graphs that cannot be reduced to disjoint circles8

by medial electrical moves; see Figure 6.1.9

Figure 6.1. A disconnected 4-regular plane graph that cannot be reduced to disjoint circles by medial electrical moves.

How many homotopy moves are required to connect two homotopic closed curves on a surface of10

higher genus? In particular, how many homotopy moves are required to transform a contractible closed11

curve into a simple closed curve? Polyak’s formula for defect extends immediately to curves on arbitrary12

orientable surfaces, even though other invariants like winding number do not. There are curves on the13

torus with quadratic defect, but we have been unable to construct any such curve that is contractible.14

For the more general problem of transforming one arbitrary curve into another, we are not even aware15

of a polynomial upper bound!16

Finally, our upper and lower bounds for worst-case defect differ by roughly a factor of 20. In light of17

the complexity of our upper bound argument, we expect that our lower bounds are closer to the correct18

answer. Are the flat torus knots T(q+ 1, q) and T(p, p+ 1) the curves with minimum and maximum19

defect for their number of vertices?20
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