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Abstract6

Given a set of disjoint horizontal line segments (call bars), the distance of two bars is the7

minimum number of the other bars that a vertical line segment joining the two bars passes8

through. A graph G is a bar k-visibility graph if G can be represented as a set of disjoint bars9

such that two vertices are adjacent in G if and only if the distance of their associated bars is10

at most k. A graph G is a semi bar k-visibility graph if G can be represented as a set of disjoint11

bars whose left endpoints have the same x-coordinates such that two vertices are adjacent12

in G if and only if the distance of their associated bars is at most k. The thickness of G is the13

minimum number of planar subgraphs whose union is G.14

Dean et al. gave the best previously known upper bound 3k(6k + 1) on the thickness15

of bar k-visibility graphs. Hartke et al. proved that K4k+4 is a bar k-visibility graph, so the16

upper bound on the thickness of bar k-visibility graphs is at least d(2k + 3)/3e. Felsner17

and Massow gave an upper bound on the thickness of semi bar 1-visibility graphs. Felsner18

and Massow proved that K2k+3 is a semi bar k visibility graph, so the upper bound on the19

thickness of semi bar k visibility graphs is at least d(2k + 5)/6e. We reduce the upper bound20

to 3k + 3 on the thickness of bar k-visibility graphs, and give an upper bound 2k for semi21

bar k-visibility graphs.22

1 Introduction23

All graphs are simple throughout the paper. Consider a set B of disjoint bars, that is, horizontal24

line segments. For any two bars u and v in B, the vertical distance d(u, v) in B is the smallest25

integer k such that there is a vertical line segment whose endpoints are at u and v passing26

through k other bars. Dean et al. [3,4] defined that a graph G is a bar k-visibility graph if G can be27

represented as a set of disjoint bars such that any two vertices are adjacent in G if and only if28

d(u, v) ≤ k, where u and v are the associated bars with those vertices. Given a bar k-visibility29

graph, we called the corresponding representation a bar k-visibility representation. The cases with30

k equals 0 and 1 are illustrated in Figure 1. Bar 0-visibility graphs are also known as the bar31

visibility graphs [2, 5]. For k =∞, bar k-visibility graphs are exactly the interval graphs (see, for32
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Figure 1: A bar 0-visibility graph, a bar 1-visibility graph, and their common representation.
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Figure 2: A semi bar 1-visibility graph with its representation.

example, [14]). We denote Bk as the family of bar k-visibility graphs. Felsner and Massow [6, 7]1

defined that a graph G is a semi bar k-visibility graph if G can be represented as a set of disjoint2

bars whose left endpoints have the same x-coordinates such that any two vertices are adjacent3

in G if and only if d(u, v) ≤ k, where u and v are the associated bars with those vertices. The4

corresponding representation is called a semi bar k-visibility representation. The case with k = 1 is5

illustrated in Figure 2. We denote Sk as the family of semi bar k-visibility graphs. The thickness6

θ(G) of a graph G is the minimum number of planar subgraphs whose union is G (see, for7

example, [14]). For any family of graphs G, let θ(G) := maxG∈G θ(G).8

The goal of this paper is to study the thickness of bar k-visibility graphs and semi bar9

k-visibility graphs. For the special case when k = 1, Dean et al. [3, 4] proved that θ(B1) ≤ 4, and10

conjectured that θ(B1) ≤ 2, which was disproved by Felsner and Massow [6, 7]. Felsner and11

Massow also gave a constructive proof for θ(S1) = 2. In this paper, we focus on θ(Bk) and θ(Sk)12

for general k. Dean et al. [3, 4] gave the best previously upper bound 3k(6k + 1) on θ(Bk). We13

reduce the upper bound to 3k + 3. It is known that θ(Bk) is at least d(2k + 3)/3e as Dean et al.14

proved that complete graph K4k+4 is in Bk. Hence our first result is asymptotically optimal. We15

also give the first upper bound 2k on θ(Sk). Felsner and Massow [6, 7] proved that complete16

graph K2k+3 is in Sk, so θ(Sk) is at least d(2k + 5)/6e. Hence our second result is asymptotically17

optimal. Table 1 compares previous work and our results. In summary, we prove the following18

theorem.19

Theorem 1.20

1. If G is a bar k-visibility graph, then θ(G) ≤ 3k + 3 for any k ≥ 0.21

2. If G is a semi bar k-visibility graph, then θ(G) ≤ 2k for any k ≥ 1.22

The importance of the problem. Mansfield [9] proved that determining the thickness of a23

graph is NP-hard. The class of graphs whose thickness is known is few—for example, complete24

graphs and hypercubes (see [10]). If we know better upper bound on the thickness of the graph,25

then in VLSI design, we can embed the graph using fewer layers [1]. In the scheduling of26

multihop radio networks, Ramanathan and Lloyd [12, 13] gave an approximation algorithm27

θ(Bk) θ(Sk)

k = 1 k ≥ 1 k = 1 k ≥ 1

Dean et al. [3, 4] ≤ 4 ≤ 3k(6k + 1)

Hartke et al. [8] ≥ d(2k + 3)/3e
Felsner and Massow [6, 7] ≥ 3 2 ≥ d(2k + 5)/6e

Our result ≤ 3k + 3 ≤ 2k

Table 1: Previous work and our result.
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for the schedule where the number of time slots is bounded by a function of the thickness of a1

graph.2

Related work on the problem. Dean et al. [3,4] study bar k-visibility graphs and gave bounds3

on the maximum number of edges and chromatic number of Bk. Hartke et al. [8] improved the4

result by sharpening the bound on maximum number of edges. Hartke et al. also provided some5

other facts about bar k-visibility graphs. They proved that complete graph K4k+4 is indeed6

the largest complete graph in Bk, as conjectured by Dean et al. [3, 4]; they constructed some7

forbidden induced subgraphs of the class Bk; and they discussed regular bar k-visibility graphs.8

Felsner and Massow [6, 7] gave bounds on semi bar k-visibility graphs, and gave bounds of9

chromatic number, clique number, maximum number of edges, and connectivity on Sk. They10

proved that K2k+3 is the largest complete graph that can be in Sk. Also the yproved that the11

upper bounds on geometric thickness of S1 is also at most 2. Given a semi bar k-visibility12

graph and an order of bars corresponding to the nodes, Felsner and Massow gave a method to13

reconstruct a semi bar k-visibility representation.14

2 Bar k-visibility graph15

Given a graph G, V (G) is the node set of G and E(G) is the edge set of G. Denote nG the16

number of nodes in G and mG the number of edges in G. Consider graph G in Bk. If R is a bar17

k-visibility representation of G, we denote G as G(R), and the bar in R which corresponds to18

vertex x in G by bx or b(x).19

2.1 Weak bar k-visibility graph20

A graph G is a weak bar k-visibility graph if G is a subgraph of a bar k-visibility graph. The case21

with k = 1 is illustrated in Figure 3. We denote Wk as the family of weak bar k-visibility graphs.22

Lemma 2.1. If G ∈Wk, then there is a graph H ∈ Bk, such that nG = nH and G is a subgraph of H .23

Proof. Suppose that G′ is a bar k-visibility graph and G is a subgraph of G′. Let R′ be a24

bar k-visibility representation of G′, and R∗ = R′ − B, where B is the set of the associated25

bars of the vertices in V (G′) − V (G). Since for every vertex pair (u, v) where u ∈ V (G) and26

v ∈ V (G), if d(bu, bv) ≤ k in R′, then d(bu, bv) ≤ k in R∗, we know that for every edge e ∈ E(G),27

e ∈ E(G(R∗)). Hence G is a subgraph of G(R∗) and nG = nG(R∗).28

Lemma 2.2 (Hartke et al. [8]). If G ∈ Bk and nG ≥ 2k + 2, then mG ≤ (k + 1)(3nG − 4k − 6).29
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Figure 3: A weak bar 1-visibility graph with its supergraph, and the bar 1-visibility representa-
tion of the supergraph.
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2.2 Arboricity1

The arboricity arb(G) of a graph G is the minimum number of forests whose union is G, (see, for2

example, [14]). We know that3

θ(G) ≤ arb(G) (1)4

holds for any graph G, because the thickness of a forest is one.5

Lemma 2.3 (Nash-Williams [11]). For any graph G,6

arb(G) = max

{⌈
mH

nH − 1

⌉
: H ⊆ G,nH > 1

}
.7

2.3 Proof of Theorem 1.18

Proof. Consider any subgraph H of G. We have the following two cases.9

• Case 1: 1 < nH < 2k + 2.10

Since the number of edges for every simple graph with n nodes is at most
(
n
2

)
, we have11

mH

nH − 1
≤ nH · (nH − 1)/2

nH − 1
=
nH
2

< k + 1.12

• Case 2: nH ≥ 2k + 2.13

By the defintion of Wk and Lemma 2.1, there exists a graph H ′ ∈ Bk, such that nH = nH′14

and H is a subgraph of H ′. Hence we know mH ≤ mH′ . By Lemma 2.2, we know15

mH′ ≤ (k + 1)(3nH′ − 4k − 6). Therefore,16

mH

nH − 1
≤ mH′

nH − 1
17

≤ (k + 1)(3nH′ − 4k − 6)

nH − 1
18

≤ (k + 1)(3nH − 4k − 6)

nH − 1
19

= 3(k + 1)− 4k2 + 7k + 3

nH − 1
20

≤ 3k + 3.21

It follows from Lemma 2.3, that we know arb(G) ≤ 3k + 3. By (1), we have θ(G) ≤ 3k + 3.22

3 Semi bar k-visibility graph23

3.1 Semi bar exactly k-visibility graph24

A graph G is a semi bar exactly k-visibility graph if G can be represented as a set of disjoint bars25

whose left endpoints have the same x-coordinates such that any two vertices are adjacent in G26

if and only if d(u, v) = k, where u and v are the associated bars with those vertices. The case27

with k = 1 is illustrated in Figure 4. We denote SEk as the family of semi bar exactly k-visibility28

graphs. The outdegree deg+(v) of a vertex v is the number of outward directed edges from v (see,29

for example, [14]).30

Lemma 3.1. If G ∈ SEk, then there is an orientation of edges of G such that for every vertex v,31

deg+(v) ≤ 2.32
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Figure 4: A semi bar exactly 1-visibility graph with its representation.

Proof. We denote the length of bar b by `(b). We label the edges of G by 1, 2, . . . ,mG, then1

we orient the edges of G from 1 to mG according to the following rule: let R be a semi bar2

exactly k-visibility representation of G. For each j = 1, . . . ,mG, let edge ej = (xj , yj). If3

`(b(xj)) ≥ `(b(yj)) in R, then we give ej the orientation from yj to xj , otherwise we give ej the4

orientation from xj to yj . We name the graph G∗. For any vertex v, suppose that there are more5

than two bars b1, b2, . . . , bq which are above bv, such that for each i with 1 ≤ i ≤ q, d(bi, bv) = k6

and the orientation of the edges in G∗ corresponding to (bi, bv) is pointed out from v. Let two of7

those bars be bs and bt and bs is above bt. `(bs) ≥ `(bv) and `(bt) ≥ `(bv), so every vertical line8

segment whose endpoints are at bs and bv has to pass through bt. Hence d(bt, bv) 6= d(bs, bv),9

which is a contradiction. Therefore, there is at most one bar which is above bv, such that the10

orientation of the edge inG∗ corresponding to the bar pair is pointed out from v. Similarly, there11

is at most one bar which is below bv, such that the orientation of the edge in G∗ corresponding12

to the bar pair is pointed out from v. So, deg+(v) ≤ 2.13

Lemma 3.2. If G admits an orientation such that deg+(v) ≤ d for every vertex v, then θ(G) ≤ d.14

Proof. By this orientation, we label the outgoing edges of every vertex by 1, 2, . . . , d. Let Ei be15

the set of the edges labeled i, and Gi = (V (G), Ei) for each i with 1 ≤ i ≤ d, then we know for16

any component in Gi for each i with 1 ≤ i ≤ d, the number of edges in the component is at17

most the number of nodes in the component, because Gi has an orientation, such that for every18

vertex v, deg+(v) ≤ 1. Hence θ(Gi) = 1 for each i with 1 ≤ i ≤ d. Since
⋃d

i=1Ei = E(G) and19

Ei ∩ Ej = φ for any indices i and j with i 6= j, we have20

θ(G) ≤
d∑

i=1

θ(Gi) =

d∑
i=1

1 = d.21

Lemma 3.3 (Felsner and Massow [7]). If G ∈ S1, then θ(G) ≤ 2.22

3.2 Proof of Theorem 1.223

Proof. Suppose that R is a semi bar k-visibility representation of G. Let24

Ei = {(x, y) : d(bx, by) = i},25

Gi = (V (G), Ei).26
27

We have Gi ∈ SEi for each i with 0 ≤ i ≤ k, and
⋃k

i=0Ei = E(G). By Lemma 3.1 and Lemma28

3.2, we know θ(Gi) ≤ 2 for each i with 0 ≤ i ≤ k. By the definitions of Sk and SEk, we know29

G0 ∪G1 ∈ S1. By Lemma 3.3, θ(G0 ∪G1) ≤ 2. Therefore,30

θ(G) ≤ θ(G0 ∪G1) +
k∑

i=2

θ(Gi) ≤ 2 + 2(k − 1) = 2k.31
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