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Abstract

Given a set of disjoint horizontal line segments (call bars), the distance of two bars is the
minimum number of the other bars that a vertical line segment joining the two bars passes
through. A graph G is a bar k-visibility graph if G can be represented as a set of disjoint bars
such that two vertices are adjacent in G if and only if the distance of their associated bars is
at most k. A graph G is a semi bar k-visibility graph if G can be represented as a set of disjoint
bars whose left endpoints have the same z-coordinates such that two vertices are adjacent
in G if and only if the distance of their associated bars is at most k. The thickness of G is the
minimum number of planar subgraphs whose union is G.

Dean et al. gave the best previously known upper bound 3k(6k + 1) on the thickness
of bar k-visibility graphs. Hartke et al. proved that K44 is a bar k-visibility graph, so the
upper bound on the thickness of bar k-visibility graphs is at least [(2k + 3)/3]. Felsner
and Massow gave an upper bound on the thickness of semi bar 1-visibility graphs. Felsner
and Massow proved that Ky 3 is a semi bar k visibility graph, so the upper bound on the
thickness of semi bar k visibility graphs is at least [(2k + 5)/6]. We reduce the upper bound
to 3k + 3 on the thickness of bar k-visibility graphs, and give an upper bound 2k for semi
bar k-visibility graphs.

1 Introduction

All graphs are simple throughout the paper. Consider a set B of disjoint bars, that is, horizontal
line segments. For any two bars u and v in B, the vertical distance d(u,v) in B is the smallest
integer k such that there is a vertical line segment whose endpoints are at © and v passing
through k other bars. Dean et al. [3,4] defined that a graph G'is a bar k-visibility graph if G' can be
represented as a set of disjoint bars such that any two vertices are adjacent in G if and only if
d(u,v) < k, where v and v are the associated bars with those vertices. Given a bar k-visibility
graph, we called the corresponding representation a bar k-visibility representation. The cases with
k equals 0 and 1 are illustrated in Figure 1. Bar 0-visibility graphs are also known as the bar
visibility graphs [2,5]. For k = oo, bar k-visibility graphs are exactly the interval graphs (see, for
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Figure 1: A bar 0-visibility graph, a bar 1-visibility graph, and their common representation.
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Figure 2: A semi bar 1-visibility graph with its representation.

example, [14]). We denote B, as the family of bar k-visibility graphs. Felsner and Massow [6,7]
defined that a graph G is a semi bar k-visibility graph if G can be represented as a set of disjoint
bars whose left endpoints have the same z-coordinates such that any two vertices are adjacent
in G if and only if d(u,v) < k, where u and v are the associated bars with those vertices. The
corresponding representation is called a semi bar k-visibility representation. The case with k = 1is
illustrated in Figure 2. We denote §;, as the family of semi bar k-visibility graphs. The thickness
0(G) of a graph G is the minimum number of planar subgraphs whose union is G (see, for
example, [14]). For any family of graphs G, let 0(3) := maxgeg 6(G).

The goal of this paper is to study the thickness of bar k-visibility graphs and semi bar
k-visibility graphs. For the special case when k = 1, Dean et al. [3,4] proved that §(B;) < 4, and
conjectured that §(B1) < 2, which was disproved by Felsner and Massow [6,7]. Felsner and
Massow also gave a constructive proof for §(81) = 2. In this paper, we focus on 6(By) and 6(8)
for general k. Dean et al. [3,4] gave the best previously upper bound 3%k(6k + 1) on §(By). We
reduce the upper bound to 3k + 3. It is known that 6(B,) is at least [(2k + 3)/3] as Dean et al.
proved that complete graph K14 is in By. Hence our first result is asymptotically optimal. We
also give the first upper bound 2k on §(8). Felsner and Massow [6, 7] proved that complete
graph Koy 3 is in 8, so 0(8y) is at least [(2k + 5)/6]. Hence our second result is asymptotically
optimal. Table 1 compares previous work and our results. In summary, we prove the following
theorem.

Theorem 1.
1. If G is a bar k-visibility graph, then 6(G) < 3k + 3 for any k > 0.
2. If G is a semi bar k-visibility graph, then 6(G) < 2k for any k > 1.

The importance of the problem. Mansfield [9] proved that determining the thickness of a
graph is NP-hard. The class of graphs whose thickness is known is few—for example, complete
graphs and hypercubes (see [10]). If we know better upper bound on the thickness of the graph,
then in VLSI design, we can embed the graph using fewer layers [1]. In the scheduling of
multihop radio networks, Ramanathan and Lloyd [12,13] gave an approximation algorithm

B €/ R S oK)
k=1 k>1 k=1 k>1
Deanetal. [3,4] | <4 | <3k(6k+1)
Hartke et al. [8] - > [(2k +3)/3] :
Felsner and Massow [6,7] | >3 2 > [(2k+5)/6]
Our result <3k+3 < 2k

Table 1: Previous work and our result.
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for the schedule where the number of time slots is bounded by a function of the thickness of a
graph.

Related work on the problem. Dean et al. [3,4] study bar k-visibility graphs and gave bounds
on the maximum number of edges and chromatic number of B. Hartke et al. [8] improved the
result by sharpening the bound on maximum number of edges. Hartke ef al. also provided some
other facts about bar k-visibility graphs. They proved that complete graph K4 is indeed
the largest complete graph in By, as conjectured by Dean et al. [3,4]; they constructed some
forbidden induced subgraphs of the class B;; and they discussed regular bar k-visibility graphs.
Felsner and Massow [6,7] gave bounds on semi bar k-visibility graphs, and gave bounds of
chromatic number, clique number, maximum number of edges, and connectivity on 8. They
proved that Ky 3 is the largest complete graph that can be in 8. Also the yproved that the
upper bounds on geometric thickness of 8; is also at most 2. Given a semi bar k-visibility
graph and an order of bars corresponding to the nodes, Felsner and Massow gave a method to
reconstruct a semi bar k-visibility representation.

2 Bar k-visibility graph

Given a graph G, V(G) is the node set of G and E(G) is the edge set of G. Denote n¢ the
number of nodes in G and m¢ the number of edges in G. Consider graph G in By If R is a bar
k-visibility representation of G, we denote G as G(R), and the bar in R which corresponds to
vertex x in G by b, or b(z).

2.1 Weak bar k-visibility graph

A graph G is a weak bar k-visibility graph if G is a subgraph of a bar k-visibility graph. The case
with k£ = 1 is illustrated in Figure 3. We denote W, as the family of weak bar k-visibility graphs.

Lemma 2.1. If G € Wy, then there is a graph H € By, such that ng = ny and G is a subgraph of H.

Proof. Suppose that G’ is a bar k-visibility graph and G is a subgraph of G’. Let R be a
bar k-visibility representation of G’, and R* = R’ — B, where B is the set of the associated
bars of the vertices in V(G’) — V(G). Since for every vertex pair (u,v) where u € V(G) and
v € V(Q),if d(by, b,) < kin R/, then d(by, b,) < k in R*, we know that for every edge e € E(G),
e € E(G(R")). Hence G is a subgraph of G(R*) and ng = ng(g+)- O

Lemma 2.2 (Hartke et al. [8]). If G € By, and ng > 2k + 2, then mg < (k4 1)(3ng — 4k — 6).

1 1
——o 1
2 5 2 5 —o?2
3 o—o
————o4
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Figure 3: A weak bar 1-visibility graph with its supergraph, and the bar 1-visibility representa-
tion of the supergraph.
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2.2 Arboricity

The arboricity arb(G) of a graph G is the minimum number of forests whose union is G, (see, for
example, [14]). We know that
0(G) < arb(G) 1

holds for any graph G, because the thickness of a forest is one.

Lemma 2.3 (Nash-Williams [11]). For any graph G,

arb(G):maxH mH w :HQG,nH>1}.

ng —1

2.3 Proof of Theorem 1.1
Proof. Consider any subgraph H of G. We have the following two cases.

e Casel: 1 <nyg <2k+2.
Since the number of edges for every simple graph with n nodes is at most (), we have
mpg <nH-(nH—1)/2:nH

— < k+1.
ng —1— ng — 1 2 +

e Case2: ng > 2k + 2.
By the defintion of W, and Lemma 2.1, there exists a graph H' € By, such that ng = ng
and H is a subgraph of H'. Hence we know my < mps. By Lemma 2.2, we know
mpg < (k+1)(3ng — 4k — 6). Therefore,

mpg mpg

<
ng—1 = ng-—1
(k+ 1)(3ng — 4k — 6)

- ng — 1
(k+1)(3ng — 4k — 6)

- ng —1
4k% + Tk + 3
- 3(k+1)_u
ng — 1

< 3k+3.

It follows from Lemma 2.3, that we know arb(G) < 3k + 3. By (1), we have 0(G) < 3k +3. O

3 Semi bar k-visibility graph

3.1 Semi bar exactly k-visibility graph

A graph G is a semi bar exactly k-visibility graph if G can be represented as a set of disjoint bars
whose left endpoints have the same z-coordinates such that any two vertices are adjacent in G
if and only if d(u,v) = k, where u and v are the associated bars with those vertices. The case
with k& = 1 is illustrated in Figure 4. We denote S¢, as the family of semi bar exactly k-visibility
graphs. The outdegree deg™ (v) of a vertex v is the number of outward directed edges from v (see,
for example, [14]).

Lemma 3.1. If G € 8&y, then there is an orientation of edges of G such that for every vertex v,
deg™ (v) < 2.
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Figure 4: A semi bar exactly 1-visibility graph with its representation.

Proof. We denote the length of bar b by ¢(b). We label the edges of G by 1,2,...,mg, then
we orient the edges of G from 1 to mg according to the following rule: let R be a semi bar
exactly k-visibility representation of G. For each j = 1,...,mg, let edge e¢; = (xj,y;). If
l(b(x;)) > £(b(y;)) in R, then we give e; the orientation from y; to z;, otherwise we give e; the
orientation from z; to y;. We name the graph G*. For any vertex v, suppose that there are more
than two bars by, by, . . ., by which are above b,, such that for each i with 1 <1i < ¢, d(b;, b,) = k
and the orientation of the edges in G* corresponding to (b;, b, ) is pointed out from v. Let two of
those bars be b and b; and b, is above b;. £(bs) > ¢(b,) and £(b:) > £(by), so every vertical line
segment whose endpoints are at b; and b, has to pass through b;. Hence d(b;, b,) # d(bs, by),
which is a contradiction. Therefore, there is at most one bar which is above b,, such that the
orientation of the edge in G* corresponding to the bar pair is pointed out from v. Similarly, there
is at most one bar which is below b,,, such that the orientation of the edge in G* corresponding
to the bar pair is pointed out from v. So, deg™ (v) < 2. O

Lemma 3.2. If G admits an orientation such that deg™ (v) < d for every vertex v, then 0(G) < d.

Proof. By this orientation, we label the outgoing edges of every vertex by 1,2, ...,d. Let E; be
the set of the edges labeled i, and G; = (V(G), E;) for each i with 1 < i < d, then we know for
any component in G; for each i with 1 < i < d, the number of edges in the component is at
most the number of nodes in the component, because G; has an orientation, such that for every
vertex v, deg™ (v) < 1. Hence 0(G;) = 1 for each i with 1 < i < d. Since Ule E; = E(G) and
E; N Ej = ¢ for any indices ¢ and j with i # j, we have

d
0(G) <D 0(G)=> 1=d. O
=1

i=1

Lemma 3.3 (Felsner and Massow [7]). If G € 81, then (G) < 2.

3.2 Proof of Theorem 1.2

Proof. Suppose that R is a semi bar k-visibility representation of G. Let

E; = {(z,y) : d(bg, by) = i},
Gi = (V(G), E)).

We have G; € 8&; for each i with 0 < ¢ < k, and U?:o E; = E(G). By Lemma 3.1 and Lemma
3.2, we know 6(G;) < 2 for each i with 0 < i < k. By the definitions of §; and §&;, we know
Go UG € 8;1. By Lemma 3.3, §(Go U G1) < 2. Therefore,

k
0(G) < 0(GoUGL) + Y _0(Gi) <2+2(k— 1) =2k. O
1=2
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