Asymptotically Optimal Thickness Bounds of Generalized Bar Visibility Graphs

Hsien-Chih Chang Hsueh-I Lu Yen-Peng Sung

February 20, 2010

Revised — January 24, 2016

Abstract

Given a set of disjoint horizontal line segments (call *bars*), the *distance* of two bars is the minimum number of the other bars that a vertical line segment joining the two bars passes through. A graph G is a *bar k-visibility graph* if G can be represented as a set of disjoint bars such that two vertices are adjacent in G if and only if the distance of their associated bars is at most k. A graph G is a *semi bar k-visibility graph* if G can be represented as a set of disjoint bars whose left endpoints have the same x-coordinates such that two vertices are adjacent in G if and only if the distance of their associated bars is at most k. The *thickness* of G is the minimum number of planar subgraphs whose union is G.

Dean *et al.* gave the best previously known upper bound 3k(6k + 1) on the thickness of bar *k*-visibility graphs. Hartke *et al.* proved that K_{4k+4} is a bar *k*-visibility graph, so the upper bound on the thickness of bar *k*-visibility graphs is at least $\lceil (2k + 3)/3 \rceil$. Felsner and Massow gave an upper bound on the thickness of semi bar 1-visibility graphs. Felsner and Massow proved that K_{2k+3} is a semi bar *k* visibility graph, so the upper bound on the thickness of semi bar *k* visibility graphs is at least $\lceil (2k + 5)/6 \rceil$. We reduce the upper bound to 3k + 3 on the thickness of bar *k*-visibility graphs, and give an upper bound 2k for semi bar *k*-visibility graphs.

1 Introduction

1

2

5

6

8

9

11

12

13

14

15

16

18

19 20

21

22

All graphs are simple throughout the paper. Consider a set B of disjoint *bars*, that is, horizontal 24 line segments. For any two bars u and v in B, the vertical distance d(u, v) in B is the smallest 25 integer k such that there is a vertical line segment whose endpoints are at u and v passing 26 through k other bars. Dean et al. [3,4] defined that a graph G is a bar k-visibility graph if G can be 27 represented as a set of disjoint bars such that any two vertices are adjacent in G if and only if 28 $d(u, v) \leq k$, where u and v are the associated bars with those vertices. Given a bar k-visibility 29 graph, we called the corresponding representation a *bar k-visibility representation*. The cases with 30 k equals 0 and 1 are illustrated in Figure 1. Bar 0-visibility graphs are also known as the bar 31 *visibility graphs* [2,5]. For $k = \infty$, bar k-visibility graphs are exactly the *interval graphs* (see, for 32

Figure 1: A bar 0-visibility graph, a bar 1-visibility graph, and their common representation.

Figure 2: A semi bar 1-visibility graph with its representation.

example, [14]). We denote \mathcal{B}_k as the family of bar *k*-visibility graphs. Felsner and Massow [6,7] defined that a graph *G* is a *semi bar k-visibility graph* if *G* can be represented as a set of disjoint bars whose left endpoints have the same *x*-coordinates such that any two vertices are adjacent in *G* if and only if $d(u, v) \le k$, where *u* and *v* are the associated bars with those vertices. The corresponding representation is called a *semi bar k-visibility representation*. The case with k = 1 is illustrated in Figure 2. We denote \mathcal{S}_k as the family of semi bar *k*-visibility graphs. The *thickness* $\theta(G)$ of a graph *G* is the minimum number of planar subgraphs whose union is *G* (see, for example, [14]). For any family of graphs \mathcal{G} , let $\theta(\mathcal{G}) \coloneqq \max_{G \in \mathcal{G}} \theta(G)$.

The goal of this paper is to study the thickness of bar k-visibility graphs and semi bar 9 *k*-visibility graphs. For the special case when k = 1, Dean *et al.* [3,4] proved that $\theta(\mathcal{B}_1) \leq 4$, and 10 conjectured that $\theta(\mathcal{B}_1) \leq 2$, which was disproved by Felsner and Massow [6,7]. Felsner and 11 Massow also gave a constructive proof for $\theta(S_1) = 2$. In this paper, we focus on $\theta(\mathcal{B}_k)$ and $\theta(S_k)$ 12 for general k. Dean et al. [3,4] gave the best previously upper bound 3k(6k + 1) on $\theta(\mathcal{B}_k)$. We 13 reduce the upper bound to 3k + 3. It is known that $\theta(\mathcal{B}_k)$ is at least $\lceil (2k+3)/3 \rceil$ as Dean *et al.* 14 proved that complete graph K_{4k+4} is in \mathcal{B}_k . Hence our first result is asymptotically optimal. We 15 also give the first upper bound 2k on $\theta(S_k)$. Felsner and Massow [6,7] proved that complete 16 graph K_{2k+3} is in S_k , so $\theta(S_k)$ is at least $\lceil (2k+5)/6 \rceil$. Hence our second result is asymptotically 17 optimal. Table 1 compares previous work and our results. In summary, we prove the following 18 theorem. 19

20 Theorem 1.

1. If G is a bar k-visibility graph, then $\theta(G) \leq 3k + 3$ for any $k \geq 0$.

22 2. If G is a semi bar k-visibility graph, then $\theta(G) \leq 2k$ for any $k \geq 1$.

The importance of the problem. Mansfield [9] proved that determining the thickness of a graph is NP-hard. The class of graphs whose thickness is known is few—for example, complete graphs and hypercubes (see [10]). If we know better upper bound on the thickness of the graph, then in VLSI design, we can embed the graph using fewer layers [1]. In the scheduling of multihop radio networks, Ramanathan and Lloyd [12, 13] gave an approximation algorithm

	$ heta({f B}_k)$		$ heta(\mathbb{S}_k)$	
	k = 1	$k \ge 1$	k = 1	$k \ge 1$
Dean <i>et al.</i> [3,4]	≤ 4	$\leq 3k(6k+1)$		
Hartke <i>et al.</i> [8]		$\geq \lceil (2k+3)/3\rceil$		
Felsner and Massow [6,7]	≥ 3		2	$\geq \lceil (2k+5)/6\rceil$
Our result		$\leq 3k+3$		$\leq 2k$

Table 1: Previous work and our result.

- for the schedule where the number of time slots is bounded by a function of the thickness of a
- ² graph.

Related work on the problem. Dean *et al.* [3,4] study bar *k*-visibility graphs and gave bounds 3 on the maximum number of edges and chromatic number of \mathcal{B}_k . Hartke *et al.* [8] improved the 4 result by sharpening the bound on maximum number of edges. Hartke et al. also provided some 5 other facts about bar k-visibility graphs. They proved that complete graph K_{4k+4} is indeed 6 the largest complete graph in \mathcal{B}_k , as conjectured by Dean *et al.* [3,4]; they constructed some 7 forbidden induced subgraphs of the class \mathcal{B}_k ; and they discussed *regular* bar *k*-visibility graphs. 8 Felsner and Massow [6,7] gave bounds on semi bar k-visibility graphs, and gave bounds of 9 chromatic number, clique number, maximum number of edges, and connectivity on S_k . They 10 proved that K_{2k+3} is the largest complete graph that can be in S_k . Also the yproved that the 11 upper bounds on geometric thickness of S_1 is also at most 2. Given a semi bar k-visibility 12 graph and an order of bars corresponding to the nodes, Felsner and Massow gave a method to 13 reconstruct a semi bar k-visibility representation. 14

15 2 Bar k-visibility graph

Given a graph G, V(G) is the node set of G and E(G) is the edge set of G. Denote n_G the number of nodes in G and m_G the number of edges in G. Consider graph G in \mathcal{B}_k . If R is a bar k-visibility representation of G, we denote G as G(R), and the bar in R which corresponds to vertex x in G by b_x or b(x).

20 **2.1** Weak bar *k*-visibility graph

A graph *G* is a *weak bar k-visibility graph* if *G* is a subgraph of a bar *k*-visibility graph. The case with k = 1 is illustrated in Figure 3. We denote W_k as the family of weak bar *k*-visibility graphs.

Lemma 2.1. If $G \in W_k$, then there is a graph $H \in B_k$, such that $n_G = n_H$ and G is a subgraph of H.

Proof. Suppose that G' is a bar k-visibility graph and G is a subgraph of G'. Let R' be a bar k-visibility representation of G', and $R^* = R' - B$, where B is the set of the associated bars of the vertices in V(G') - V(G). Since for every vertex pair (u, v) where $u \in V(G)$ and $v \in V(G)$, if $d(b_u, b_v) \le k$ in R', then $d(b_u, b_v) \le k$ in R^* , we know that for every edge $e \in E(G)$, $e \in E(G(R^*))$. Hence G is a subgraph of $G(R^*)$ and $n_G = n_{G(R^*)}$.

Lemma 2.2 (Hartke *et al.* [8]). If $G \in \mathcal{B}_k$ and $n_G \ge 2k + 2$, then $m_G \le (k+1)(3n_G - 4k - 6)$.

Figure 3: A weak bar 1-visibility graph with its supergraph, and the bar 1-visibility representation of the supergraph.

2.2 Arboricity

- The *arboricity* arb(G) of a graph *G* is the minimum number of forests whose union is *G*, (see, for example, [14]). We know that
 - $\theta(G) \le arb(G) \tag{1}$

⁵ holds for any graph *G*, because the thickness of a forest is one.

6 **Lemma 2.3** (Nash-Williams [11]). For any graph G,

 $arb(G) = \max\left\{\left\lceil \frac{m_H}{n_H - 1}\right\rceil : H \subseteq G, n_H > 1\right\}.$

8 2.3 Proof of Theorem 1.1

9 *Proof.* Consider any subgraph *H* of *G*. We have the following two cases.

• Case 1: $1 < n_H < 2k + 2$. Since the number of edges for every simple graph with *n* nodes is at most $\binom{n}{2}$, we have

13

14

15

16

21

1

4

7

 $\frac{m_H}{n_H - 1} \le \frac{n_H \cdot (n_H - 1)/2}{n_H - 1} = \frac{n_H}{2} < k + 1.$

• Case 2: $n_H \ge 2k + 2$. By the definition of W_k and Lemma 2.1, there exists a graph $H' \in \mathcal{B}_k$, such that $n_H = n_{H'}$ and H is a subgraph of H'. Hence we know $m_H \le m_{H'}$. By Lemma 2.2, we know $m_{H'} \le (k+1)(3n_{H'} - 4k - 6)$. Therefore,

$$\frac{m_{H}}{n_{H}-1} \leq \frac{m_{H'}}{n_{H}-1}$$

$$\frac{m_{H}}{n_{H}-1} \leq \frac{(k+1)(3n_{H'}-4k-6)}{n_{H}-1}$$

$$\leq \frac{(k+1)(3n_{H}-4k-6)}{n_{H}-1}$$

$$= 3(k+1) - \frac{4k^{2}+7k+3}{n_{H}-1}$$

 $\leq 3k+3.$

It follows from Lemma 2.3, that we know $arb(G) \leq 3k + 3$. By (1), we have $\theta(G) \leq 3k + 3$. \Box

²³ 3 Semi bar *k*-visibility graph

²⁴ 3.1 Semi bar exactly *k*-visibility graph

A graph *G* is a *semi bar exactly k-visibility graph* if *G* can be represented as a set of disjoint bars whose left endpoints have the same *x*-coordinates such that any two vertices are adjacent in *G* if and only if d(u, v) = k, where *u* and *v* are the associated bars with those vertices. The case with k = 1 is illustrated in Figure 4. We denote $S\mathcal{E}_k$ as the family of semi bar exactly *k*-visibility graphs. The *outdegree* deg⁺(*v*) of a vertex *v* is the number of outward directed edges from *v* (see, for example, [14]).

Lemma 3.1. If $G \in S\mathcal{E}_k$, then there is an orientation of edges of G such that for every vertex v, deg⁺ $(v) \leq 2$.

Figure 4: A semi bar exactly 1-visibility graph with its representation.

Proof. We denote the length of bar b by $\ell(b)$. We label the edges of G by $1, 2, \ldots, m_G$, then we orient the edges of G from 1 to m_G according to the following rule: let R be a semi bar 2 exactly k-visibility representation of G. For each $j = 1, \ldots, m_G$, let edge $e_j = (x_j, y_j)$. If 3 $\ell(b(x_i)) \geq \ell(b(y_i))$ in R, then we give e_i the orientation from y_i to x_i , otherwise we give e_i the 4 orientation from x_j to y_j . We name the graph G^* . For any vertex v, suppose that there are more 5 than two bars b_1, b_2, \ldots, b_q which are above b_v , such that for each *i* with $1 \le i \le q$, $d(b_i, b_v) = k$ 6 and the orientation of the edges in G^* corresponding to (b_i, b_v) is pointed out from v. Let two of those bars be b_s and b_t and b_s is above b_t . $\ell(b_s) \ge \ell(b_v)$ and $\ell(b_t) \ge \ell(b_v)$, so every vertical line 8 segment whose endpoints are at b_s and b_v has to pass through b_t . Hence $d(b_t, b_v) \neq d(b_s, b_v)$, 9 which is a contradiction. Therefore, there is at most one bar which is above b_{y} , such that the 10 orientation of the edge in G^* corresponding to the bar pair is pointed out from v. Similarly, there 11 is at most one bar which is below b_v , such that the orientation of the edge in G^* corresponding 12 to the bar pair is pointed out from v. So, $deg^+(v) \le 2$. 13

Lemma 3.2. If G admits an orientation such that $\deg^+(v) \leq d$ for every vertex v, then $\theta(G) \leq d$.

Proof. By this orientation, we label the outgoing edges of every vertex by 1, 2, ..., d. Let E_i be the set of the edges labeled i, and $G_i = (V(G), E_i)$ for each i with $1 \le i \le d$, then we know for any component in G_i for each i with $1 \le i \le d$, the number of edges in the component is at most the number of nodes in the component, because G_i has an orientation, such that for every vertex v, deg⁺ $(v) \le 1$. Hence $\theta(G_i) = 1$ for each i with $1 \le i \le d$. Since $\bigcup_{i=1}^{d} E_i = E(G)$ and $E_i \cap E_j = \phi$ for any indices i and j with $i \ne j$, we have

$$\theta(G) \le \sum_{i=1}^d \theta(G_i) = \sum_{i=1}^d 1 = d.$$

Lemma 3.3 (Felsner and Massow [7]). If $G \in S_1$, then $\theta(G) \leq 2$.

23 **3.2 Proof of Theorem 1.2**

21

31

Proof. Suppose that R is a semi bar k-visibility representation of G. Let

25
$$E_i = \{(x, y) : d(b_x, b_y) = i\},$$

26 $G_i = (V(G), E_i).$

We have $G_i \in S\mathcal{E}_i$ for each i with $0 \le i \le k$, and $\bigcup_{i=0}^k E_i = E(G)$. By Lemma 3.1 and Lemma 3.2, we know $\theta(G_i) \le 2$ for each i with $0 \le i \le k$. By the definitions of S_k and $S\mathcal{E}_k$, we know

3.2, we know $\theta(G_i) \le 2$ for each *i* with $0 \le i \le k$. By the $G_0 \cup G_1 \in S_1$. By Lemma 3.3, $\theta(G_0 \cup G_1) \le 2$. Therefore,

$$\theta(G) \le \theta(G_0 \cup G_1) + \sum_{i=2}^k \theta(G_i) \le 2 + 2(k-1) = 2k.$$

References

- [1] A. Aggarwal, M. Klawe, and P. Shor. Multilayer grid embeddings for VLSI. *Algorithmica*, 6:129–151, 1991.
- [2] H. de Fraysseix and P. Rosenstiehl. Séminaire du lundi. Paris, Decembre 1981.
- [3] A. M. Dean, W. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter. Bar *k*-visibility graphs: Bounds on the number of edges, chromatic number, and thickness. In *Proceedings of the 13th International Symposium on Graph Drawing*, pages 73–82, 2005.
- [4] A. M. Dean, W. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter. Bar
 k-visibility graphs. *Journal of Graph Algorithms and Applications*, 11(1):45–59, 2007.
- [5] P. Duchet, Y. Hamidoune, M. L. Vergnas, and H. Meyniel. Representing a planar graph by
 vertical lines joining different levels. *Discrete Mathematics*, 46:319–321, 1983.
- [6] S. Felsner and M. Massow. Thickness of bar 1-visibility graphs. In *Proceedings of the 14th International Symposium on Graph Drawing*, pages 330–342, 2006.
- [7] S. Felsner and M. Massow. Parameters of bar *k*-visibility graphs. *Journal of Graph Algorithms and Applications*, 12(1):5–27, 2008.
- [8] S. G. Hartke, J. Vandenbussche, and P. Wenger. Further results on bar *k*-visibility graphs.
 SIAM Journal on Discrete Mathematics, 21(2):523–531, 2007.
- [9] A. Mansfield. Determining the thickness of graphs is NP-hard. *Mathematical Proceedings of the Cambridge Philosophical Society*, 93:9–23, 1983.
- [10] P. Mutzel, T. Odenthal, and M. Scharbrodt. The thickness of graphs: A survey. *Graphs and Combinatorics*, 14:59–73, 1998.
- [11] C. S. J. A. Nash-Williams. Decomposition of finite graphs into forests. *Journal of the London Mathematical Society*, 39:12, 1964.
- [12] S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multi-hop radio networks.
 ACM SIGCOMM Computer Communication Review, 22:211–222, 1992.
- [13] S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multihop radio networks.
 IEEE/ACM Transactions on Networking, 1(2):166–177, 1993.
- [14] D. B. West. *Introduction to Graph Theory*. Prentice Hall, 2nd edition, 2001.